rustc_builtin_macros/deriving/generic/
mod.rs

1//! Some code that abstracts away much of the boilerplate of writing
2//! `derive` instances for traits. Among other things it manages getting
3//! access to the fields of the 4 different sorts of structs and enum
4//! variants, as well as creating the method and impl ast instances.
5//!
6//! Supported features (fairly exhaustive):
7//!
8//! - Methods taking any number of parameters of any type, and returning
9//!   any type, other than vectors, bottom and closures.
10//! - Generating `impl`s for types with type parameters and lifetimes
11//!   (e.g., `Option<T>`), the parameters are automatically given the
12//!   current trait as a bound. (This includes separate type parameters
13//!   and lifetimes for methods.)
14//! - Additional bounds on the type parameters (`TraitDef.additional_bounds`)
15//!
16//! The most important thing for implementors is the `Substructure` and
17//! `SubstructureFields` objects. The latter groups 5 possibilities of the
18//! arguments:
19//!
20//! - `Struct`, when `Self` is a struct (including tuple structs, e.g
21//!   `struct T(i32, char)`).
22//! - `EnumMatching`, when `Self` is an enum and all the arguments are the
23//!   same variant of the enum (e.g., `Some(1)`, `Some(3)` and `Some(4)`)
24//! - `EnumDiscr` when `Self` is an enum, for comparing the enum discriminants.
25//! - `StaticEnum` and `StaticStruct` for static methods, where the type
26//!   being derived upon is either an enum or struct respectively. (Any
27//!   argument with type Self is just grouped among the non-self
28//!   arguments.)
29//!
30//! In the first two cases, the values from the corresponding fields in
31//! all the arguments are grouped together.
32//!
33//! The non-static cases have `Option<ident>` in several places associated
34//! with field `expr`s. This represents the name of the field it is
35//! associated with. It is only not `None` when the associated field has
36//! an identifier in the source code. For example, the `x`s in the
37//! following snippet
38//!
39//! ```rust
40//! struct A {
41//!     x: i32,
42//! }
43//!
44//! struct B(i32);
45//!
46//! enum C {
47//!     C0(i32),
48//!     C1 { x: i32 }
49//! }
50//! ```
51//!
52//! The `i32`s in `B` and `C0` don't have an identifier, so the
53//! `Option<ident>`s would be `None` for them.
54//!
55//! In the static cases, the structure is summarized, either into the just
56//! spans of the fields or a list of spans and the field idents (for tuple
57//! structs and record structs, respectively), or a list of these, for
58//! enums (one for each variant). For empty struct and empty enum
59//! variants, it is represented as a count of 0.
60//!
61//! # "`cs`" functions
62//!
63//! The `cs_...` functions ("combine substructure") are designed to
64//! make life easier by providing some pre-made recipes for common
65//! threads; mostly calling the function being derived on all the
66//! arguments and then combining them back together in some way (or
67//! letting the user chose that). They are not meant to be the only
68//! way to handle the structures that this code creates.
69//!
70//! # Examples
71//!
72//! The following simplified `PartialEq` is used for in-code examples:
73//!
74//! ```rust
75//! trait PartialEq {
76//!     fn eq(&self, other: &Self) -> bool;
77//! }
78//!
79//! impl PartialEq for i32 {
80//!     fn eq(&self, other: &i32) -> bool {
81//!         *self == *other
82//!     }
83//! }
84//! ```
85//!
86//! Some examples of the values of `SubstructureFields` follow, using the
87//! above `PartialEq`, `A`, `B` and `C`.
88//!
89//! ## Structs
90//!
91//! When generating the `expr` for the `A` impl, the `SubstructureFields` is
92//!
93//! ```text
94//! Struct(vec![FieldInfo {
95//!     span: <span of x>,
96//!     name: Some(<ident of x>),
97//!     self_: <expr for &self.x>,
98//!     other: vec![<expr for &other.x>],
99//! }])
100//! ```
101//!
102//! For the `B` impl, called with `B(a)` and `B(b)`,
103//!
104//! ```text
105//! Struct(vec![FieldInfo {
106//!     span: <span of i32>,
107//!     name: None,
108//!     self_: <expr for &a>,
109//!     other: vec![<expr for &b>],
110//! }])
111//! ```
112//!
