rustc_builtin_macros/deriving/generic/mod.rs
1//! Some code that abstracts away much of the boilerplate of writing
2//! `derive` instances for traits. Among other things it manages getting
3//! access to the fields of the 4 different sorts of structs and enum
4//! variants, as well as creating the method and impl ast instances.
5//!
6//! Supported features (fairly exhaustive):
7//!
8//! - Methods taking any number of parameters of any type, and returning
9//! any type, other than vectors, bottom and closures.
10//! - Generating `impl`s for types with type parameters and lifetimes
11//! (e.g., `Option<T>`), the parameters are automatically given the
12//! current trait as a bound. (This includes separate type parameters
13//! and lifetimes for methods.)
14//! - Additional bounds on the type parameters (`TraitDef.additional_bounds`)
15//!
16//! The most important thing for implementors is the `Substructure` and
17//! `SubstructureFields` objects. The latter groups 5 possibilities of the
18//! arguments:
19//!
20//! - `Struct`, when `Self` is a struct (including tuple structs, e.g
21//! `struct T(i32, char)`).
22//! - `EnumMatching`, when `Self` is an enum and all the arguments are the
23//! same variant of the enum (e.g., `Some(1)`, `Some(3)` and `Some(4)`)
24//! - `EnumDiscr` when `Self` is an enum, for comparing the enum discriminants.
25//! - `StaticEnum` and `StaticStruct` for static methods, where the type
26//! being derived upon is either an enum or struct respectively. (Any
27//! argument with type Self is just grouped among the non-self
28//! arguments.)
29//!
30//! In the first two cases, the values from the corresponding fields in
31//! all the arguments are grouped together.
32//!
33//! The non-static cases have `Option<ident>` in several places associated
34//! with field `expr`s. This represents the name of the field it is
35//! associated with. It is only not `None` when the associated field has
36//! an identifier in the source code. For example, the `x`s in the
37//! following snippet
38//!
39//! ```rust
40//! struct A {
41//! x: i32,
42//! }
43//!
44//! struct B(i32);
45//!
46//! enum C {
47//! C0(i32),
48//! C1 { x: i32 }
49//! }
50//! ```
51//!
52//! The `i32`s in `B` and `C0` don't have an identifier, so the
53//! `Option<ident>`s would be `None` for them.
54//!
55//! In the static cases, the structure is summarized, either into the just
56//! spans of the fields or a list of spans and the field idents (for tuple
57//! structs and record structs, respectively), or a list of these, for
58//! enums (one for each variant). For empty struct and empty enum
59//! variants, it is represented as a count of 0.
60//!
61//! # "`cs`" functions
62//!
63//! The `cs_...` functions ("combine substructure") are designed to
64//! make life easier by providing some pre-made recipes for common
65//! threads; mostly calling the function being derived on all the
66//! arguments and then combining them back together in some way (or
67//! letting the user chose that). They are not meant to be the only
68//! way to handle the structures that this code creates.
69//!
70//! # Examples
71//!
72//! The following simplified `PartialEq` is used for in-code examples:
73//!
74//! ```rust
75//! trait PartialEq {
76//! fn eq(&self, other: &Self) -> bool;
77//! }
78//!
79//! impl PartialEq for i32 {
80//! fn eq(&self, other: &i32) -> bool {
81//! *self == *other
82//! }
83//! }
84//! ```
85//!
86//! Some examples of the values of `SubstructureFields` follow, using the
87//! above `PartialEq`, `A`, `B` and `C`.
88//!
89//! ## Structs
90//!
91//! When generating the `expr` for the `A` impl, the `SubstructureFields` is
92//!
93//! ```text
94//! Struct(vec![FieldInfo {
95//! span: <span of x>,
96//! name: Some(<ident of x>),
97//! self_: <expr for &self.x>,
98//! other: vec![<expr for &other.x>],
99//! }])
100//! ```
101//!
102//! For the `B` impl, called with `B(a)` and `B(b)`,
103//!
104//! ```text
105//! Struct(vec![FieldInfo {
106//! span: <span of i32>,
107//! name: None,
108//! self_: <expr for &a>,
109//! other: vec![<expr for &b>],
110//! }])
111//! ```
112//!
113//! ## Enums
114//!
115//! When generating the `expr` for a call with `self == C0(a)` and `other
116//! == C0(b)`, the SubstructureFields is
117//!
118//! ```text
119//! EnumMatching(
120//! 0,
121//! <ast::Variant for C0>,
122//! vec![FieldInfo {
123//! span: <span of i32>,
124//! name: None,
125//! self_: <expr for &a>,
126//! other: vec![<expr for &b>],
127//! }],
128//! )
129//! ```
130//!
131//! For `C1 {x}` and `C1 {x}`,
132//!
133//! ```text
134//! EnumMatching(
135//! 1,
136//! <ast::Variant for C1>,
137//! vec![FieldInfo {
138//! span: <span of x>,
139//! name: Some(<ident of x>),
140//! self_: <expr for &self.x>,
141//! other: vec![<expr for &other.x>],
142//! }],
143//! )
144//! ```
145//!
146//! For the discriminants,
147//!
148//! ```text
149//! EnumDiscr(
150//! &[<ident of self discriminant>, <ident of other discriminant>],
151//! <expr to combine with>,
152//! )
153//! ```
154//!
155//! Note that this setup doesn't allow for the brute-force "match every variant
156//! against every other variant" approach, which is bad because it produces a
157//! quadratic amount of code (see #15375).
158//!
159//! ## Static
160//!
161//! A static method on the types above would result in,
162//!
163//! ```text
164//! StaticStruct(<ast::VariantData of A>, Named(vec![(<ident of x>, <span of x>)]))
165//!
166//! StaticStruct(<ast::VariantData of B>, Unnamed(vec![<span of x>]))
167//!
168//! StaticEnum(
169//! <ast::EnumDef of C>,
170//! vec![
171//! (<ident of C0>, <span of C0>, Unnamed(vec![<span of i32>])),
172//! (<ident of C1>, <span of C1>, Named(vec![(<ident of x>, <span of x>)])),
173//! ],
174//! )
175//! ```
176
177use std::cell::RefCell;
178use std::ops::Not;
179use std::{iter, vec};
180
181pub(crate) use StaticFields::*;
182pub(crate) use SubstructureFields::*;
183use rustc_ast::token::{IdentIsRaw, LitKind, Token, TokenKind};
184use rustc_ast::tokenstream::{DelimSpan, Spacing, TokenTree};
185use rustc_ast::{
186 self as ast, AnonConst, AttrArgs, BindingMode, ByRef, DelimArgs, EnumDef, Expr, GenericArg,
187 GenericParamKind, Generics, Mutability, PatKind, Safety, VariantData,
188};
189use rustc_attr_parsing::AttributeParser;
190use rustc_expand::base::{Annotatable, ExtCtxt};
191use rustc_hir::Attribute;
192use rustc_hir::attrs::{AttributeKind, ReprPacked};
193use rustc_span::{DUMMY_SP, Ident, Span, Symbol, kw, sym};
194use thin_vec::{ThinVec, thin_vec};
195use ty::{Bounds, Path, Ref, Self_, Ty};
196
197use crate::{deriving, errors};
198
199pub(crate) mod ty;
200
201pub(crate) struct TraitDef<'a> {
202 /// The span for the current #[derive(Foo)] header.
203 pub span: Span,
204
205 /// Path of the trait, including any type parameters
206 pub path: Path,
207
208 /// Whether to skip adding the current trait as a bound to the type parameters of the type.
209 pub skip_path_as_bound: bool,
210
211 /// Whether `Copy` is needed as an additional bound on type parameters in a packed struct.
212 pub needs_copy_as_bound_if_packed: bool,
213
214 /// Additional bounds required of any type parameters of the type,
215 /// other than the current trait
216 pub additional_bounds: Vec<Ty>,
217
218 /// Can this trait be derived for unions?
