cargo/core/compiler/unit_dependencies.rs
1//! Constructs the dependency graph for compilation.
2//!
3//! Rust code is typically organized as a set of Cargo packages. The
4//! dependencies between the packages themselves are stored in the
5//! [`Resolve`] struct. However, we can't use that information as is for
6//! compilation! A package typically contains several targets, or crates,
7//! and these targets has inter-dependencies. For example, you need to
8//! compile the `lib` target before the `bin` one, and you need to compile
9//! `build.rs` before either of those.
10//!
11//! So, we need to lower the `Resolve`, which specifies dependencies between
12//! *packages*, to a graph of dependencies between their *targets*, and this
13//! is exactly what this module is doing! Well, almost exactly: another
14//! complication is that we might want to compile the same target several times
15//! (for example, with and without tests), so we actually build a dependency
16//! graph of [`Unit`]s, which capture these properties.
17
18use std::collections::{HashMap, HashSet};
19
20use tracing::trace;
21
22use crate::CargoResult;
23use crate::core::compiler::UserIntent;
24use crate::core::compiler::artifact::match_artifacts_kind_with_targets;
25use crate::core::compiler::unit_graph::{UnitDep, UnitGraph};
26use crate::core::compiler::{
27 CompileKind, CompileMode, CrateType, RustcTargetData, Unit, UnitInterner,
28};
29use crate::core::dependency::{Artifact, ArtifactKind, ArtifactTarget, DepKind};
30use crate::core::profiles::{Profile, Profiles, UnitFor};
31use crate::core::resolver::Resolve;
32use crate::core::resolver::features::{FeaturesFor, ResolvedFeatures};
33use crate::core::{Dependency, Package, PackageId, PackageSet, Target, TargetKind, Workspace};
34use crate::ops::resolve_all_features;
35use crate::util::GlobalContext;
36use crate::util::interning::InternedString;
37
38const IS_NO_ARTIFACT_DEP: Option<&'static Artifact> = None;
39
40/// Collection of stuff used while creating the [`UnitGraph`].
41struct State<'a, 'gctx> {
42 ws: &'a Workspace<'gctx>,
43 gctx: &'gctx GlobalContext,
44 /// Stores the result of building the [`UnitGraph`].
45 unit_dependencies: UnitGraph,
46 package_set: &'a PackageSet<'gctx>,
47 usr_resolve: &'a Resolve,
48 usr_features: &'a ResolvedFeatures,
49 /// Like `usr_resolve` but for building standard library (`-Zbuild-std`).
50 std_resolve: Option<&'a Resolve>,
51 /// Like `usr_features` but for building standard library (`-Zbuild-std`).
52 std_features: Option<&'a ResolvedFeatures>,
53 /// `true` while generating the dependencies for the standard library.
54 is_std: bool,
55 /// The high-level operation requested by the user.
56 /// Used for preventing from building lib thrice.
57 intent: UserIntent,
58 target_data: &'a RustcTargetData<'gctx>,
59 profiles: &'a Profiles,
60 interner: &'a UnitInterner,
61 // Units for `-Zrustdoc-scrape-examples`.
62 scrape_units: &'a [Unit],
63
64 /// A set of edges in `unit_dependencies` where (a, b) means that the
65 /// dependency from a to b was added purely because it was a dev-dependency.
66 /// This is used during `connect_run_custom_build_deps`.
67 dev_dependency_edges: HashSet<(Unit, Unit)>,
68}
69
70/// A boolean-like to indicate if a `Unit` is an artifact or not.
71#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
72pub enum IsArtifact {
73 Yes,
74 No,
75}
76
77impl IsArtifact {
78 pub fn is_true(&self) -> bool {
79 matches!(self, IsArtifact::Yes)
80 }
81}
82
83/// Then entry point for building a dependency graph of compilation units.
84///
85/// You can find some information for arguments from doc of [`State`].
86#[tracing::instrument(skip_all)]
87pub fn build_unit_dependencies<'a, 'gctx>(
88 ws: &'a Workspace<'gctx>,
89 package_set: &'a PackageSet<'gctx>,
90 resolve: &'a Resolve,
91 features: &'a ResolvedFeatures,
92 std_resolve: Option<&'a (Resolve, ResolvedFeatures)>,
93 roots: &[Unit],
94 scrape_units: &[Unit],
95 std_roots: &HashMap<CompileKind, Vec<Unit>>,
96 intent: UserIntent,
97 target_data: &'a RustcTargetData<'gctx>,
98 profiles: &'a Profiles,
99 interner: &'a UnitInterner,
100) -> CargoResult<UnitGraph> {
101 if roots.is_empty() {
102 // If -Zbuild-std, don't attach units if there is nothing to build.
103 // Otherwise, other parts of the code may be confused by seeing units
104 // in the dep graph without a root.