113//! ## Enums
114//!
115//! When generating the `expr` for a call with `self == C0(a)` and `other
116//! == C0(b)`, the SubstructureFields is
117//!
118//! ```text
119//! EnumMatching(
120//!     0,
121//!     <ast::Variant for C0>,
122//!     vec![FieldInfo {
123//!         span: <span of i32>,
124//!         name: None,
125//!         self_: <expr for &a>,
126//!         other: vec![<expr for &b>],
127//!     }],
128//! )
129//! ```
130//!
131//! For `C1 {x}` and `C1 {x}`,
132//!
133//! ```text
134//! EnumMatching(
135//!     1,
136//!     <ast::Variant for C1>,
137//!     vec![FieldInfo {
138//!         span: <span of x>,
139//!         name: Some(<ident of x>),
140//!         self_: <expr for &self.x>,
141//!         other: vec![<expr for &other.x>],
142//!     }],
143//! )
144//! ```
145//!
146//! For the discriminants,
147//!
148//! ```text
149//! EnumDiscr(
150//!     &[<ident of self discriminant>, <ident of other discriminant>],
151//!     <expr to combine with>,
152//! )
153//! ```
154//!
155//! Note that this setup doesn't allow for the brute-force "match every variant
156//! against every other variant" approach, which is bad because it produces a
157//! quadratic amount of code (see #15375).
158//!
159//! ## Static
160//!
161//! A static method on the types above would result in,
162//!
163//! ```text
164//! StaticStruct(<ast::VariantData of A>, Named(vec![(<ident of x>, <span of x>)]))
165//!
166//! StaticStruct(<ast::VariantData of B>, Unnamed(vec![<span of x>]))
167//!
168//! StaticEnum(
169//!     <ast::EnumDef of C>,
170//!     vec![
171//!         (<ident of C0>, <span of C0>, Unnamed(vec![<span of i32>])),
172//!         (<ident of C1>, <span of C1>, Named(vec![(<ident of x>, <span of x>)])),
173//!     ],
174//! )
175//! ```
176
177use std::cell::RefCell;
178use std::ops::Not;
179use std::{iter, vec};
180
181pub(crate) use StaticFields::*;
182pub(crate) use SubstructureFields::*;
183use rustc_ast::token::{IdentIsRaw, LitKind, Token, TokenKind};
184use rustc_ast::tokenstream::{DelimSpan, Spacing, TokenTree};
185use rustc_ast::{
186    self as ast, AnonConst, AttrArgs, BindingMode, ByRef, DelimArgs, EnumDef, Expr, GenericArg,
187    GenericParamKind, Generics, Mutability, PatKind, Safety, VariantData,
188};
189use rustc_attr_parsing::AttributeParser;
190use rustc_expand::base::{Annotatable, ExtCtxt};
191use rustc_hir::Attribute;
192use rustc_hir::attrs::{AttributeKind, ReprPacked};
193use rustc_span::{DUMMY_SP, Ident, Span, Symbol, kw, sym};
194use thin_vec::{ThinVec, thin_vec};
195use ty::{Bounds, Path, Ref, Self_, Ty};
196
197use crate::{deriving, errors};
198
199pub(crate) mod ty;
200
201pub(crate) struct TraitDef<'a> {
202    /// The span for the current #[derive(Foo)] header.
203    pub span: Span,
204
205    /// Path of the trait, including any type parameters
206    pub path: Path,
207
208    /// Whether to skip adding the current trait as a bound to the type parameters of the type.
209    pub skip_path_as_bound: bool,
210
211    /// Whether `Copy` is needed as an additional bound on type parameters in a packed struct.
212    pub needs_copy_as_bound_if_packed: bool,
213
214    /// Additional bounds required of any type parameters of the type,
215    /// other than the current trait
216    pub additional_bounds: Vec<Ty>,
217
218    /// Can this trait be derived for unions?
219    pub supports_unions: bool,
220
221    pub methods: Vec<MethodDef<'a>>,
222
223    pub associated_types: Vec<(Ident, Ty)>,
224
225    pub is_const: bool,
226
227    pub is_staged_api_crate: bool,
228
229    /// The safety of the `impl`.
