miri/shims/unix/linux_like/
sync.rs

1use crate::concurrency::sync::FutexRef;
2use crate::helpers::check_min_vararg_count;
3use crate::*;
4
5struct LinuxFutex {
6    futex: FutexRef,
7}
8
9/// Implementation of the SYS_futex syscall.
10/// `args` is the arguments *including* the syscall number.
11pub fn futex<'tcx>(
12    ecx: &mut MiriInterpCx<'tcx>,
13    varargs: &[OpTy<'tcx>],
14    dest: &MPlaceTy<'tcx>,
15) -> InterpResult<'tcx> {
16    let [addr, op, val] = check_min_vararg_count("`syscall(SYS_futex, ...)`", varargs)?;
17
18    // See <https://man7.org/linux/man-pages/man2/futex.2.html> for docs.
19    // The first three arguments (after the syscall number itself) are the same to all futex operations:
20    //     (uint32_t *addr, int op, uint32_t val).
21    // We checked above that these definitely exist.
22    let addr = ecx.read_pointer(addr)?;
23    let op = ecx.read_scalar(op)?.to_i32()?;
24    let val = ecx.read_scalar(val)?.to_u32()?;
25
26    // This is a vararg function so we have to bring our own type for this pointer.
27    let addr = ecx.ptr_to_mplace(addr, ecx.machine.layouts.i32);
28
29    let futex_private = ecx.eval_libc_i32("FUTEX_PRIVATE_FLAG");
30    let futex_wait = ecx.eval_libc_i32("FUTEX_WAIT");
31    let futex_wait_bitset = ecx.eval_libc_i32("FUTEX_WAIT_BITSET");
32    let futex_wake = ecx.eval_libc_i32("FUTEX_WAKE");
33    let futex_wake_bitset = ecx.eval_libc_i32("FUTEX_WAKE_BITSET");
34    let futex_realtime = ecx.eval_libc_i32("FUTEX_CLOCK_REALTIME");
35
36    // FUTEX_PRIVATE enables an optimization that stops it from working across processes.
37    // Miri doesn't support that anyway, so we ignore that flag.
38    match op & !futex_private {
39        // FUTEX_WAIT: (int *addr, int op = FUTEX_WAIT, int val, const timespec *timeout)
40        // Blocks the thread if *addr still equals val. Wakes up when FUTEX_WAKE is called on the same address,
41        // or *timeout expires. `timeout == null` for an infinite timeout.
42        //
43        // FUTEX_WAIT_BITSET: (int *addr, int op = FUTEX_WAIT_BITSET, int val, const timespec *timeout, int *_ignored, unsigned int bitset)
44        // This is identical to FUTEX_WAIT, except:
45        //  - The timeout is absolute rather than relative.
46        //  - You can specify the bitset to selecting what WAKE operations to respond to.
47        op if op & !futex_realtime == futex_wait || op & !futex_realtime == futex_wait_bitset => {
48            let wait_bitset = op & !futex_realtime == futex_wait_bitset;
49
50            let (timeout, bitset) = if wait_bitset {
51                let [_, _, _, timeout, uaddr2, bitset] = check_min_vararg_count(
52                    "`syscall(SYS_futex, FUTEX_WAIT_BITSET, ...)`",
53                    varargs,
54                )?;
55                let _timeout = ecx.read_pointer(timeout)?;
56                let _uaddr2 = ecx.read_pointer(uaddr2)?;
57                (timeout, ecx.read_scalar(bitset)?.to_u32()?)