219 pub supports_unions: bool,
220
221 pub methods: Vec<MethodDef<'a>>,
222
223 pub associated_types: Vec<(Ident, Ty)>,
224
225 pub is_const: bool,
226
227 pub is_staged_api_crate: bool,
228
229 /// The safety of the `impl`.
230 pub safety: Safety,
231
232 /// Whether the added `impl` should appear in rustdoc output.
233 pub document: bool,
234}
235
236pub(crate) struct MethodDef<'a> {
237 /// name of the method
238 pub name: Symbol,
239 /// List of generics, e.g., `R: rand::Rng`
240 pub generics: Bounds,
241
242 /// Is there is a `&self` argument? If not, it is a static function.
243 pub explicit_self: bool,
244
245 /// Arguments other than the self argument.
246 pub nonself_args: Vec<(Ty, Symbol)>,
247
248 /// Returns type
249 pub ret_ty: Ty,
250
251 pub attributes: ast::AttrVec,
252
253 pub fieldless_variants_strategy: FieldlessVariantsStrategy,
254
255 pub combine_substructure: RefCell<CombineSubstructureFunc<'a>>,
256}
257
258/// How to handle fieldless enum variants.
259#[derive(PartialEq)]
260pub(crate) enum FieldlessVariantsStrategy {
261 /// Combine fieldless variants into a single match arm.
262 /// This assumes that relevant information has been handled
263 /// by looking at the enum's discriminant.
264 Unify,
265 /// Don't do anything special about fieldless variants. They are
266 /// handled like any other variant.
267 Default,
268 /// If all variants of the enum are fieldless, expand the special
269 /// `AllFieldLessEnum` substructure, so that the entire enum can be handled
270 /// at once.
271 SpecializeIfAllVariantsFieldless,
272}
273
274/// All the data about the data structure/method being derived upon.
275pub(crate) struct Substructure<'a> {
276 /// ident of self
277 pub type_ident: Ident,
278 /// Verbatim access to any non-selflike arguments, i.e. arguments that
279 /// don't have type `&Self`.
280 pub nonselflike_args: &'a [Box<Expr>],
281 pub fields: &'a SubstructureFields<'a>,
282}
283
284/// Summary of the relevant parts of a struct/enum field.
285pub(crate) struct FieldInfo {
286 pub span: Span,
287 /// None for tuple structs/normal enum variants, Some for normal
288 /// structs/struct enum variants.
289 pub name: Option<Ident>,
290 /// The expression corresponding to this field of `self`
291 /// (specifically, a reference to it).
292 pub self_expr: Box<Expr>,
293 /// The expressions corresponding to references to this field in
294 /// the other selflike arguments.
295 pub other_selflike_exprs: Vec<Box<Expr>>,
296 pub maybe_scalar: bool,
297}
298
299#[derive(Copy, Clone)]
300pub(crate) enum IsTuple {
301 No,
302 Yes,
303}
304
305/// Fields for a static method
306pub(crate) enum StaticFields {
307 /// Tuple and unit structs/enum variants like this.
308 Unnamed(Vec<Span>, IsTuple),
309 /// Normal structs/struct variants.
310 Named(Vec<(Ident, Span, Option<AnonConst>)>),
311}
312
313/// A summary of the possible sets of fields.
314pub(crate) enum SubstructureFields<'a> {
315 /// A non-static method where `Self` is a struct.
316 Struct(&'a ast::VariantData, Vec<FieldInfo>),
317
318 /// A non-static method handling the entire enum at once
319 /// (after it has been determined that none of the enum
320 /// variants has any fields).
321 AllFieldlessEnum(&'a ast::EnumDef),
322
323 /// Matching variants of the enum: variant index, ast::Variant,
324 /// fields: the field name is only non-`None` in the case of a struct
325 /// variant.
326 EnumMatching(&'a ast::Variant, Vec<FieldInfo>),
327
328 /// The discriminant of an enum. The first field is a `FieldInfo` for the discriminants, as
329 /// if they were fields. The second field is the expression to combine the
330 /// discriminant expression with; it will be `None` if no match is necessary.
331 EnumDiscr(FieldInfo, Option<Box<Expr>>),
332
333 /// A static method where `Self` is a struct.
334 StaticStruct(&'a ast::VariantData, StaticFields),
335
336 /// A static method where `Self` is an enum.
337 StaticEnum(&'a ast::EnumDef),
338}
339
340/// Combine the values of all the fields together. The last argument is
341/// all the fields of all the structures.
342pub(crate) type CombineSubstructureFunc<'a> =
343 Box<dyn FnMut(&ExtCtxt<'_>, Span, &Substructure<'_>) -> BlockOrExpr + 'a>;
344
345pub(crate) fn combine_substructure(
346 f: CombineSubstructureFunc<'_>,
347) -> RefCell<CombineSubstructureFunc<'_>> {
348 RefCell::new(f)
349}
350
351struct TypeParameter {
352 bound_generic_params: ThinVec<ast::GenericParam>,
353 ty: Box<ast::Ty>,
354}
355
356/// The code snippets built up for derived code are sometimes used as blocks
357/// (e.g. in a function body) and sometimes used as expressions (e.g. in a match
358/// arm). This structure avoids committing to either form until necessary,
359/// avoiding the insertion of any unnecessary blocks.
360///
361/// The statements come before the expression.
362pub(crate) struct BlockOrExpr(ThinVec<ast::Stmt>, Option<Box<Expr>>);
363
364impl BlockOrExpr {
365 pub(crate) fn new_stmts(stmts: ThinVec<ast::Stmt>) -> BlockOrExpr {
366 BlockOrExpr(stmts, None)
367 }
368
369 pub(crate) fn new_expr(expr: Box<Expr>) -> BlockOrExpr {
370 BlockOrExpr(ThinVec::new(), Some(expr))
371 }
372
373 pub(crate) fn new_mixed(stmts: ThinVec<ast::Stmt>, expr: Option<Box<Expr>>) -> BlockOrExpr {
374 BlockOrExpr(stmts, expr)
375 }
376
377 // Converts it into a block.
378 fn into_block(mut self, cx: &ExtCtxt<'_>, span: Span) -> Box<ast::Block> {
379 if let Some(expr) = self.1 {
380 self.0.push(cx.stmt_expr(expr));
381 }
382 cx.block(span, self.0)
383 }
384
385 // Converts it into an expression.
386 fn into_expr(self, cx: &ExtCtxt<'_>, span: Span) -> Box<Expr> {
387 if self.0.is_empty() {
388 match self.1 {
389 None => cx.expr_block(cx.block(span, ThinVec::new())),
390 Some(expr) => expr,
391 }
392 } else if let [stmt] = self.0.as_slice()
393 && let ast::StmtKind::Expr(expr) = &stmt.kind
394 && self.1.is_none()
395 {
396 // There's only a single statement expression. Pull it out.
397 expr.clone()
398 } else {
399 // Multiple statements and/or expressions.
400 cx.expr_block(self.into_block(cx, span))
401 }
402 }
403}
404
405/// This method helps to extract all the type parameters referenced from a
406/// type. For a type parameter `<T>`, it looks for either a `TyPath` that
407/// is not global and starts with `T`, or a `TyQPath`.
408/// Also include bound generic params from the input type.