230    pub safety: Safety,
231
232    /// Whether the added `impl` should appear in rustdoc output.
233    pub document: bool,
234}
235
236pub(crate) struct MethodDef<'a> {
237    /// name of the method
238    pub name: Symbol,
239    /// List of generics, e.g., `R: rand::Rng`
240    pub generics: Bounds,
241
242    /// Is there is a `&self` argument? If not, it is a static function.
243    pub explicit_self: bool,
244
245    /// Arguments other than the self argument.
246    pub nonself_args: Vec<(Ty, Symbol)>,
247
248    /// Returns type
249    pub ret_ty: Ty,
250
251    pub attributes: ast::AttrVec,
252
253    pub fieldless_variants_strategy: FieldlessVariantsStrategy,
254
255    pub combine_substructure: RefCell<CombineSubstructureFunc<'a>>,
256}
257
258/// How to handle fieldless enum variants.
259#[derive(PartialEq)]
260pub(crate) enum FieldlessVariantsStrategy {
261    /// Combine fieldless variants into a single match arm.
262    /// This assumes that relevant information has been handled
263    /// by looking at the enum's discriminant.
264    Unify,
265    /// Don't do anything special about fieldless variants. They are
266    /// handled like any other variant.
267    Default,
268    /// If all variants of the enum are fieldless, expand the special
269    /// `AllFieldLessEnum` substructure, so that the entire enum can be handled
270    /// at once.
271    SpecializeIfAllVariantsFieldless,
272}
273
274/// All the data about the data structure/method being derived upon.
275pub(crate) struct Substructure<'a> {
276    /// ident of self
277    pub type_ident: Ident,
278    /// Verbatim access to any non-selflike arguments, i.e. arguments that
279    /// don't have type `&Self`.
280    pub nonselflike_args: &'a [Box<Expr>],
281    pub fields: &'a SubstructureFields<'a>,
282}
283
284/// Summary of the relevant parts of a struct/enum field.
285pub(crate) struct FieldInfo {
286    pub span: Span,
287    /// None for tuple structs/normal enum variants, Some for normal
288    /// structs/struct enum variants.
289    pub name: Option<Ident>,
290    /// The expression corresponding to this field of `self`
291    /// (specifically, a reference to it).
292    pub self_expr: Box<Expr>,
293    /// The expressions corresponding to references to this field in
294    /// the other selflike arguments.
295    pub other_selflike_exprs: Vec<Box<Expr>>,
296    pub maybe_scalar: bool,
297}
298
299#[derive(Copy, Clone)]
300pub(crate) enum IsTuple {
301    No,
302    Yes,
303}
304
305/// Fields for a static method
306pub(crate) enum StaticFields {
307    /// Tuple and unit structs/enum variants like this.
308    Unnamed(Vec<Span>, IsTuple),
309    /// Normal structs/struct variants.
310    Named(Vec<(Ident, Span, Option<AnonConst>)>),
311}
312
313/// A summary of the possible sets of fields.
314pub(crate) enum SubstructureFields<'a> {
315    /// A non-static method where `Self` is a struct.
316    Struct(&'a ast::VariantData, Vec<FieldInfo>),
317
318    /// A non-static method handling the entire enum at once
319    /// (after it has been determined that none of the enum
320    /// variants has any fields).
321    AllFieldlessEnum(&'a ast::EnumDef),
322
323    /// Matching variants of the enum: variant index, ast::Variant,
324    /// fields: the field name is only non-`None` in the case of a struct
325    /// variant.
326    EnumMatching(&'a ast::Variant, Vec<FieldInfo>),
327
328    /// The discriminant of an enum. The first field is a `FieldInfo` for the discriminants, as
329    /// if they were fields. The second field is the expression to combine the
330    /// discriminant expression with; it will be `None` if no match is necessary.
331    EnumDiscr(FieldInfo, Option<Box<Expr>>),
332
333    /// A static method where `Self` is a struct.
334    StaticStruct(&'a ast::VariantData, StaticFields),
335
336    /// A static method where `Self` is an enum.