58            } else {
59                let [_, _, _, timeout] =
60                    check_min_vararg_count("`syscall(SYS_futex, FUTEX_WAIT, ...)`", varargs)?;
61                (timeout, u32::MAX)
62            };
63
64            if bitset == 0 {
65                return ecx.set_last_error_and_return(LibcError("EINVAL"), dest);
66            }
67
68            let timeout = ecx.deref_pointer_as(timeout, ecx.libc_ty_layout("timespec"))?;
69            let timeout = if ecx.ptr_is_null(timeout.ptr())? {
70                None
71            } else {
72                let duration = match ecx.read_timespec(&timeout)? {
73                    Some(duration) => duration,
74                    None => {
75                        return ecx.set_last_error_and_return(LibcError("EINVAL"), dest);
76                    }
77                };
78                let timeout_clock = if op & futex_realtime == futex_realtime {
79                    ecx.check_no_isolation(
80                        "`futex` syscall with `op=FUTEX_WAIT` and non-null timeout with `FUTEX_CLOCK_REALTIME`",
81                    )?;
82                    TimeoutClock::RealTime
83                } else {
84                    TimeoutClock::Monotonic
85                };
86                let timeout_anchor = if wait_bitset {
87                    // FUTEX_WAIT_BITSET uses an absolute timestamp.
88                    TimeoutAnchor::Absolute
89                } else {
90                    // FUTEX_WAIT uses a relative timestamp.
91                    TimeoutAnchor::Relative
92                };
93                Some((timeout_clock, timeout_anchor, duration))
94            };
95            // There may be a concurrent thread changing the value of addr
96            // and then invoking the FUTEX_WAKE syscall. It is critical that the
97            // effects of this and the other thread are correctly observed,
98            // otherwise we will deadlock.
99            //
100            // There are two scenarios to consider, depending on whether WAIT or WAKE goes first:
101            // 1. If we (FUTEX_WAIT) execute first, we'll push ourselves into the waiters queue and
102            //    go to sleep. They (FUTEX_WAKE) will see us in the queue and wake us up. It doesn't
103            //    matter how the addr write is ordered.
104            // 2. If they (FUTEX_WAKE) execute first, that means the addr write is also before us
105            //    (FUTEX_WAIT). It is crucial that we observe addr's new value. If we see an
106            //    outdated value that happens to equal the expected val, then we'll put ourselves to
107            //    sleep with no one to wake us up, so we end up with a deadlock. This is prevented
108            //    by having a SeqCst fence inside FUTEX_WAKE syscall, and another SeqCst fence here
109            //    in FUTEX_WAIT. The atomic read on addr after the SeqCst fence is guaranteed not to
110            //    see any value older than the addr write immediately before calling FUTEX_WAKE.
111            //    We'll see futex_val != val and return without sleeping.
112            //
113            //    Note that the fences do not create any happens-before relationship.
114            //    The read sees the write immediately before the fence not because
115            //    one happens after the other, but is instead due to a guarantee unique
116            //    to SeqCst fences that restricts what an atomic read placed AFTER the
117            //    fence can see. The read still has to be atomic, otherwise it's a data
118            //    race. This guarantee cannot be achieved with acquire-release fences
119            //    since they only talk about reads placed BEFORE a fence - and places
120            //    no restrictions on what the read itself can see, only that there is
121            //    a happens-before between the fences IF the read happens to see the
122            //    right value. This is useless to us, since we need the read itself
123            //    to see an up-to-date value.
124            //
125            // The above case distinction is valid since both FUTEX_WAIT and FUTEX_WAKE
126            // contain a SeqCst fence, therefore inducing a total order between the operations.
127            // It is also critical that the fence, the atomic load, and the comparison in FUTEX_WAIT
128            // altogether happen atomically. If the other thread's fence in FUTEX_WAKE
129            // gets interleaved after our fence, then we lose the guarantee on the
130            // atomic load being up-to-date; if the other thread's write on addr and FUTEX_WAKE
131            // call are interleaved after the load but before the comparison, then we get a TOCTOU
132            // race condition, and go to sleep thinking the other thread will wake us up,
133            // even though they have already finished.
134            //
135            // Thankfully, preemptions cannot happen inside a Miri shim, so we do not need to
136            // do anything special to guarantee fence-load-comparison atomicity.
137            ecx.atomic_fence(AtomicFenceOrd::SeqCst)?;
138            // Read an `i32` through the pointer, regardless of any wrapper types.
139            // It's not uncommon for `addr` to be passed as another type than `*mut i32`, such as `*const AtomicI32`.