105 return Ok(HashMap::new());
106 }
107 let (std_resolve, std_features) = match std_resolve {
108 Some((r, f)) => (Some(r), Some(f)),
109 None => (None, None),
110 };
111 let mut state = State {
112 ws,
113 gctx: ws.gctx(),
114 unit_dependencies: HashMap::new(),
115 package_set,
116 usr_resolve: resolve,
117 usr_features: features,
118 std_resolve,
119 std_features,
120 is_std: false,
121 intent,
122 target_data,
123 profiles,
124 interner,
125 scrape_units,
126 dev_dependency_edges: HashSet::new(),
127 };
128
129 let std_unit_deps = calc_deps_of_std(&mut state, std_roots)?;
130
131 deps_of_roots(roots, &mut state)?;
132 super::links::validate_links(state.resolve(), &state.unit_dependencies)?;
133 // Hopefully there aren't any links conflicts with the standard library?
134
135 if let Some(std_unit_deps) = std_unit_deps {
136 attach_std_deps(&mut state, std_roots, std_unit_deps);
137 }
138
139 connect_run_custom_build_deps(&mut state);
140
141 // Dependencies are used in tons of places throughout the backend, many of
142 // which affect the determinism of the build itself. As a result be sure
143 // that dependency lists are always sorted to ensure we've always got a
144 // deterministic output.
145 for list in state.unit_dependencies.values_mut() {
146 list.sort();
147 }
148 trace!("ALL UNIT DEPENDENCIES {:#?}", state.unit_dependencies);
149
150 Ok(state.unit_dependencies)
151}
152
153/// Compute all the dependencies for the standard library.
154fn calc_deps_of_std(
155 state: &mut State<'_, '_>,
156 std_roots: &HashMap<CompileKind, Vec<Unit>>,
157) -> CargoResult<Option<UnitGraph>> {
158 if std_roots.is_empty() {
159 return Ok(None);
160 }
161 // Compute dependencies for the standard library.
162 state.is_std = true;
163 for roots in std_roots.values() {
164 deps_of_roots(roots, state)?;
165 }
166 state.is_std = false;
167 Ok(Some(std::mem::take(&mut state.unit_dependencies)))
168}
169
170/// Add the standard library units to the `unit_dependencies`.
171fn attach_std_deps(
172 state: &mut State<'_, '_>,
173 std_roots: &HashMap<CompileKind, Vec<Unit>>,
174 std_unit_deps: UnitGraph,
175) {
176 // Attach the standard library as a dependency of every target unit.
177 let mut found = false;
178 for (unit, deps) in state.unit_dependencies.iter_mut() {
179 if !unit.kind.is_host() && !unit.mode.is_run_custom_build() {
180 deps.extend(std_roots[&unit.kind].iter().map(|unit| UnitDep {
181 unit: unit.clone(),
182 unit_for: UnitFor::new_normal(unit.kind),
183 extern_crate_name: unit.pkg.name(),
184 dep_name: None,
185 // TODO: Does this `public` make sense?
186 public: true,
187 noprelude: true,
188 }));
189 found = true;
190 }
191 }
192 // And also include the dependencies of the standard library itself. Don't
193 // include these if no units actually needed the standard library.
194 if found {
195 for (unit, deps) in std_unit_deps.into_iter() {
196 if let Some(other_unit) = state.unit_dependencies.insert(unit, deps) {
197 panic!("std unit collision with existing unit: {:?}", other_unit);
198 }
199 }
200 }
201}
202
203/// Compute all the dependencies of the given root units.
204/// The result is stored in `state.unit_dependencies`.
205fn deps_of_roots(roots: &[Unit], state: &mut State<'_, '_>) -> CargoResult<()> {
206 for unit in roots.iter() {
207 // Dependencies of tests/benches should not have `panic` set.
208 // We check the user intent to see if we are running in `cargo test` in
209 // which case we ensure all dependencies have `panic` cleared, and
210 // avoid building the lib thrice (once with `panic`, once without, once
211 // for `--test`). In particular, the lib included for Doc tests and
212 // examples are `Build` mode here.
213 let root_compile_kind = unit.kind;
214 let unit_for = if unit.mode.is_any_test() || state.intent.is_rustc_test() {
215 if unit.target.proc_macro() {
216 // Special-case for proc-macros, which are forced to for-host
217 // since they need to link with the proc_macro crate.
218 UnitFor::new_host_test(state.gctx, root_compile_kind)
219 } else {
220 UnitFor::new_test(state.gctx, root_compile_kind)
221 }
222 } else if unit.target.is_custom_build() {
223 // This normally doesn't happen, except `clean` aggressively
224 // generates all units.
225 UnitFor::new_host(false, root_compile_kind)
226 } else if unit.target.proc_macro() {
227 UnitFor::new_host(true, root_compile_kind)
228 } else if unit.target.for_host() {
229 // Plugin should never have panic set.
230 UnitFor::new_compiler(root_compile_kind)
231 } else {
232 UnitFor::new_normal(root_compile_kind)
233 };
234 deps_of(unit, state, unit_for)?;
235 }
236
237 Ok(())
238}
239
240/// Compute the dependencies of a single unit, recursively computing all
241/// transitive dependencies.
242///
243/// The result is stored in `state.unit_dependencies`.