337    StaticEnum(&'a ast::EnumDef),
338}
339
340/// Combine the values of all the fields together. The last argument is
341/// all the fields of all the structures.
342pub(crate) type CombineSubstructureFunc<'a> =
343    Box<dyn FnMut(&ExtCtxt<'_>, Span, &Substructure<'_>) -> BlockOrExpr + 'a>;
344
345pub(crate) fn combine_substructure(
346    f: CombineSubstructureFunc<'_>,
347) -> RefCell<CombineSubstructureFunc<'_>> {
348    RefCell::new(f)
349}
350
351struct TypeParameter {
352    bound_generic_params: ThinVec<ast::GenericParam>,
353    ty: Box<ast::Ty>,
354}
355
356/// The code snippets built up for derived code are sometimes used as blocks
357/// (e.g. in a function body) and sometimes used as expressions (e.g. in a match
358/// arm). This structure avoids committing to either form until necessary,
359/// avoiding the insertion of any unnecessary blocks.
360///
361/// The statements come before the expression.
362pub(crate) struct BlockOrExpr(ThinVec<ast::Stmt>, Option<Box<Expr>>);
363
364impl BlockOrExpr {
365    pub(crate) fn new_stmts(stmts: ThinVec<ast::Stmt>) -> BlockOrExpr {
366        BlockOrExpr(stmts, None)
367    }
368
369    pub(crate) fn new_expr(expr: Box<Expr>) -> BlockOrExpr {
370        BlockOrExpr(ThinVec::new(), Some(expr))
371    }
372
373    pub(crate) fn new_mixed(stmts: ThinVec<ast::Stmt>, expr: Option<Box<Expr>>) -> BlockOrExpr {
374        BlockOrExpr(stmts, expr)
375    }
376
377    // Converts it into a block.
378    fn into_block(mut self, cx: &ExtCtxt<'_>, span: Span) -> Box<ast::Block> {
379        if let Some(expr) = self.1 {
380            self.0.push(cx.stmt_expr(expr));
381        }
382        cx.block(span, self.0)
383    }
384
385    // Converts it into an expression.
386    fn into_expr(self, cx: &ExtCtxt<'_>, span: Span) -> Box<Expr> {
387        if self.0.is_empty() {
388            match self.1 {
389                None => cx.expr_block(cx.block(span, ThinVec::new())),
390                Some(expr) => expr,
391            }
392        } else if let [stmt] = self.0.as_slice()
393            && let ast::StmtKind::Expr(expr) = &stmt.kind
394            && self.1.is_none()
395        {
396            // There's only a single statement expression. Pull it out.
397            expr.clone()
398        } else {
399            // Multiple statements and/or expressions.
400            cx.expr_block(self.into_block(cx, span))
401        }
402    }
403}
404
405/// This method helps to extract all the type parameters referenced from a
406/// type. For a type parameter `<T>`, it looks for either a `TyPath` that
407/// is not global and starts with `T`, or a `TyQPath`.
408/// Also include bound generic params from the input type.
409fn find_type_parameters(
410    ty: &ast::Ty,
411    ty_param_names: &[Symbol],
412    cx: &ExtCtxt<'_>,
413) -> Vec<TypeParameter> {
414    use rustc_ast::visit;
415
416    struct Visitor<'a, 'b> {
417        cx: &'a ExtCtxt<'b>,
418        ty_param_names: &'a [Symbol],
419        bound_generic_params_stack: ThinVec<ast::GenericParam>,
420        type_params: Vec<TypeParameter>,
421    }
422
423    impl<'a, 'b> visit::Visitor<'a> for Visitor<'a, 'b> {
424        fn visit_ty(&mut self, ty: &'a ast::Ty) {
425            let stack_len = self.bound_generic_params_stack.len();
426            if let ast::TyKind::FnPtr(fn_ptr) = &ty.kind
427                && !fn_ptr.generic_params.is_empty()
428            {
429                // Given a field `x: for<'a> fn(T::SomeType<'a>)`, we wan't to account for `'a` so
430                // that we generate `where for<'a> T::SomeType<'a>: ::core::clone::Clone`. #122622
431                self.bound_generic_params_stack.extend(fn_ptr.generic_params.iter().cloned());
432            }
433
434            if let ast::TyKind::Path(_, path) = &ty.kind
435                && let Some(segment) = path.segments.first()
436                && self.ty_param_names.contains(&segment.ident.name)
437            {
438                self.type_params.push(TypeParameter {
439                    bound_generic_params: self.bound_generic_params_stack.clone(),
440                    ty: Box::new(ty.clone()),
441                });
442            }
443
444            visit::walk_ty(self, ty);
445            self.bound_generic_params_stack.truncate(stack_len);
446        }
447
448        // Place bound generic params on a stack, to extract them when a type is encountered.