140            // We do an acquire read -- it only seems reasonable that if we observe a value here, we
141            // actually establish an ordering with that value.
142            let futex_val = ecx.read_scalar_atomic(&addr, AtomicReadOrd::Acquire)?.to_u32()?;
143            if val == futex_val {
144                // The value still matches, so we block the thread and make it wait for FUTEX_WAKE.
145
146                // This cannot fail since we already did an atomic acquire read on that pointer.
147                // Acquire reads are only allowed on mutable memory.
148                let futex_ref = ecx
149                    .get_sync_or_init(addr.ptr(), |_| LinuxFutex { futex: Default::default() })
150                    .unwrap()
151                    .futex
152                    .clone();
153
154                let dest = dest.clone();
155                ecx.futex_wait(
156                    futex_ref,
157                    bitset,
158                    timeout,
159                    callback!(
160                        @capture<'tcx> {
161                            dest: MPlaceTy<'tcx>,
162                        }
163                        |ecx, unblock: UnblockKind| match unblock {
164                            UnblockKind::Ready => {
165                                ecx.write_int(0, &dest)
166                            }
167                            UnblockKind::TimedOut => {
168                                ecx.set_last_error_and_return(LibcError("ETIMEDOUT"), &dest)
169                            }
170                        }
171                    ),
172                );
173            } else {
174                // The futex value doesn't match the expected value, so we return failure
175                // right away without sleeping: -1 and errno set to EAGAIN.
176                return ecx.set_last_error_and_return(LibcError("EAGAIN"), dest);
177            }
178        }
179        // FUTEX_WAKE: (int *addr, int op = FUTEX_WAKE, int val)
180        // Wakes at most `val` threads waiting on the futex at `addr`.
181        // Returns the amount of threads woken up.
182        // Does not access the futex value at *addr.
183        // FUTEX_WAKE_BITSET: (int *addr, int op = FUTEX_WAKE, int val, const timespect *_unused, int *_unused, unsigned int bitset)
184        // Same as FUTEX_WAKE, but allows you to specify a bitset to select which threads to wake up.
185        op if op == futex_wake || op == futex_wake_bitset => {
186            let Some(futex_ref) =
187                ecx.get_sync_or_init(addr.ptr(), |_| LinuxFutex { futex: Default::default() })
188            else {
189                // No AllocId, or no live allocation at that AllocId.
190                // Return an error code. (That seems nicer than silently doing something non-intuitive.)
191                // This means that if an address gets reused by a new allocation,
192                // we'll use an independent futex queue for this... that seems acceptable.
193                return ecx.set_last_error_and_return(LibcError("EFAULT"), dest);
194            };
195            let futex_ref = futex_ref.futex.clone();
196
197            let bitset = if op == futex_wake_bitset {
198                let [_, _, _, timeout, uaddr2, bitset] = check_min_vararg_count(
199                    "`syscall(SYS_futex, FUTEX_WAKE_BITSET, ...)`",
200                    varargs,
201                )?;
202                let _timeout = ecx.read_pointer(timeout)?;
203                let _uaddr2 = ecx.read_pointer(uaddr2)?;
204                ecx.read_scalar(bitset)?.to_u32()?
205            } else {
206                u32::MAX
207            };
208            if bitset == 0 {
209                return ecx.set_last_error_and_return(LibcError("EINVAL"), dest);
210            }
211            // Together with the SeqCst fence in futex_wait, this makes sure that futex_wait
212            // will see the latest value on addr which could be changed by our caller
213            // before doing the syscall.
214            ecx.atomic_fence(AtomicFenceOrd::SeqCst)?;
215            let woken = ecx.futex_wake(&futex_ref, bitset, val.try_into().unwrap())?;
216            ecx.write_scalar(Scalar::from_target_isize(woken.try_into().unwrap(), ecx), dest)?;
217        }
218        op => throw_unsup_format!("Miri does not support `futex` syscall with op={}", op),
219    }
220
221    interp_ok(())
222}