244fn deps_of(unit: &Unit, state: &mut State<'_, '_>, unit_for: UnitFor) -> CargoResult<()> {
245 // Currently the `unit_dependencies` map does not include `unit_for`. This should
246 // be safe for now. `TestDependency` only exists to clear the `panic`
247 // flag, and you'll never ask for a `unit` with `panic` set as a
248 // `TestDependency`. `CustomBuild` should also be fine since if the
249 // requested unit's settings are the same as `Any`, `CustomBuild` can't
250 // affect anything else in the hierarchy.
251 if !state.unit_dependencies.contains_key(unit) {
252 let unit_deps = compute_deps(unit, state, unit_for)?;
253 state
254 .unit_dependencies
255 .insert(unit.clone(), unit_deps.clone());
256 for unit_dep in unit_deps {
257 deps_of(&unit_dep.unit, state, unit_dep.unit_for)?;
258 }
259 }
260 Ok(())
261}
262
263/// Returns the direct unit dependencies for the given `Unit`.
264fn compute_deps(
265 unit: &Unit,
266 state: &mut State<'_, '_>,
267 unit_for: UnitFor,
268) -> CargoResult<Vec<UnitDep>> {
269 if unit.mode.is_run_custom_build() {
270 return compute_deps_custom_build(unit, unit_for, state);
271 } else if unit.mode.is_doc() {
272 // Note: this does not include doc test.
273 return compute_deps_doc(unit, state, unit_for);
274 }
275
276 let mut ret = Vec::new();
277 let mut dev_deps = Vec::new();
278 for (dep_pkg_id, deps) in state.deps(unit, unit_for) {
279 let Some(dep_lib) = calc_artifact_deps(unit, unit_for, dep_pkg_id, &deps, state, &mut ret)?
280 else {
281 continue;
282 };
283 let dep_pkg = state.get(dep_pkg_id);
284 let mode = check_or_build_mode(unit.mode, dep_lib);
285 let dep_unit_for = unit_for.with_dependency(unit, dep_lib, unit_for.root_compile_kind());
286
287 let start = ret.len();
288 if state.gctx.cli_unstable().dual_proc_macros
289 && dep_lib.proc_macro()
290 && !unit.kind.is_host()
291 {
292 let unit_dep = new_unit_dep(
293 state,
294 unit,
295 dep_pkg,
296 dep_lib,
297 dep_unit_for,
298 unit.kind,
299 mode,
300 IS_NO_ARTIFACT_DEP,
301 )?;
302 ret.push(unit_dep);
303 let unit_dep = new_unit_dep(
304 state,
305 unit,
306 dep_pkg,
307 dep_lib,
308 dep_unit_for,
309 CompileKind::Host,
310 mode,
311 IS_NO_ARTIFACT_DEP,
312 )?;
313 ret.push(unit_dep);
314 } else {
315 let unit_dep = new_unit_dep(
316 state,
317 unit,
318 dep_pkg,
319 dep_lib,
320 dep_unit_for,
321 unit.kind.for_target(dep_lib),
322 mode,
323 IS_NO_ARTIFACT_DEP,
324 )?;
325 ret.push(unit_dep);
326 }
327
328 // If the unit added was a dev-dependency unit, then record that in the
329 // dev-dependencies array. We'll add this to
330 // `state.dev_dependency_edges` at the end and process it later in
331 // `connect_run_custom_build_deps`.
332 if deps.iter().all(|d| !d.is_transitive()) {
333 for dep in ret[start..].iter() {
334 dev_deps.push((unit.clone(), dep.unit.clone()));
335 }
336 }
337 }
338 state.dev_dependency_edges.extend(dev_deps);
339
340 // If this target is a build script, then what we've collected so far is
341 // all we need. If this isn't a build script, then it depends on the
342 // build script if there is one.
343 if unit.target.is_custom_build() {
344 return Ok(ret);
345 }
346 ret.extend(
347 dep_build_script(unit, unit_for, state)?
348 .into_iter()
349 .flatten(),
350 );
351
352 // If this target is a binary, test, example, etc, then it depends on
353 // the library of the same package. The call to `resolve.deps` above
354 // didn't include `pkg` in the return values, so we need to special case
355 // it here and see if we need to push `(pkg, pkg_lib_target)`.
356 if unit.target.is_lib() && unit.mode != CompileMode::Doctest {
357 return Ok(ret);
358 }
359 ret.extend(maybe_lib(unit, state, unit_for)?);
360
361 // If any integration tests/benches are being run, make sure that
362 // binaries are built as well.
363 if !unit.mode.is_check()
364 && unit.mode.is_any_test()
365 && (unit.target.is_test() || unit.target.is_bench())
366 {
367 let id = unit.pkg.package_id();
368 ret.extend(
369 unit.pkg
370 .targets()
371 .iter()
372 .filter(|t| {
373 // Skip binaries with required features that have not been selected.