449        fn visit_poly_trait_ref(&mut self, trait_ref: &'a ast::PolyTraitRef) {
450            let stack_len = self.bound_generic_params_stack.len();
451            self.bound_generic_params_stack.extend(trait_ref.bound_generic_params.iter().cloned());
452
453            visit::walk_poly_trait_ref(self, trait_ref);
454
455            self.bound_generic_params_stack.truncate(stack_len);
456        }
457
458        fn visit_mac_call(&mut self, mac: &ast::MacCall) {
459            self.cx.dcx().emit_err(errors::DeriveMacroCall { span: mac.span() });
460        }
461    }
462
463    let mut visitor = Visitor {
464        cx,
465        ty_param_names,
466        bound_generic_params_stack: ThinVec::new(),
467        type_params: Vec::new(),
468    };
469    visit::Visitor::visit_ty(&mut visitor, ty);
470
471    visitor.type_params
472}
473
474impl<'a> TraitDef<'a> {
475    pub(crate) fn expand(
476        self,
477        cx: &ExtCtxt<'_>,
478        mitem: &ast::MetaItem,
479        item: &'a Annotatable,
480        push: &mut dyn FnMut(Annotatable),
481    ) {
482        self.expand_ext(cx, mitem, item, push, false);
483    }
484
485    pub(crate) fn expand_ext(
486        self,
487        cx: &ExtCtxt<'_>,
488        mitem: &ast::MetaItem,
489        item: &'a Annotatable,
490        push: &mut dyn FnMut(Annotatable),
491        from_scratch: bool,
492    ) {
493        match item {
494            Annotatable::Item(item) => {
495                let is_packed = matches!(
496                    AttributeParser::parse_limited(cx.sess, &item.attrs, sym::repr, item.span, item.id, None),
497                    Some(Attribute::Parsed(AttributeKind::Repr { reprs, .. })) if reprs.iter().any(|(x, _)| matches!(x, ReprPacked(..)))
498                );
499
500                let newitem = match &item.kind {
501                    ast::ItemKind::Struct(ident, generics, struct_def) => self.expand_struct_def(
502                        cx,
503                        struct_def,
504                        *ident,
505                        generics,
506                        from_scratch,
507                        is_packed,
508                    ),
509                    ast::ItemKind::Enum(ident, generics, enum_def) => {
510                        // We ignore `is_packed` here, because `repr(packed)`
511                        // enums cause an error later on.
512                        //
513                        // This can only cause further compilation errors
514                        // downstream in blatantly illegal code, so it is fine.
515                        self.expand_enum_def(cx, enum_def, *ident, generics, from_scratch)
516                    }
517                    ast::ItemKind::Union(ident, generics, struct_def) => {
518                        if self.supports_unions {
519                            self.expand_struct_def(
520                                cx,
521                                struct_def,
522                                *ident,
523                                generics,
524                                from_scratch,
525                                is_packed,
526                            )
527                        } else {
528                            cx.dcx().emit_err(errors::DeriveUnion { span: mitem.span });
529                            return;
530                        }
531                    }
532                    _ => unreachable!(),
533                };
534                // Keep the lint attributes of the previous item to control how the
535                // generated implementations are linted
536                let mut attrs = newitem.attrs.clone();
537                attrs.extend(
538                    item.attrs
539                        .iter()
540                        .filter(|a| {
541                            a.has_any_name(&[
542                                sym::allow,
543                                sym::warn,
544                                sym::deny,
545                                sym::forbid,
546                                sym::stable,
547                                sym::unstable,
548                            ])
549                        })
550                        .cloned(),
551                );
552                push(Annotatable::Item(Box::new(ast::Item { attrs, ..(*newitem).clone() })))
553            }
554            _ => unreachable!(),
555        }
556    }
557
558    /// Given that we are deriving a trait `DerivedTrait` for a type like:
559    ///
560    /// ```ignore (only-for-syntax-highlight)
561    /// struct Struct<'a, ..., 'z, A, B: DeclaredTrait, C, ..., Z>
562    /// where
563    ///     C: WhereTrait,
564    /// {
565    ///     a: A,
566    ///     b: B::Item,
567    ///     b1: <B as DeclaredTrait>::Item,
568    ///     c1: <C as WhereTrait>::Item,
569    ///     c2: Option<<C as WhereTrait>::Item>,
570    ///     ...