409fn find_type_parameters(
410 ty: &ast::Ty,
411 ty_param_names: &[Symbol],
412 cx: &ExtCtxt<'_>,
413) -> Vec<TypeParameter> {
414 use rustc_ast::visit;
415
416 struct Visitor<'a, 'b> {
417 cx: &'a ExtCtxt<'b>,
418 ty_param_names: &'a [Symbol],
419 bound_generic_params_stack: ThinVec<ast::GenericParam>,
420 type_params: Vec<TypeParameter>,
421 }
422
423 impl<'a, 'b> visit::Visitor<'a> for Visitor<'a, 'b> {
424 fn visit_ty(&mut self, ty: &'a ast::Ty) {
425 let stack_len = self.bound_generic_params_stack.len();
426 if let ast::TyKind::FnPtr(fn_ptr) = &ty.kind
427 && !fn_ptr.generic_params.is_empty()
428 {
429 // Given a field `x: for<'a> fn(T::SomeType<'a>)`, we wan't to account for `'a` so
430 // that we generate `where for<'a> T::SomeType<'a>: ::core::clone::Clone`. #122622
431 self.bound_generic_params_stack.extend(fn_ptr.generic_params.iter().cloned());
432 }
433
434 if let ast::TyKind::Path(_, path) = &ty.kind
435 && let Some(segment) = path.segments.first()
436 && self.ty_param_names.contains(&segment.ident.name)
437 {
438 self.type_params.push(TypeParameter {
439 bound_generic_params: self.bound_generic_params_stack.clone(),
440 ty: Box::new(ty.clone()),
441 });
442 }
443
444 visit::walk_ty(self, ty);
445 self.bound_generic_params_stack.truncate(stack_len);
446 }
447
448 // Place bound generic params on a stack, to extract them when a type is encountered.
449 fn visit_poly_trait_ref(&mut self, trait_ref: &'a ast::PolyTraitRef) {
450 let stack_len = self.bound_generic_params_stack.len();
451 self.bound_generic_params_stack.extend(trait_ref.bound_generic_params.iter().cloned());
452
453 visit::walk_poly_trait_ref(self, trait_ref);
454
455 self.bound_generic_params_stack.truncate(stack_len);
456 }
457
458 fn visit_mac_call(&mut self, mac: &ast::MacCall) {
459 self.cx.dcx().emit_err(errors::DeriveMacroCall { span: mac.span() });
460 }
461 }
462
463 let mut visitor = Visitor {
464 cx,
465 ty_param_names,
466 bound_generic_params_stack: ThinVec::new(),
467 type_params: Vec::new(),
468 };
469 visit::Visitor::visit_ty(&mut visitor, ty);
470
471 visitor.type_params
472}
473
474impl<'a> TraitDef<'a> {
475 pub(crate) fn expand(
476 self,
477 cx: &ExtCtxt<'_>,
478 mitem: &ast::MetaItem,
479 item: &'a Annotatable,
480 push: &mut dyn FnMut(Annotatable),
481 ) {
482 self.expand_ext(cx, mitem, item, push, false);
483 }
484
485 pub(crate) fn expand_ext(
486 self,
487 cx: &ExtCtxt<'_>,
488 mitem: &ast::MetaItem,
489 item: &'a Annotatable,
490 push: &mut dyn FnMut(Annotatable),
491 from_scratch: bool,
492 ) {
493 match item {
494 Annotatable::Item(item) => {
495 let is_packed = matches!(
496 AttributeParser::parse_limited(cx.sess, &item.attrs, sym::repr, item.span, item.id, None),
497 Some(Attribute::Parsed(AttributeKind::Repr { reprs, .. })) if reprs.iter().any(|(x, _)| matches!(x, ReprPacked(..)))
498 );
499
500 let newitem = match &item.kind {
501 ast::ItemKind::Struct(ident, generics, struct_def) => self.expand_struct_def(
502 cx,
503 struct_def,
504 *ident,
505 generics,
506 from_scratch,
507 is_packed,
508 ),
509 ast::ItemKind::Enum(ident, generics, enum_def) => {
510 // We ignore `is_packed` here, because `repr(packed)`
511 // enums cause an error later on.
512 //
513 // This can only cause further compilation errors
514 // downstream in blatantly illegal code, so it is fine.
515 self.expand_enum_def(cx, enum_def, *ident, generics, from_scratch)
516 }
517 ast::ItemKind::Union(ident, generics, struct_def) => {
518 if self.supports_unions {
519 self.expand_struct_def(
520 cx,
521 struct_def,
522 *ident,
523 generics,
524 from_scratch,
525 is_packed,
526 )
527 } else {
528 cx.dcx().emit_err(errors::DeriveUnion { span: mitem.span });
529 return;
530 }
531 }
532 _ => unreachable!(),
533 };
534 // Keep the lint attributes of the previous item to control how the
535 // generated implementations are linted
536 let mut attrs = newitem.attrs.clone();
537 attrs.extend(
538 item.attrs
539 .iter()
540 .filter(|a| {
541 a.has_any_name(&[
542 sym::allow,
543 sym::warn,
544 sym::deny,
545 sym::forbid,
546 sym::stable,
547 sym::unstable,
548 ])
549 })
550 .cloned(),
551 );
552 push(Annotatable::Item(Box::new(ast::Item { attrs, ..(*newitem).clone() })))
553 }
554 _ => unreachable!(),
555 }
556 }
557
558 /// Given that we are deriving a trait `DerivedTrait` for a type like:
559 ///
560 /// ```ignore (only-for-syntax-highlight)
561 /// struct Struct<'a, ..., 'z, A, B: DeclaredTrait, C, ..., Z>
562 /// where
563 /// C: WhereTrait,
564 /// {
565 /// a: A,
566 /// b: B::Item,
567 /// b1: <B as DeclaredTrait>::Item,
568 /// c1: <C as WhereTrait>::Item,
569 /// c2: Option<<C as WhereTrait>::Item>,
570 /// ...
571 /// }
572 /// ```
573 ///
574 /// create an impl like:
575 ///
576 /// ```ignore (only-for-syntax-highlight)
577 /// impl<'a, ..., 'z, A, B: DeclaredTrait, C, ..., Z>
578 /// where
579 /// C: WhereTrait,
580 /// A: DerivedTrait + B1 + ... + BN,
581 /// B: DerivedTrait + B1 + ... + BN,
582 /// C: DerivedTrait + B1 + ... + BN,
583 /// B::Item: DerivedTrait + B1 + ... + BN,
584 /// <C as WhereTrait>::Item: DerivedTrait + B1 + ... + BN,
585 /// ...
586 /// {
587 /// ...
588 /// }
589 /// ```
590 ///
591 /// where B1, ..., BN are the bounds given by `bounds_paths`.'. Z is a phantom type, and
592 /// therefore does not get bound by the derived trait.
593 fn create_derived_impl(
594 &self,
595 cx: &ExtCtxt<'_>,
596 type_ident: Ident,
597 generics: &Generics,
598 field_tys: Vec<Box<ast::Ty>>,
599 methods: Vec<Box<ast::AssocItem>>,
600 is_packed: bool,
601 ) -> Box<ast::Item> {
602 let trait_path = self.path.to_path(cx, self.span, type_ident, generics);
603
604 // Transform associated types from `deriving::ty::Ty` into `ast::AssocItem`
605 let associated_types = self.associated_types.iter().map(|&(ident, ref type_def)| {
606 Box::new(ast::AssocItem {
607 id: ast::DUMMY_NODE_ID,
608 span: self.span,
609 vis: ast::Visibility {
610 span: self.span.shrink_to_lo(),
611 kind: ast::VisibilityKind::Inherited,
612 tokens: None,
613 },
614 attrs: ast::AttrVec::new(),
615 kind: ast::AssocItemKind::Type(Box::new(ast::TyAlias {
616 defaultness: ast::Defaultness::Final,
617 ident,
618 generics: Generics::default(),
619 after_where_clause: ast::WhereClause::default(),
620 bounds: Vec::new(),
621 ty: Some(type_def.to_ty(cx, self.span, type_ident, generics)),
622 })),
623 tokens: None,
624 })
625 });
626
627 let mut where_clause = ast::WhereClause::default();
628 where_clause.span = generics.where_clause.span;
629 let ctxt = self.span.ctxt();
630 let span = generics.span.with_ctxt(ctxt);
631
632 // Create the generic parameters
633 let params: ThinVec<_> = generics
634 .params
635 .iter()
636 .map(|param| match ¶m.kind {
637 GenericParamKind::Lifetime { .. } => param.clone(),
638 GenericParamKind::Type { .. } => {
639 // Extra restrictions on the generics parameters to the
640 // type being derived upon.