374 match t.required_features() {
375 Some(rf) if t.is_bin() => {
376 let features = resolve_all_features(
377 state.resolve(),
378 state.features(),
379 state.package_set,
380 id,
381 );
382 rf.iter().all(|f| features.contains(f))
383 }
384 None if t.is_bin() => true,
385 _ => false,
386 }
387 })
388 .map(|t| {
389 new_unit_dep(
390 state,
391 unit,
392 &unit.pkg,
393 t,
394 UnitFor::new_normal(unit_for.root_compile_kind()),
395 unit.kind.for_target(t),
396 CompileMode::Build,
397 IS_NO_ARTIFACT_DEP,
398 )
399 })
400 .collect::<CargoResult<Vec<UnitDep>>>()?,
401 );
402 }
403
404 Ok(ret)
405}
406
407/// Find artifacts for all `deps` of `unit` and add units that build these artifacts
408/// to `ret`.
409fn calc_artifact_deps<'a>(
410 unit: &Unit,
411 unit_for: UnitFor,
412 dep_id: PackageId,
413 deps: &[&Dependency],
414 state: &State<'a, '_>,
415 ret: &mut Vec<UnitDep>,
416) -> CargoResult<Option<&'a Target>> {
417 let mut has_artifact_lib = false;
418 let mut maybe_non_artifact_lib = false;
419 let artifact_pkg = state.get(dep_id);
420 for dep in deps {
421 let Some(artifact) = dep.artifact() else {
422 maybe_non_artifact_lib = true;
423 continue;
424 };
425 has_artifact_lib |= artifact.is_lib();
426 // Custom build scripts (build/compile) never get artifact dependencies,
427 // but the run-build-script step does (where it is handled).
428 if !unit.target.is_custom_build() {
429 debug_assert!(
430 !unit.mode.is_run_custom_build(),
431 "BUG: This should be handled in a separate branch"
432 );
433 ret.extend(artifact_targets_to_unit_deps(
434 unit,
435 unit_for.with_artifact_features(artifact),
436 state,
437 artifact
438 .target()
439 .and_then(|t| match t {
440 ArtifactTarget::BuildDependencyAssumeTarget => None,
441 ArtifactTarget::Force(kind) => Some(CompileKind::Target(kind)),
442 })
443 .unwrap_or(unit.kind),
444 artifact_pkg,
445 dep,
446 )?);
447 }
448 }
449 if has_artifact_lib || maybe_non_artifact_lib {
450 Ok(artifact_pkg.targets().iter().find(|t| t.is_lib()))
451 } else {
452 Ok(None)
453 }
454}
455
456/// Returns the dependencies needed to run a build script.
457///
458/// The `unit` provided must represent an execution of a build script, and
459/// the returned set of units must all be run before `unit` is run.
460fn compute_deps_custom_build(
461 unit: &Unit,
462 unit_for: UnitFor,
463 state: &State<'_, '_>,
464) -> CargoResult<Vec<UnitDep>> {
465 if let Some(links) = unit.pkg.manifest().links() {
466 if unit.links_overrides.get(links).is_some() {
467 // Overridden build scripts don't have any dependencies.
468 return Ok(Vec::new());
469 }
470 }
471 // All dependencies of this unit should use profiles for custom builds.
472 // If this is a build script of a proc macro, make sure it uses host
473 // features.
474 let script_unit_for = unit_for.for_custom_build();
475 // When not overridden, then the dependencies to run a build script are:
476 //
477 // 1. Compiling the build script itself.
478 // 2. For each immediate dependency of our package which has a `links`
479 // key, the execution of that build script.
480 //
481 // We don't have a great way of handling (2) here right now so this is
482 // deferred until after the graph of all unit dependencies has been
483 // constructed.
484 let compile_script_unit = new_unit_dep(
485 state,
486 unit,
487 &unit.pkg,
488 &unit.target,
489 script_unit_for,
490 // Build scripts always compiled for the host.
491 CompileKind::Host,
492 CompileMode::Build,
493 IS_NO_ARTIFACT_DEP,
494 )?;
495
496 let mut result = vec![compile_script_unit];
497
498 // Include any artifact dependencies.
499 //
500 // This is essentially the same as `calc_artifact_deps`, but there are some
501 // subtle differences that require this to be implemented differently.
502 //
503 // Produce units that build all required artifact kinds (like binaries,
504 // static libraries, etc) with the correct compile target.
505 //
506 // Computing the compile target for artifact units is more involved as it has to handle
507 // various target configurations specific to artifacts, like `target = "target"` and
508 // `target = "<triple>"`, which makes knowing the root units compile target
509 // `root_unit_compile_target` necessary.
510 let root_unit_compile_target = unit_for.root_compile_kind();
511 let unit_for = UnitFor::new_host(/*host_features*/ true, root_unit_compile_target);
512 for (dep_pkg_id, deps) in state.deps(unit, script_unit_for) {
513 for dep in deps {
514 if dep.kind() != DepKind::Build || dep.artifact().is_none() {
515 continue;
516 }
517 let artifact_pkg = state.get(dep_pkg_id);
518 let artifact = dep.artifact().expect("artifact dep");
519 let resolved_artifact_compile_kind = artifact
520 .target()
521 .map(|target| target.to_resolved_compile_kind(root_unit_compile_target));
522
523 result.extend(artifact_targets_to_unit_deps(
524 unit,
525 unit_for.with_artifact_features_from_resolved_compile_kind(
526 resolved_artifact_compile_kind,
527 ),
528 state,
529 resolved_artifact_compile_kind.unwrap_or(CompileKind::Host),
530 artifact_pkg,
531 dep,
532 )?);
533 }
534 }
535
536 Ok(result)
537}
538
539/// Given a `parent` unit containing a dependency `dep` whose package is `artifact_pkg`,
540/// find all targets in `artifact_pkg` which refer to the `dep`s artifact declaration
541/// and turn them into units.