571    /// }
572    /// ```
573    ///
574    /// create an impl like:
575    ///
576    /// ```ignore (only-for-syntax-highlight)
577    /// impl<'a, ..., 'z, A, B: DeclaredTrait, C, ..., Z>
578    /// where
579    ///     C: WhereTrait,
580    ///     A: DerivedTrait + B1 + ... + BN,
581    ///     B: DerivedTrait + B1 + ... + BN,
582    ///     C: DerivedTrait + B1 + ... + BN,
583    ///     B::Item: DerivedTrait + B1 + ... + BN,
584    ///     <C as WhereTrait>::Item: DerivedTrait + B1 + ... + BN,
585    ///     ...
586    /// {
587    ///     ...
588    /// }
589    /// ```
590    ///
591    /// where B1, ..., BN are the bounds given by `bounds_paths`.'. Z is a phantom type, and
592    /// therefore does not get bound by the derived trait.
593    fn create_derived_impl(
594        &self,
595        cx: &ExtCtxt<'_>,
596        type_ident: Ident,
597        generics: &Generics,
598        field_tys: Vec<Box<ast::Ty>>,
599        methods: Vec<Box<ast::AssocItem>>,
600        is_packed: bool,
601    ) -> Box<ast::Item> {
602        let trait_path = self.path.to_path(cx, self.span, type_ident, generics);
603
604        // Transform associated types from `deriving::ty::Ty` into `ast::AssocItem`
605        let associated_types = self.associated_types.iter().map(|&(ident, ref type_def)| {
606            Box::new(ast::AssocItem {
607                id: ast::DUMMY_NODE_ID,
608                span: self.span,
609                vis: ast::Visibility {
610                    span: self.span.shrink_to_lo(),
611                    kind: ast::VisibilityKind::Inherited,
612                    tokens: None,
613                },
614                attrs: ast::AttrVec::new(),
615                kind: ast::AssocItemKind::Type(Box::new(ast::TyAlias {
616                    defaultness: ast::Defaultness::Final,
617                    ident,
618                    generics: Generics::default(),
619                    after_where_clause: ast::WhereClause::default(),
620                    bounds: Vec::new(),
621                    ty: Some(type_def.to_ty(cx, self.span, type_ident, generics)),
622                })),
623                tokens: None,
624            })
625        });
626
627        let mut where_clause = ast::WhereClause::default();
628        where_clause.span = generics.where_clause.span;
629        let ctxt = self.span.ctxt();
630        let span = generics.span.with_ctxt(ctxt);
631
632        // Create the generic parameters
633        let params: ThinVec<_> = generics
634            .params
635            .iter()
636            .map(|param| match &param.kind {
637                GenericParamKind::Lifetime { .. } => param.clone(),
638                GenericParamKind::Type { .. } => {
639                    // Extra restrictions on the generics parameters to the
640                    // type being derived upon.
641                    let bounds: Vec<_> = self
642                        .additional_bounds
643                        .iter()
644                        .map(|p| {
645                            cx.trait_bound(
646                                p.to_path(cx, self.span, type_ident, generics),
647                                self.is_const,
648                            )
649                        })
650                        .chain(
651                            // Add a bound for the current trait.