641 let bounds: Vec<_> = self
642 .additional_bounds
643 .iter()
644 .map(|p| {
645 cx.trait_bound(
646 p.to_path(cx, self.span, type_ident, generics),
647 self.is_const,
648 )
649 })
650 .chain(
651 // Add a bound for the current trait.
652 self.skip_path_as_bound
653 .not()
654 .then(|| cx.trait_bound(trait_path.clone(), self.is_const)),
655 )
656 .chain({
657 // Add a `Copy` bound if required.
658 if is_packed && self.needs_copy_as_bound_if_packed {
659 let p = deriving::path_std!(marker::Copy);
660 Some(cx.trait_bound(
661 p.to_path(cx, self.span, type_ident, generics),
662 self.is_const,
663 ))
664 } else {
665 None
666 }
667 })
668 .chain(
669 // Also add in any bounds from the declaration.
670 param.bounds.iter().cloned(),
671 )
672 .collect();
673
674 cx.typaram(param.ident.span.with_ctxt(ctxt), param.ident, bounds, None)
675 }
676 GenericParamKind::Const { ty, span, .. } => {
677 let const_nodefault_kind = GenericParamKind::Const {
678 ty: ty.clone(),
679 span: span.with_ctxt(ctxt),
680
681 // We can't have default values inside impl block
682 default: None,
683 };
684 let mut param_clone = param.clone();
685 param_clone.kind = const_nodefault_kind;
686 param_clone
687 }
688 })
689 .map(|mut param| {
690 // Remove all attributes, because there might be helper attributes
691 // from other macros that will not be valid in the expanded implementation.
692 param.attrs.clear();
693 param
694 })
695 .collect();
696
697 // and similarly for where clauses
698 where_clause.predicates.extend(generics.where_clause.predicates.iter().map(|clause| {
699 ast::WherePredicate {
700 attrs: clause.attrs.clone(),
701 kind: clause.kind.clone(),
702 id: ast::DUMMY_NODE_ID,
703 span: clause.span.with_ctxt(ctxt),
704 is_placeholder: false,
705 }
706 }));
707
708 let ty_param_names: Vec<Symbol> = params
709 .iter()
710 .filter(|param| matches!(param.kind, ast::GenericParamKind::Type { .. }))
711 .map(|ty_param| ty_param.ident.name)
712 .collect();
713
714 if !ty_param_names.is_empty() {
715 for field_ty in field_tys {
716 let field_ty_params = find_type_parameters(&field_ty, &ty_param_names, cx);
717
718 for field_ty_param in field_ty_params {
719 // if we have already handled this type, skip it
720 if let ast::TyKind::Path(_, p) = &field_ty_param.ty.kind
721 && let [sole_segment] = &*p.segments
722 && ty_param_names.contains(&sole_segment.ident.name)
723 {
724 continue;
725 }
726 let mut bounds: Vec<_> = self
727 .additional_bounds
728 .iter()
729 .map(|p| {
730 cx.trait_bound(
731 p.to_path(cx, self.span, type_ident, generics),
732 self.is_const,
733 )
734 })
735 .collect();
736
737 // Require the current trait.
738 if !self.skip_path_as_bound {
739 bounds.push(cx.trait_bound(trait_path.clone(), self.is_const));
740 }
741
742 // Add a `Copy` bound if required.
743 if is_packed && self.needs_copy_as_bound_if_packed {
744 let p = deriving::path_std!(marker::Copy);
745 bounds.push(cx.trait_bound(
746 p.to_path(cx, self.span, type_ident, generics),
747 self.is_const,
748 ));
749 }
750
751 if !bounds.is_empty() {
752 let predicate = ast::WhereBoundPredicate {
753 bound_generic_params: field_ty_param.bound_generic_params,
754 bounded_ty: field_ty_param.ty,
755 bounds,
756 };
757
758 let kind = ast::WherePredicateKind::BoundPredicate(predicate);
759 let predicate = ast::WherePredicate {
760 attrs: ThinVec::new(),
761 kind,
762 id: ast::DUMMY_NODE_ID,
763 span: self.span,
764 is_placeholder: false,
765 };
766 where_clause.predicates.push(predicate);
767 }
768 }
769 }
770 }
771
772 let trait_generics = Generics { params, where_clause, span };
773
774 // Create the reference to the trait.
775 let trait_ref = cx.trait_ref(trait_path);
776
777 let self_params: Vec<_> = generics
778 .params
779 .iter()
780 .map(|param| match param.kind {
781 GenericParamKind::Lifetime { .. } => {
782 GenericArg::Lifetime(cx.lifetime(param.ident.span.with_ctxt(ctxt), param.ident))
783 }
784 GenericParamKind::Type { .. } => {
785 GenericArg::Type(cx.ty_ident(param.ident.span.with_ctxt(ctxt), param.ident))
786 }
787 GenericParamKind::Const { .. } => {
788 GenericArg::Const(cx.const_ident(param.ident.span.with_ctxt(ctxt), param.ident))
789 }
790 })
791 .collect();
792
793 // Create the type of `self`.
794 let path = cx.path_all(self.span, false, vec![type_ident], self_params);
795 let self_type = cx.ty_path(path);
796 let rustc_const_unstable =
797 cx.path_ident(self.span, Ident::new(sym::rustc_const_unstable, self.span));
798
799 let mut attrs = thin_vec![cx.attr_word(sym::automatically_derived, self.span),];
800
801 // Only add `rustc_const_unstable` attributes if `derive_const` is used within libcore/libstd,
802 // Other crates don't need stability attributes, so adding them is not useful, but libcore needs them
803 // on all const trait impls.
804 if self.is_const && self.is_staged_api_crate {
805 attrs.push(
806 cx.attr_nested(
807 rustc_ast::AttrItem {
808 unsafety: Safety::Default,
809 path: rustc_const_unstable,
810 args: AttrArgs::Delimited(DelimArgs {
811 dspan: DelimSpan::from_single(self.span),
812 delim: rustc_ast::token::Delimiter::Parenthesis,
813 tokens: [
814 TokenKind::Ident(sym::feature, IdentIsRaw::No),
815 TokenKind::Eq,
816 TokenKind::lit(LitKind::Str, sym::derive_const, None),
817 TokenKind::Comma,
818 TokenKind::Ident(sym::issue, IdentIsRaw::No),
819 TokenKind::Eq,
820 TokenKind::lit(LitKind::Str, sym::derive_const_issue, None),
821 ]
822 .into_iter()
823 .map(|kind| {
824 TokenTree::Token(Token { kind, span: self.span }, Spacing::Alone)
825 })
826 .collect(),
827 }),
828 tokens: None,
829 },
830 self.span,
831 ),
832 )
833 }
834
835 if !self.document {
836 attrs.push(cx.attr_nested_word(sym::doc, sym::hidden, self.span));
837 }
838
839 cx.item(
840 self.span,
841 attrs,
842 ast::ItemKind::Impl(ast::Impl {
843 generics: trait_generics,
844 of_trait: Some(Box::new(ast::TraitImplHeader {
845 safety: self.safety,
846 polarity: ast::ImplPolarity::Positive,
847 defaultness: ast::Defaultness::Final,
848 trait_ref,
849 })),
850 constness: if self.is_const { ast::Const::Yes(DUMMY_SP) } else { ast::Const::No },
851 self_ty: self_type,
852 items: methods.into_iter().chain(associated_types).collect(),
853 }),
854 )
855 }
856
857 fn expand_struct_def(
858 &self,
859 cx: &ExtCtxt<'_>,
860 struct_def: &'a VariantData,
861 type_ident: Ident,
862 generics: &Generics,
863 from_scratch: bool,
864 is_packed: bool,
865 ) -> Box<ast::Item> {
866 let field_tys: Vec<Box<ast::Ty>> =