542/// Due to the nature of artifact dependencies, a single dependency in a manifest can
543/// cause one or more targets to be build, for instance with
544/// `artifact = ["bin:a", "bin:b", "staticlib"]`, which is very different from normal
545/// dependencies which cause only a single unit to be created.
546///
547/// `compile_kind` is the computed kind for the future artifact unit
548/// dependency, only the caller can pick the correct one.
549fn artifact_targets_to_unit_deps(
550 parent: &Unit,
551 parent_unit_for: UnitFor,
552 state: &State<'_, '_>,
553 compile_kind: CompileKind,
554 artifact_pkg: &Package,
555 dep: &Dependency,
556) -> CargoResult<Vec<UnitDep>> {
557 let ret =
558 match_artifacts_kind_with_targets(dep, artifact_pkg.targets(), parent.pkg.name().as_str())?
559 .into_iter()
560 .flat_map(|(artifact_kind, target)| {
561 // We split target libraries into individual units, even though rustc is able
562 // to produce multiple kinds in a single invocation for the sole reason that
563 // each artifact kind has its own output directory, something we can't easily
564 // teach rustc for now.
565 match target.kind() {
566 TargetKind::Lib(kinds) => Box::new(
567 kinds
568 .iter()
569 .filter(move |tk| match (tk, artifact_kind) {
570 (CrateType::Cdylib, ArtifactKind::Cdylib) => true,
571 (CrateType::Staticlib, ArtifactKind::Staticlib) => true,
572 _ => false,
573 })
574 .map(|target_kind| {
575 new_unit_dep(
576 state,
577 parent,
578 artifact_pkg,
579 target
580 .clone()
581 .set_kind(TargetKind::Lib(vec![target_kind.clone()])),
582 parent_unit_for,
583 compile_kind,
584 CompileMode::Build,
585 dep.artifact(),
586 )
587 }),
588 ) as Box<dyn Iterator<Item = _>>,
589 _ => Box::new(std::iter::once(new_unit_dep(
590 state,
591 parent,
592 artifact_pkg,
593 target,
594 parent_unit_for,
595 compile_kind,
596 CompileMode::Build,
597 dep.artifact(),
598 ))),
599 }
600 })
601 .collect::<Result<Vec<_>, _>>()?;
602 Ok(ret)
603}
604
605/// Returns the dependencies necessary to document a package.
606fn compute_deps_doc(
607 unit: &Unit,
608 state: &mut State<'_, '_>,
609 unit_for: UnitFor,
610) -> CargoResult<Vec<UnitDep>> {
611 // To document a library, we depend on dependencies actually being
612 // built. If we're documenting *all* libraries, then we also depend on
613 // the documentation of the library being built.
614 let mut ret = Vec::new();
615 for (id, deps) in state.deps(unit, unit_for) {
616 let Some(dep_lib) = calc_artifact_deps(unit, unit_for, id, &deps, state, &mut ret)? else {
617 continue;
618 };
619 let dep_pkg = state.get(id);
620 // Rustdoc only needs rmeta files for regular dependencies.
621 // However, for plugins/proc macros, deps should be built like normal.
622 let mode = check_or_build_mode(unit.mode, dep_lib);
623 let dep_unit_for = unit_for.with_dependency(unit, dep_lib, unit_for.root_compile_kind());
624 let lib_unit_dep = new_unit_dep(
625 state,
626 unit,
627 dep_pkg,
628 dep_lib,
629 dep_unit_for,
630 unit.kind.for_target(dep_lib),
631 mode,
632 IS_NO_ARTIFACT_DEP,
633 )?;
634 ret.push(lib_unit_dep);
635 if dep_lib.documented() && state.intent.wants_deps_docs() {
636 // Document this lib as well.
637 let doc_unit_dep = new_unit_dep(
638 state,
639 unit,
640 dep_pkg,
641 dep_lib,
642 dep_unit_for,
643 unit.kind.for_target(dep_lib),
644 unit.mode,
645 IS_NO_ARTIFACT_DEP,
646 )?;
647 ret.push(doc_unit_dep);
648 }
649 }
650
651 // Be sure to build/run the build script for documented libraries.
652 ret.extend(
653 dep_build_script(unit, unit_for, state)?
654 .into_iter()
655 .flatten(),
656 );
657
658 // If we document a binary/example, we need the library available.