867 struct_def.fields().iter().map(|field| field.ty.clone()).collect();
868
869 let methods = self
870 .methods
871 .iter()
872 .map(|method_def| {
873 let (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys) =
874 method_def.extract_arg_details(cx, self, type_ident, generics);
875
876 let body = if from_scratch || method_def.is_static() {
877 method_def.expand_static_struct_method_body(
878 cx,
879 self,
880 struct_def,
881 type_ident,
882 &nonselflike_args,
883 )
884 } else {
885 method_def.expand_struct_method_body(
886 cx,
887 self,
888 struct_def,
889 type_ident,
890 &selflike_args,
891 &nonselflike_args,
892 is_packed,
893 )
894 };
895
896 method_def.create_method(
897 cx,
898 self,
899 type_ident,
900 generics,
901 explicit_self,
902 nonself_arg_tys,
903 body,
904 )
905 })
906 .collect();
907
908 self.create_derived_impl(cx, type_ident, generics, field_tys, methods, is_packed)
909 }
910
911 fn expand_enum_def(
912 &self,
913 cx: &ExtCtxt<'_>,
914 enum_def: &'a EnumDef,
915 type_ident: Ident,
916 generics: &Generics,
917 from_scratch: bool,
918 ) -> Box<ast::Item> {
919 let mut field_tys = Vec::new();
920
921 for variant in &enum_def.variants {
922 field_tys.extend(variant.data.fields().iter().map(|field| field.ty.clone()));
923 }
924
925 let methods = self
926 .methods
927 .iter()
928 .map(|method_def| {
929 let (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys) =
930 method_def.extract_arg_details(cx, self, type_ident, generics);
931
932 let body = if from_scratch || method_def.is_static() {
933 method_def.expand_static_enum_method_body(
934 cx,
935 self,
936 enum_def,
937 type_ident,
938 &nonselflike_args,
939 )
940 } else {
941 method_def.expand_enum_method_body(
942 cx,
943 self,
944 enum_def,
945 type_ident,
946 selflike_args,
947 &nonselflike_args,
948 )
949 };
950
951 method_def.create_method(
952 cx,
953 self,
954 type_ident,
955 generics,
956 explicit_self,
957 nonself_arg_tys,
958 body,
959 )
960 })
961 .collect();
962
963 let is_packed = false; // enums are never packed
964 self.create_derived_impl(cx, type_ident, generics, field_tys, methods, is_packed)
965 }
966}
967
968impl<'a> MethodDef<'a> {
969 fn call_substructure_method(
970 &self,
971 cx: &ExtCtxt<'_>,
972 trait_: &TraitDef<'_>,
973 type_ident: Ident,
974 nonselflike_args: &[Box<Expr>],
975 fields: &SubstructureFields<'_>,
976 ) -> BlockOrExpr {
977 let span = trait_.span;
978 let substructure = Substructure { type_ident, nonselflike_args, fields };
979 let mut f = self.combine_substructure.borrow_mut();
980 let f: &mut CombineSubstructureFunc<'_> = &mut *f;
981 f(cx, span, &substructure)
982 }
983
984 fn get_ret_ty(
985 &self,
986 cx: &ExtCtxt<'_>,
987 trait_: &TraitDef<'_>,
988 generics: &Generics,
989 type_ident: Ident,
990 ) -> Box<ast::Ty> {
991 self.ret_ty.to_ty(cx, trait_.span, type_ident, generics)
992 }
993
994 fn is_static(&self) -> bool {
995 !self.explicit_self
996 }
997
998 // The return value includes:
999 // - explicit_self: The `&self` arg, if present.
1000 // - selflike_args: Expressions for `&self` (if present) and also any other
1001 // args with the same type (e.g. the `other` arg in `PartialEq::eq`).
1002 // - nonselflike_args: Expressions for all the remaining args.
1003 // - nonself_arg_tys: Additional information about all the args other than
1004 // `&self`.
1005 fn extract_arg_details(
1006 &self,
1007 cx: &ExtCtxt<'_>,
1008 trait_: &TraitDef<'_>,
1009 type_ident: Ident,
1010 generics: &Generics,
1011 ) -> (Option<ast::ExplicitSelf>, ThinVec<Box<Expr>>, Vec<Box<Expr>>, Vec<(Ident, Box<ast::Ty>)>)
1012 {
1013 let mut selflike_args = ThinVec::new();
1014 let mut nonselflike_args = Vec::new();
1015 let mut nonself_arg_tys = Vec::new();
1016 let span = trait_.span;
1017
1018 let explicit_self = self.explicit_self.then(|| {
1019 let (self_expr, explicit_self) = ty::get_explicit_self(cx, span);
1020 selflike_args.push(self_expr);
1021 explicit_self
1022 });
1023
1024 for (ty, name) in self.nonself_args.iter() {
1025 let ast_ty = ty.to_ty(cx, span, type_ident, generics);
1026 let ident = Ident::new(*name, span);
1027 nonself_arg_tys.push((ident, ast_ty));
1028
1029 let arg_expr = cx.expr_ident(span, ident);
1030
1031 match ty {
1032 // Selflike (`&Self`) arguments only occur in non-static methods.
1033 Ref(box Self_, _) if !self.is_static() => selflike_args.push(arg_expr),
1034 Self_ => cx.dcx().span_bug(span, "`Self` in non-return position"),
1035 _ => nonselflike_args.push(arg_expr),
1036 }
1037 }
1038
1039 (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys)
1040 }
1041
1042 fn create_method(
1043 &self,
1044 cx: &ExtCtxt<'_>,
1045 trait_: &TraitDef<'_>,
1046 type_ident: Ident,
1047 generics: &Generics,
1048 explicit_self: Option<ast::ExplicitSelf>,
1049 nonself_arg_tys: Vec<(Ident, Box<ast::Ty>)>,
1050 body: BlockOrExpr,
1051 ) -> Box<ast::AssocItem> {
1052 let span = trait_.span;
1053 // Create the generics that aren't for `Self`.
1054 let fn_generics = self.generics.to_generics(cx, span, type_ident, generics);
1055
1056 let args = {
1057 let self_arg = explicit_self.map(|explicit_self| {
1058 let ident = Ident::with_dummy_span(kw::SelfLower).with_span_pos(span);
1059 ast::Param::from_self(ast::AttrVec::default(), explicit_self, ident)
1060 });
1061 let nonself_args =
1062 nonself_arg_tys.into_iter().map(|(name, ty)| cx.param(span, name, ty));
1063 self_arg.into_iter().chain(nonself_args).collect()
1064 };
1065
1066 let ret_type = self.get_ret_ty(cx, trait_, generics, type_ident);
1067
1068 let method_ident = Ident::new(self.name, span);
1069 let fn_decl = cx.fn_decl(args, ast::FnRetTy::Ty(ret_type));
1070 let body_block = body.into_block(cx, span);
1071
1072 let trait_lo_sp = span.shrink_to_lo();
1073
1074 let sig = ast::FnSig { header: ast::FnHeader::default(), decl: fn_decl, span };
1075 let defaultness = ast::Defaultness::Final;
1076
1077 // Create the method.
1078 Box::new(ast::AssocItem {
1079 id: ast::DUMMY_NODE_ID,
1080 attrs: self.attributes.clone(),
1081 span,
1082 vis: ast::Visibility {
1083 span: trait_lo_sp,
1084 kind: ast::VisibilityKind::Inherited,
1085 tokens: None,
1086 },
1087 kind: ast::AssocItemKind::Fn(Box::new(ast::Fn {
1088 defaultness,
1089 sig,
1090 ident: method_ident,
1091 generics: fn_generics,
1092 contract: None,
1093 body: Some(body_block),
1094 define_opaque: None,
1095 })),
1096 tokens: None,
1097 })
1098 }
1099
1100 /// The normal case uses field access.
1101 ///
1102 /// ```
1103 /// #[derive(PartialEq)]
1104 /// # struct Dummy;
1105 /// struct A { x: u8, y: u8 }
1106 ///
1107 /// // equivalent to:
1108 /// impl PartialEq for A {
1109 /// fn eq(&self, other: &A) -> bool {
1110 /// self.x == other.x && self.y == other.y
1111 /// }
1112 /// }
1113 /// ```
1114 ///
1115 /// But if the struct is `repr(packed)`, we can't use something like
1116 /// `&self.x` because that might cause an unaligned ref. So for any trait
1117 /// method that takes a reference, we use a local block to force a copy.
1118 /// This requires that the field impl `Copy`.
1119 ///
1120 /// ```rust,ignore (example)
1121 /// # struct A { x: u8, y: u8 }
1122 /// impl PartialEq for A {
1123 /// fn eq(&self, other: &A) -> bool {
1124 /// // Desugars to `{ self.x }.eq(&{ other.y }) && ...`
1125 /// { self.x } == { other.y } && { self.y } == { other.y }
1126 /// }
1127 /// }
1128 /// impl Hash for A {
1129 /// fn hash<__H: ::core::hash::Hasher>(&self, state: &mut __H) -> () {
1130 /// ::core::hash::Hash::hash(&{ self.x }, state);
1131 /// ::core::hash::Hash::hash(&{ self.y }, state);
1132 /// }
1133 /// }
1134 /// ```
1135 fn expand_struct_method_body<'b>(
1136 &self,
1137 cx: &ExtCtxt<'_>,
1138 trait_: &TraitDef<'b>,
1139 struct_def: &'b VariantData,
1140 type_ident: Ident,
1141 selflike_args: &[Box<Expr>],
1142 nonselflike_args: &[Box<Expr>],
1143 is_packed: bool,
1144 ) -> BlockOrExpr {
1145 assert!(selflike_args.len() == 1 || selflike_args.len() == 2);
1146
1147 let selflike_fields =
1148 trait_.create_struct_field_access_fields(cx, selflike_args, struct_def, is_packed);
1149 self.call_substructure_method(
1150 cx,
1151 trait_,
1152 type_ident,
1153 nonselflike_args,
1154 &Struct(struct_def, selflike_fields),
1155 )
1156 }
1157
1158 fn expand_static_struct_method_body(
1159 &self,
1160 cx: &ExtCtxt<'_>,
1161 trait_: &TraitDef<'_>,
1162 struct_def: &VariantData,
1163 type_ident: Ident,
1164 nonselflike_args: &[Box<Expr>],
1165 ) -> BlockOrExpr {
1166 let summary = trait_.summarise_struct(cx, struct_def);
1167
1168 self.call_substructure_method(
1169 cx,
1170 trait_,
1171 type_ident,
1172 nonselflike_args,
1173 &StaticStruct(struct_def, summary),
1174 )
1175 }
1176
1177 /// ```
1178 /// #[derive(PartialEq)]
1179 /// # struct Dummy;
1180 /// enum A {
1181 /// A1,
1182 /// A2(i32)
1183 /// }
1184 /// ```
1185 ///
1186 /// is equivalent to:
1187 ///
1188 /// ```
1189 /// #![feature(core_intrinsics)]
1190 /// enum A {
1191 /// A1,
1192 /// A2(i32)
1193 /// }
1194 /// impl ::core::cmp::PartialEq for A {
1195 /// #[inline]
1196 /// fn eq(&self, other: &A) -> bool {
1197 /// let __self_discr = ::core::intrinsics::discriminant_value(self);
1198 /// let __arg1_discr = ::core::intrinsics::discriminant_value(other);
1199 /// __self_discr == __arg1_discr
1200 /// && match (self, other) {
1201 /// (A::A2(__self_0), A::A2(__arg1_0)) => *__self_0 == *__arg1_0,
1202 /// _ => true,
1203 /// }
1204 /// }
1205 /// }
1206 /// ```
1207 ///
1208 /// Creates a discriminant check combined with a match for a tuple of all
1209 /// `selflike_args`, with an arm for each variant with fields, possibly an
1210 /// arm for each fieldless variant (if `unify_fieldless_variants` is not
1211 /// `Unify`), and possibly a default arm.
1212 fn expand_enum_method_body<'b>(
1213 &self,
1214 cx: &ExtCtxt<'_>,
1215 trait_: &TraitDef<'b>,
1216 enum_def: &'b EnumDef,
1217 type_ident: Ident,
1218 mut selflike_args: ThinVec<Box<Expr>>,
1219 nonselflike_args: &[Box<Expr>],
1220 ) -> BlockOrExpr {
1221 assert!(
1222 !selflike_args.is_empty(),
1223 "static methods must use `expand_static_enum_method_body`",
1224 );
1225
1226 let span = trait_.span;
1227 let variants = &enum_def.variants;
1228
1229 // Traits that unify fieldless variants always use the discriminant(s).
1230 let unify_fieldless_variants =
1231 self.fieldless_variants_strategy == FieldlessVariantsStrategy::Unify;
1232
1233 // For zero-variant enum, this function body is unreachable. Generate
1234 // `match *self {}`. This produces machine code identical to `unsafe {
1235 // core::intrinsics::unreachable() }` while being safe and stable.
1236 if variants.is_empty() {
1237 selflike_args.truncate(1);
1238 let match_arg = cx.expr_deref(span, selflike_args.pop().unwrap());
1239 let match_arms = ThinVec::new();
1240 let expr = cx.expr_match(span, match_arg, match_arms);
1241 return BlockOrExpr(ThinVec::new(), Some(expr));
1242 }
1243
1244 let prefixes = iter::once("__self".to_string())
1245 .chain(
1246 selflike_args
1247 .iter()
1248 .enumerate()
1249 .skip(1)
1250 .map(|(arg_count, _selflike_arg)| format!("__arg{arg_count}")),
1251 )
1252 .collect::<Vec<String>>();
1253
1254 // Build a series of let statements mapping each selflike_arg
1255 // to its discriminant value.
1256 //
1257 // e.g. for `PartialEq::eq` builds two statements:
1258 // ```
1259 // let __self_discr = ::core::intrinsics::discriminant_value(self);
1260 // let __arg1_discr = ::core::intrinsics::discriminant_value(other);
1261 // ```
1262 let get_discr_pieces = |cx: &ExtCtxt<'_>| {
1263 let discr_idents: Vec<_> = prefixes
1264 .iter()
1265 .map(|name| Ident::from_str_and_span(&format!("{name}_discr"), span))
1266 .collect();
1267
1268 let mut discr_exprs: Vec<_> = discr_idents
1269 .iter()
1270 .map(|&ident| cx.expr_addr_of(span, cx.expr_ident(span, ident)))
1271 .collect();
1272
1273 let self_expr = discr_exprs.remove(0);
1274 let other_selflike_exprs = discr_exprs;
1275 let discr_field =
1276 FieldInfo { span, name: None, self_expr, other_selflike_exprs, maybe_scalar: true };
1277
1278 let discr_let_stmts: ThinVec<_> = iter::zip(&discr_idents, &selflike_args)
1279 .map(|(&ident, selflike_arg)| {
1280 let variant_value = deriving::call_intrinsic(
1281 cx,
1282 span,
1283 sym::discriminant_value,
1284 thin_vec![selflike_arg.clone()],
1285 );
1286 cx.stmt_let(span, false, ident, variant_value)
1287 })
1288 .collect();
1289
1290 (discr_field, discr_let_stmts)
1291 };
1292
1293 // There are some special cases involving fieldless enums where no
1294 // match is necessary.
1295 let all_fieldless = variants.iter().all(|v| v.data.fields().is_empty());
1296 if all_fieldless {
1297 if variants.len() > 1 {
1298 match self.fieldless_variants_strategy {
1299 FieldlessVariantsStrategy::Unify => {
1300 // If the type is fieldless and the trait uses the discriminant and
1301 // there are multiple variants, we need just an operation on
1302 // the discriminant(s).