659 if unit.target.is_bin() || unit.target.is_example() {
660 // build the lib
661 ret.extend(maybe_lib(unit, state, unit_for)?);
662 // and also the lib docs for intra-doc links
663 if let Some(lib) = unit
664 .pkg
665 .targets()
666 .iter()
667 .find(|t| t.is_linkable() && t.documented())
668 {
669 let dep_unit_for = unit_for.with_dependency(unit, lib, unit_for.root_compile_kind());
670 let lib_doc_unit = new_unit_dep(
671 state,
672 unit,
673 &unit.pkg,
674 lib,
675 dep_unit_for,
676 unit.kind.for_target(lib),
677 unit.mode,
678 IS_NO_ARTIFACT_DEP,
679 )?;
680 ret.push(lib_doc_unit);
681 }
682 }
683
684 // Add all units being scraped for examples as a dependency of top-level Doc units.
685 if state.ws.unit_needs_doc_scrape(unit) {
686 for scrape_unit in state.scrape_units.iter() {
687 let scrape_unit_for = UnitFor::new_normal(scrape_unit.kind);
688 deps_of(scrape_unit, state, scrape_unit_for)?;
689 ret.push(new_unit_dep(
690 state,
691 scrape_unit,
692 &scrape_unit.pkg,
693 &scrape_unit.target,
694 scrape_unit_for,
695 scrape_unit.kind,
696 scrape_unit.mode,
697 IS_NO_ARTIFACT_DEP,
698 )?);
699 }
700 }
701
702 Ok(ret)
703}
704
705fn maybe_lib(
706 unit: &Unit,
707 state: &mut State<'_, '_>,
708 unit_for: UnitFor,
709) -> CargoResult<Option<UnitDep>> {
710 unit.pkg
711 .targets()
712 .iter()
713 .find(|t| t.is_linkable())
714 .map(|t| {
715 let mode = check_or_build_mode(unit.mode, t);
716 let dep_unit_for = unit_for.with_dependency(unit, t, unit_for.root_compile_kind());
717 new_unit_dep(
718 state,
719 unit,
720 &unit.pkg,
721 t,
722 dep_unit_for,
723 unit.kind.for_target(t),
724 mode,
725 IS_NO_ARTIFACT_DEP,
726 )
727 })
728 .transpose()
729}
730
731/// If a build script is scheduled to be run for the package specified by
732/// `unit`, this function will return the unit to run that build script.
733///
734/// Overriding a build script simply means that the running of the build
735/// script itself doesn't have any dependencies, so even in that case a unit
736/// of work is still returned. `None` is only returned if the package has no
737/// build script.
738fn dep_build_script(
739 unit: &Unit,
740 unit_for: UnitFor,
741 state: &State<'_, '_>,
742) -> CargoResult<Option<Vec<UnitDep>>> {
743 Some(
744 unit.pkg
745 .targets()
746 .iter()
747 .filter(|t| t.is_custom_build())
748 .map(|t| {
749 // The profile stored in the Unit is the profile for the thing
750 // the custom build script is running for.
751 let profile = state.profiles.get_profile_run_custom_build(&unit.profile);
752 // UnitFor::for_custom_build is used because we want the `host` flag set
753 // for all of our build dependencies (so they all get
754 // build-override profiles), including compiling the build.rs
755 // script itself.
756 //
757 // If `is_for_host_features` here is `false`, that means we are a
758 // build.rs script for a normal dependency and we want to set the
759 // CARGO_FEATURE_* environment variables to the features as a
760 // normal dep.
761 //
762 // If `is_for_host_features` here is `true`, that means that this
763 // package is being used as a build dependency or proc-macro, and
764 // so we only want to set CARGO_FEATURE_* variables for the host
765 // side of the graph.
766 //
767 // Keep in mind that the RunCustomBuild unit and the Compile
768 // build.rs unit use the same features. This is because some
769 // people use `cfg!` and `#[cfg]` expressions to check for enabled
770 // features instead of just checking `CARGO_FEATURE_*` at runtime.
771 // In the case with the new feature resolver (decoupled host
772 // deps), and a shared dependency has different features enabled
773 // for normal vs. build, then the build.rs script will get
774 // compiled twice. I believe it is not feasible to only build it
775 // once because it would break a large number of scripts (they
776 // would think they have the wrong set of features enabled).
777 let script_unit_for = unit_for.for_custom_build();
778 new_unit_dep_with_profile(
779 state,
780 unit,
781 &unit.pkg,
782 t,
783 script_unit_for,
784 unit.kind,
785 CompileMode::RunCustomBuild,
786 profile,
787 IS_NO_ARTIFACT_DEP,
788 )
789 })
790 .collect(),
791 )
792 .transpose()
793}
794
795/// Choose the correct mode for dependencies.
796fn check_or_build_mode(mode: CompileMode, target: &Target) -> CompileMode {
797 match mode {
798 CompileMode::Check { .. } | CompileMode::Doc { .. } | CompileMode::Docscrape => {
799 if target.for_host() {
800 // Plugin and proc macro targets should be compiled like
801 // normal.
802 CompileMode::Build
803 } else {
804 // Regular dependencies should not be checked with --test.
805 // Regular dependencies of doc targets should emit rmeta only.
806 CompileMode::Check { test: false }
807 }
808 }
809 _ => CompileMode::Build,
810 }
811}
812
813/// Create a new Unit for a dependency from `parent` to `pkg` and `target`.