1303 let (discr_field, mut discr_let_stmts) = get_discr_pieces(cx);
1304 let mut discr_check = self.call_substructure_method(
1305 cx,
1306 trait_,
1307 type_ident,
1308 nonselflike_args,
1309 &EnumDiscr(discr_field, None),
1310 );
1311 discr_let_stmts.append(&mut discr_check.0);
1312 return BlockOrExpr(discr_let_stmts, discr_check.1);
1313 }
1314 FieldlessVariantsStrategy::SpecializeIfAllVariantsFieldless => {
1315 return self.call_substructure_method(
1316 cx,
1317 trait_,
1318 type_ident,
1319 nonselflike_args,
1320 &AllFieldlessEnum(enum_def),
1321 );
1322 }
1323 FieldlessVariantsStrategy::Default => (),
1324 }
1325 } else if let [variant] = variants.as_slice() {
1326 // If there is a single variant, we don't need an operation on
1327 // the discriminant(s). Just use the most degenerate result.
1328 return self.call_substructure_method(
1329 cx,
1330 trait_,
1331 type_ident,
1332 nonselflike_args,
1333 &EnumMatching(variant, Vec::new()),
1334 );
1335 }
1336 }
1337
1338 // These arms are of the form:
1339 // (Variant1, Variant1, ...) => Body1
1340 // (Variant2, Variant2, ...) => Body2
1341 // ...
1342 // where each tuple has length = selflike_args.len()
1343 let mut match_arms: ThinVec<ast::Arm> = variants
1344 .iter()
1345 .filter(|&v| !(unify_fieldless_variants && v.data.fields().is_empty()))
1346 .map(|variant| {
1347 // A single arm has form (&VariantK, &VariantK, ...) => BodyK
1348 // (see "Final wrinkle" note below for why.)
1349
1350 let fields = trait_.create_struct_pattern_fields(cx, &variant.data, &prefixes);
1351
1352 let sp = variant.span.with_ctxt(trait_.span.ctxt());
1353 let variant_path = cx.path(sp, vec![type_ident, variant.ident]);
1354 let by_ref = ByRef::No; // because enums can't be repr(packed)
1355 let mut subpats = trait_.create_struct_patterns(
1356 cx,
1357 variant_path,
1358 &variant.data,
1359 &prefixes,
1360 by_ref,
1361 );
1362
1363 // `(VariantK, VariantK, ...)` or just `VariantK`.
1364 let single_pat = if subpats.len() == 1 {
1365 subpats.pop().unwrap()
1366 } else {
1367 cx.pat_tuple(span, subpats)
1368 };
1369
1370 // For the BodyK, we need to delegate to our caller,
1371 // passing it an EnumMatching to indicate which case
1372 // we are in.
1373 //
1374 // Now, for some given VariantK, we have built up
1375 // expressions for referencing every field of every
1376 // Self arg, assuming all are instances of VariantK.
1377 // Build up code associated with such a case.
1378 let substructure = EnumMatching(variant, fields);
1379 let arm_expr = self
1380 .call_substructure_method(
1381 cx,
1382 trait_,
1383 type_ident,
1384 nonselflike_args,
1385 &substructure,
1386 )
1387 .into_expr(cx, span);
1388
1389 cx.arm(span, single_pat, arm_expr)
1390 })
1391 .collect();
1392
1393 // Add a default arm to the match, if necessary.
1394 let first_fieldless = variants.iter().find(|v| v.data.fields().is_empty());
1395 let default = match first_fieldless {
1396 Some(v) if unify_fieldless_variants => {
1397 // We need a default case that handles all the fieldless
1398 // variants. The index and actual variant aren't meaningful in
1399 // this case, so just use dummy values.
1400 Some(
1401 self.call_substructure_method(
1402 cx,
1403 trait_,
1404 type_ident,
1405 nonselflike_args,
1406 &EnumMatching(v, Vec::new()),
1407 )
1408 .into_expr(cx, span),
1409 )
1410 }
1411 _ if variants.len() > 1 && selflike_args.len() > 1 => {
1412 // Because we know that all the arguments will match if we reach
1413 // the match expression we add the unreachable intrinsics as the
1414 // result of the default which should help llvm in optimizing it.
1415 Some(deriving::call_unreachable(cx, span))
1416 }
1417 _ => None,
1418 };
1419 if let Some(arm) = default {
1420 match_arms.push(cx.arm(span, cx.pat_wild(span), arm));
1421 }
1422
1423 // Create a match expression with one arm per discriminant plus
1424 // possibly a default arm, e.g.:
1425 // match (self, other) {
1426 // (Variant1, Variant1, ...) => Body1
1427 // (Variant2, Variant2, ...) => Body2,
1428 // ...
1429 // _ => ::core::intrinsics::unreachable(),
1430 // }
1431 let get_match_expr = |mut selflike_args: ThinVec<Box<Expr>>| {
1432 let match_arg = if selflike_args.len() == 1 {
1433 selflike_args.pop().unwrap()
1434 } else {
1435 cx.expr(span, ast::ExprKind::Tup(selflike_args))
1436 };
1437 cx.expr_match(span, match_arg, match_arms)
1438 };
1439
1440 // If the trait uses the discriminant and there are multiple variants, we need
1441 // to add a discriminant check operation before the match. Otherwise, the match
1442 // is enough.
1443 if unify_fieldless_variants && variants.len() > 1 {
1444 let (discr_field, mut discr_let_stmts) = get_discr_pieces(cx);
1445
1446 // Combine a discriminant check with the match.
1447 let mut discr_check_plus_match = self.call_substructure_method(
1448 cx,
1449 trait_,
1450 type_ident,
1451 nonselflike_args,
1452 &EnumDiscr(discr_field, Some(get_match_expr(selflike_args))),
1453 );
1454 discr_let_stmts.append(&mut discr_check_plus_match.0);
1455 BlockOrExpr(discr_let_stmts, discr_check_plus_match.1)
1456 } else {
1457 BlockOrExpr(ThinVec::new(), Some(get_match_expr(selflike_args)))
1458 }
1459 }
1460
1461 fn expand_static_enum_method_body(
1462 &self,
1463 cx: &ExtCtxt<'_>,
1464 trait_: &TraitDef<'_>,
1465 enum_def: &EnumDef,
1466 type_ident: Ident,
1467 nonselflike_args: &[Box<Expr>],
1468 ) -> BlockOrExpr {
1469 self.call_substructure_method(
1470 cx,
1471 trait_,
1472 type_ident,
1473 nonselflike_args,
1474 &StaticEnum(enum_def),
1475 )
1476 }
1477}
1478
1479// general helper methods.