814fn new_unit_dep(
815 state: &State<'_, '_>,
816 parent: &Unit,
817 pkg: &Package,
818 target: &Target,
819 unit_for: UnitFor,
820 kind: CompileKind,
821 mode: CompileMode,
822 artifact: Option<&Artifact>,
823) -> CargoResult<UnitDep> {
824 let is_local = pkg.package_id().source_id().is_path() && !state.is_std;
825 let profile = state.profiles.get_profile(
826 pkg.package_id(),
827 state.ws.is_member(pkg),
828 is_local,
829 unit_for,
830 kind,
831 );
832 new_unit_dep_with_profile(
833 state, parent, pkg, target, unit_for, kind, mode, profile, artifact,
834 )
835}
836
837fn new_unit_dep_with_profile(
838 state: &State<'_, '_>,
839 parent: &Unit,
840 pkg: &Package,
841 target: &Target,
842 unit_for: UnitFor,
843 kind: CompileKind,
844 mode: CompileMode,
845 profile: Profile,
846 artifact: Option<&Artifact>,
847) -> CargoResult<UnitDep> {
848 let (extern_crate_name, dep_name) = state.resolve().extern_crate_name_and_dep_name(
849 parent.pkg.package_id(),
850 pkg.package_id(),
851 target,
852 )?;
853 let public = state
854 .resolve()
855 .is_public_dep(parent.pkg.package_id(), pkg.package_id());
856 let features_for = unit_for.map_to_features_for(artifact);
857 let artifact_target = match features_for {
858 FeaturesFor::ArtifactDep(target) => Some(target),
859 _ => None,
860 };
861 let features = state.activated_features(pkg.package_id(), features_for);
862 let unit = state.interner.intern(
863 pkg,
864 target,
865 profile,
866 kind,
867 mode,
868 features,
869 state.target_data.info(kind).rustflags.clone(),
870 state.target_data.info(kind).rustdocflags.clone(),
871 state
872 .target_data
873 .target_config(kind)
874 .links_overrides
875 .clone(),
876 state.is_std,
877 /*dep_hash*/ 0,
878 artifact.map_or(IsArtifact::No, |_| IsArtifact::Yes),
879 artifact_target,
880 false,
881 );
882 Ok(UnitDep {
883 unit,
884 unit_for,
885 extern_crate_name,
886 dep_name,
887 public,
888 noprelude: false,
889 })
890}
891
892/// Fill in missing dependencies for units of the `RunCustomBuild`
893///
894/// As mentioned above in `compute_deps_custom_build` each build script
895/// execution has two dependencies. The first is compiling the build script
896/// itself (already added) and the second is that all crates the package of the
897/// build script depends on with `links` keys, their build script execution. (a
898/// bit confusing eh?)
899///
900/// Here we take the entire `deps` map and add more dependencies from execution
901/// of one build script to execution of another build script.
902fn connect_run_custom_build_deps(state: &mut State<'_, '_>) {
903 let mut new_deps = Vec::new();
904
905 {
906 let state = &*state;
907 // First up build a reverse dependency map. This is a mapping of all
908 // `RunCustomBuild` known steps to the unit which depends on them. For
909 // example a library might depend on a build script, so this map will
910 // have the build script as the key and the library would be in the
911 // value's set.
912 let mut reverse_deps_map = HashMap::new();
913 for (unit, deps) in state.unit_dependencies.iter() {
914 for dep in deps {
915 if dep.unit.mode == CompileMode::RunCustomBuild {
916 reverse_deps_map
917 .entry(dep.unit.clone())
918 .or_insert_with(HashSet::new)
919 .insert(unit);
920 }
921 }
922 }
923
924 // Next, we take a look at all build scripts executions listed in the
925 // dependency map. Our job here is to take everything that depends on
926 // this build script (from our reverse map above) and look at the other
927 // package dependencies of these parents.
928 //
929 // If we depend on a linkable target and the build script mentions
930 // `links`, then we depend on that package's build script! Here we use
931 // `dep_build_script` to manufacture an appropriate build script unit to
932 // depend on.
933 for unit in state
934 .unit_dependencies
935 .keys()
936 .filter(|k| k.mode == CompileMode::RunCustomBuild)
937 {
938 // This list of dependencies all depend on `unit`, an execution of
939 // the build script.
940 let Some(reverse_deps) = reverse_deps_map.get(unit) else {
941 continue;
942 };
943
944 let to_add = reverse_deps
945 .iter()
946 // Get all sibling dependencies of `unit`
947 .flat_map(|reverse_dep| {
948 state.unit_dependencies[reverse_dep]
949 .iter()
950 .map(move |a| (reverse_dep, a))
951 })
952 // Only deps with `links`.
953 .filter(|(_parent, other)| {
954 other.unit.pkg != unit.pkg
955 && other.unit.target.is_linkable()
956 && other.unit.pkg.manifest().links().is_some()
957 })
958 // Avoid cycles when using the doc --scrape-examples feature:
959 // Say a workspace has crates A and B where A has a build-dependency on B.
960 // The Doc units for A and B will have a dependency on the Docscrape for both A and B.