1480impl<'a> TraitDef<'a> {
1481 fn summarise_struct(&self, cx: &ExtCtxt<'_>, struct_def: &VariantData) -> StaticFields {
1482 let mut named_idents = Vec::new();
1483 let mut just_spans = Vec::new();
1484 for field in struct_def.fields() {
1485 let sp = field.span.with_ctxt(self.span.ctxt());
1486 match field.ident {
1487 Some(ident) => named_idents.push((ident, sp, field.default.clone())),
1488 _ => just_spans.push(sp),
1489 }
1490 }
1491
1492 let is_tuple = match struct_def {
1493 ast::VariantData::Tuple(..) => IsTuple::Yes,
1494 _ => IsTuple::No,
1495 };
1496 match (just_spans.is_empty(), named_idents.is_empty()) {
1497 (false, false) => cx
1498 .dcx()
1499 .span_bug(self.span, "a struct with named and unnamed fields in generic `derive`"),
1500 // named fields
1501 (_, false) => Named(named_idents),
1502 // unnamed fields
1503 (false, _) => Unnamed(just_spans, is_tuple),
1504 // empty
1505 _ => Named(Vec::new()),
1506 }
1507 }
1508
1509 fn create_struct_patterns(
1510 &self,
1511 cx: &ExtCtxt<'_>,
1512 struct_path: ast::Path,
1513 struct_def: &'a VariantData,
1514 prefixes: &[String],
1515 by_ref: ByRef,
1516 ) -> ThinVec<ast::Pat> {
1517 prefixes
1518 .iter()
1519 .map(|prefix| {
1520 let pieces_iter =
1521 struct_def.fields().iter().enumerate().map(|(i, struct_field)| {
1522 let sp = struct_field.span.with_ctxt(self.span.ctxt());
1523 let ident = self.mk_pattern_ident(prefix, i);
1524 let path = ident.with_span_pos(sp);
1525 (
1526 sp,
1527 struct_field.ident,
1528 cx.pat(
1529 path.span,
1530 PatKind::Ident(BindingMode(by_ref, Mutability::Not), path, None),
1531 ),
1532 )
1533 });
1534
1535 let struct_path = struct_path.clone();
1536 match *struct_def {
1537 VariantData::Struct { .. } => {
1538 let field_pats = pieces_iter
1539 .map(|(sp, ident, pat)| {
1540 if ident.is_none() {
1541 cx.dcx().span_bug(
1542 sp,
1543 "a braced struct with unnamed fields in `derive`",
1544 );
1545 }
1546 ast::PatField {
1547 ident: ident.unwrap(),
1548 is_shorthand: false,
1549 attrs: ast::AttrVec::new(),
1550 id: ast::DUMMY_NODE_ID,
1551 span: pat.span.with_ctxt(self.span.ctxt()),
1552 pat: Box::new(pat),
1553 is_placeholder: false,
1554 }
1555 })
1556 .collect();
1557 cx.pat_struct(self.span, struct_path, field_pats)
1558 }
1559 VariantData::Tuple(..) => {
1560 let subpats = pieces_iter.map(|(_, _, subpat)| subpat).collect();
1561 cx.pat_tuple_struct(self.span, struct_path, subpats)
1562 }
1563 VariantData::Unit(..) => cx.pat_path(self.span, struct_path),
1564 }
1565 })
1566 .collect()
1567 }
1568
1569 fn create_fields<F>(&self, struct_def: &'a VariantData, mk_exprs: F) -> Vec<FieldInfo>
1570 where
1571 F: Fn(usize, &ast::FieldDef, Span) -> Vec<Box<ast::Expr>>,
1572 {
1573 struct_def
1574 .fields()
1575 .iter()
1576 .enumerate()
1577 .map(|(i, struct_field)| {
1578 // For this field, get an expr for each selflike_arg. E.g. for
1579 // `PartialEq::eq`, one for each of `&self` and `other`.
1580 let sp = struct_field.span.with_ctxt(self.span.ctxt());
1581 let mut exprs: Vec<_> = mk_exprs(i, struct_field, sp);
1582 let self_expr = exprs.remove(0);
1583 let other_selflike_exprs = exprs;
1584 FieldInfo {
1585 span: sp.with_ctxt(self.span.ctxt()),
1586 name: struct_field.ident,
1587 self_expr,
1588 other_selflike_exprs,
1589 maybe_scalar: struct_field.ty.peel_refs().kind.maybe_scalar(),
1590 }
1591 })
1592 .collect()
1593 }
1594
1595 fn mk_pattern_ident(&self, prefix: &str, i: usize) -> Ident {
1596 Ident::from_str_and_span(&format!("{prefix}_{i}"), self.span)
1597 }
1598
1599 fn create_struct_pattern_fields(
1600 &self,
1601 cx: &ExtCtxt<'_>,
1602 struct_def: &'a VariantData,
1603 prefixes: &[String],
1604 ) -> Vec<FieldInfo> {
1605 self.create_fields(struct_def, |i, _struct_field, sp| {
1606 prefixes
1607 .iter()
1608 .map(|prefix| {
1609 let ident = self.mk_pattern_ident(prefix, i);
1610 cx.expr_path(cx.path_ident(sp, ident))
1611 })
1612 .collect()
1613 })
1614 }
1615
1616 fn create_struct_field_access_fields(
1617 &self,
1618 cx: &ExtCtxt<'_>,
1619 selflike_args: &[Box<Expr>],
1620 struct_def: &'a VariantData,
1621 is_packed: bool,
1622 ) -> Vec<FieldInfo> {
1623 self.create_fields(struct_def, |i, struct_field, sp| {
1624 selflike_args
1625 .iter()
1626 .map(|selflike_arg| {
1627 // Note: we must use `struct_field.span` rather than `sp` in the
1628 // `unwrap_or_else` case otherwise the hygiene is wrong and we get
1629 // "field `0` of struct `Point` is private" errors on tuple
1630 // structs.
1631 let mut field_expr = cx.expr(
1632 sp,
1633 ast::ExprKind::Field(
1634 selflike_arg.clone(),
1635 struct_field.ident.unwrap_or_else(|| {
1636 Ident::from_str_and_span(&i.to_string(), struct_field.span)
1637 }),
1638 ),
1639 );
1640 if is_packed {
1641 // Fields in packed structs are wrapped in a block, e.g. `&{self.0}`,
1642 // causing a copy instead of a (potentially misaligned) reference.
1643 field_expr = cx.expr_block(
1644 cx.block(struct_field.span, thin_vec![cx.stmt_expr(field_expr)]),
1645 );
1646 }
1647 cx.expr_addr_of(sp, field_expr)
1648 })
1649 .collect()
1650 })
1651 }
1652}
1653
1654/// The function passed to `cs_fold` is called repeatedly with a value of this
1655/// type. It describes one part of the code generation. The result is always an
1656/// expression.
1657pub(crate) enum CsFold<'a> {
1658 /// The basic case: a field expression for one or more selflike args. E.g.
1659 /// for `PartialEq::eq` this is something like `self.x == other.x`.
1660 Single(&'a FieldInfo),
1661
1662 /// The combination of two field expressions. E.g. for `PartialEq::eq` this
1663 /// is something like `<field1 equality> && <field2 equality>`.
1664 Combine(Span, Box<Expr>, Box<Expr>),
1665
1666 // The fallback case for a struct or enum variant with no fields.
1667 Fieldless,
1668}
1669
1670/// Folds over fields, combining the expressions for each field in a sequence.
1671/// Statics may not be folded over.
1672pub(crate) fn cs_fold<F>(
1673 use_foldl: bool,
1674 cx: &ExtCtxt<'_>,
1675 trait_span: Span,
1676 substructure: &Substructure<'_>,
1677 mut f: F,
1678) -> Box<Expr>
1679where
1680 F: FnMut(&ExtCtxt<'_>, CsFold<'_>) -> Box<Expr>,
1681{
1682 match substructure.fields {
1683 EnumMatching(.., all_fields) | Struct(_, all_fields) => {
1684 if all_fields.is_empty() {
1685 return f(cx, CsFold::Fieldless);
1686 }
1687
1688 let (base_field, rest) = if use_foldl {
1689 all_fields.split_first().unwrap()
1690 } else {
1691 all_fields.split_last().unwrap()
1692 };
1693
1694 let base_expr = f(cx, CsFold::Single(base_field));
1695
1696 let op = |old, field: &FieldInfo| {
1697 let new = f(cx, CsFold::Single(field));
1698 f(cx, CsFold::Combine(field.span, old, new))
1699 };
1700
1701 if use_foldl {
1702 rest.iter().fold(base_expr, op)
1703 } else {
1704 rest.iter().rfold(base_expr, op)
1705 }
1706 }
1707 EnumDiscr(discr_field, match_expr) => {
1708 let discr_check_expr = f(cx, CsFold::Single(discr_field));
1709 if let Some(match_expr) = match_expr {
1710 if use_foldl {
1711 f(cx, CsFold::Combine(trait_span, discr_check_expr, match_expr.clone()))
1712 } else {
1713 f(cx, CsFold::Combine(trait_span, match_expr.clone(), discr_check_expr))
1714 }
1715 } else {
1716 discr_check_expr
1717 }
1718 }
1719 StaticEnum(..) | StaticStruct(..) => {
1720 cx.dcx().span_bug(trait_span, "static function in `derive`")
1721 }
1722 AllFieldlessEnum(..) => cx.dcx().span_bug(trait_span, "fieldless enum in `derive`"),
1723 }
1724}