961 // So this would add a dependency from B-build to A-build, causing a cycle:
962 // B (build) -> A (build) -> B(build)
963 // See the test scrape_examples_avoid_build_script_cycle for a concrete example.
964 // To avoid this cycle, we filter out the B -> A (docscrape) dependency.
965 .filter(|(_parent, other)| !other.unit.mode.is_doc_scrape())
966 // Skip dependencies induced via dev-dependencies since
967 // connections between `links` and build scripts only happens
968 // via normal dependencies. Otherwise since dev-dependencies can
969 // be cyclic we could have cyclic build-script executions.
970 .filter_map(move |(parent, other)| {
971 if state
972 .dev_dependency_edges
973 .contains(&((*parent).clone(), other.unit.clone()))
974 {
975 None
976 } else {
977 Some(other)
978 }
979 })
980 // Get the RunCustomBuild for other lib.
981 .filter_map(|other| {
982 state.unit_dependencies[&other.unit]
983 .iter()
984 .find(|other_dep| other_dep.unit.mode == CompileMode::RunCustomBuild)
985 .cloned()
986 })
987 .collect::<HashSet<_>>();
988
989 if !to_add.is_empty() {
990 // (RunCustomBuild, set(other RunCustomBuild))
991 new_deps.push((unit.clone(), to_add));
992 }
993 }
994 }
995
996 // And finally, add in all the missing dependencies!
997 for (unit, new_deps) in new_deps {
998 state
999 .unit_dependencies
1000 .get_mut(&unit)
1001 .unwrap()
1002 .extend(new_deps);
1003 }
1004}
1005
1006impl<'a, 'gctx> State<'a, 'gctx> {
1007 /// Gets `std_resolve` during building std, otherwise `usr_resolve`.
1008 fn resolve(&self) -> &'a Resolve {
1009 if self.is_std {
1010 self.std_resolve.unwrap()
1011 } else {
1012 self.usr_resolve
1013 }
1014 }
1015
1016 /// Gets `std_features` during building std, otherwise `usr_features`.
1017 fn features(&self) -> &'a ResolvedFeatures {
1018 if self.is_std {
1019 self.std_features.unwrap()
1020 } else {
1021 self.usr_features
1022 }
1023 }
1024
1025 fn activated_features(
1026 &self,
1027 pkg_id: PackageId,
1028 features_for: FeaturesFor,
1029 ) -> Vec<InternedString> {
1030 let features = self.features();
1031 features.activated_features(pkg_id, features_for)
1032 }
1033
1034 fn is_dep_activated(
1035 &self,
1036 pkg_id: PackageId,
1037 features_for: FeaturesFor,
1038 dep_name: InternedString,
1039 ) -> bool {
1040 self.features()
1041 .is_dep_activated(pkg_id, features_for, dep_name)
1042 }
1043
1044 fn get(&self, id: PackageId) -> &'a Package {
1045 self.package_set
1046 .get_one(id)
1047 .unwrap_or_else(|_| panic!("expected {} to be downloaded", id))
1048 }
1049
1050 /// Returns a filtered set of dependencies for the given unit.
1051 fn deps(&self, unit: &Unit, unit_for: UnitFor) -> Vec<(PackageId, Vec<&Dependency>)> {
1052 let pkg_id = unit.pkg.package_id();
1053 let kind = unit.kind;
1054 self.resolve()
1055 .deps(pkg_id)
1056 .filter_map(|(id, deps)| {
1057 assert!(!deps.is_empty());
1058 let deps: Vec<_> = deps
1059 .iter()
1060 .filter(|dep| {
1061 // If this target is a build command, then we only want build
1062 // dependencies, otherwise we want everything *other than* build
1063 // dependencies.
1064 if unit.target.is_custom_build() != dep.is_build() {
1065 return false;
1066 }
1067
1068 // If this dependency is **not** a transitive dependency, then it
1069 // only applies to test/example targets.
1070 if !dep.is_transitive()
1071 && !unit.target.is_test()
1072 && !unit.target.is_example()
1073 && !unit.mode.is_any_test()
1074 {
1075 return false;
1076 }
1077
1078 // If this dependency is only available for certain platforms,
1079 // make sure we're only enabling it for that platform.
1080 if !self.target_data.dep_platform_activated(dep, kind) {
1081 return false;
1082 }
1083
1084 // If this is an optional dependency, and the new feature resolver
1085 // did not enable it, don't include it.
1086 if dep.is_optional() {
1087 // This `unit_for` is from parent dep and *SHOULD* contains its own
1088 // artifact dep information inside `artifact_target_for_features`.
1089 // So, no need to map any artifact info from an incorrect `dep.artifact()`.
1090 let features_for = unit_for.map_to_features_for(IS_NO_ARTIFACT_DEP);
1091 if !self.is_dep_activated(pkg_id, features_for, dep.name_in_toml()) {
1092 return false;
1093 }
1094 }
1095
1096 // If we've gotten past all that, then this dependency is
1097 // actually used!
1098 true
1099 })
1100 .collect();
1101 if deps.is_empty() {
1102 None
1103 } else {
1104 Some((id, deps))
1105 }
1106 })
1107 .collect()
1108 }
1109}