652                            self.skip_path_as_bound
653                                .not()
654                                .then(|| cx.trait_bound(trait_path.clone(), self.is_const)),
655                        )
656                        .chain({
657                            // Add a `Copy` bound if required.
658                            if is_packed && self.needs_copy_as_bound_if_packed {
659                                let p = deriving::path_std!(marker::Copy);
660                                Some(cx.trait_bound(
661                                    p.to_path(cx, self.span, type_ident, generics),
662                                    self.is_const,
663                                ))
664                            } else {
665                                None
666                            }
667                        })
668                        .chain(
669                            // Also add in any bounds from the declaration.
670                            param.bounds.iter().cloned(),
671                        )
672                        .collect();
673
674                    cx.typaram(param.ident.span.with_ctxt(ctxt), param.ident, bounds, None)
675                }
676                GenericParamKind::Const { ty, span, .. } => {
677                    let const_nodefault_kind = GenericParamKind::Const {
678                        ty: ty.clone(),
679                        span: span.with_ctxt(ctxt),
680
681                        // We can't have default values inside impl block
682                        default: None,
683                    };
684                    let mut param_clone = param.clone();
685                    param_clone.kind = const_nodefault_kind;
686                    param_clone
687                }
688            })
689            .map(|mut param| {
690                // Remove all attributes, because there might be helper attributes
691                // from other macros that will not be valid in the expanded implementation.
692                param.attrs.clear();
693                param
694            })
695            .collect();
696
697        // and similarly for where clauses
698        where_clause.predicates.extend(generics.where_clause.predicates.iter().map(|clause| {
699            ast::WherePredicate {
700                attrs: clause.attrs.clone(),
701                kind: clause.kind.clone(),
702                id: ast::DUMMY_NODE_ID,
703                span: clause.span.with_ctxt(ctxt),
704                is_placeholder: false,
705            }
706        }));
707
708        let ty_param_names: Vec<Symbol> = params
709            .iter()
710            .filter(|param| matches!(param.kind, ast::GenericParamKind::Type { .. }))
711            .map(|ty_param| ty_param.ident.name)
712            .collect();
713
714        if !ty_param_names.is_empty() {
715            for field_ty in field_tys {
716                let field_ty_params = find_type_parameters(&field_ty, &ty_param_names, cx);
717
718                for field_ty_param in field_ty_params {
719                    // if we have already handled this type, skip it
720                    if let ast::TyKind::Path(_, p) = &field_ty_param.ty.kind
721                        && let [sole_segment] = &*p.segments
722                        && ty_param_names.contains(&sole_segment.ident.name)
723                    {
724                        continue;
725                    }
726                    let mut bounds: Vec<_> = self
727                        .additional_bounds
728                        .iter()
729                        .map(|p| {
730                            cx.trait_bound(
731                                p.to_path(cx, self.span, type_ident, generics),
732                                self.is_const,
733                            )
734                        })
735                        .collect();
736
737                    // Require the current trait.
738                    if !self.skip_path_as_bound {
739                        bounds.push(cx.trait_bound(trait_path.clone(), self.is_const));
740                    }
741
742                    // Add a `Copy` bound if required.
743                    if is_packed && self.needs_copy_as_bound_if_packed {
744                        let p = deriving::path_std!(marker::Copy);
745                        bounds.push(cx.trait_bound(
746                            p.to_path(cx, self.span, type_ident, generics),
747                            self.is_const,
748                        ));
749                    }
750
751                    if !bounds.is_empty() {
752                        let predicate = ast::WhereBoundPredicate {
753                            bound_generic_params: field_ty_param.bound_generic_params,
754                            bounded_ty: field_ty_param.ty,
755                            bounds,
756                        };
757
758                        let kind = ast::WherePredicateKind::BoundPredicate(predicate);
759                        let predicate = ast::WherePredicate {
760                            attrs: ThinVec::new(),
761                            kind,
762                            id: ast::DUMMY_NODE_ID,
763                            span: self.span,
764                            is_placeholder: false,
765                        };
766                        where_clause.predicates.push(predicate);
767                    }
768                }
769            }
770        }
771
772        let trait_generics = Generics { params, where_clause, span };
773
774        // Create the reference to the trait.
775        let trait_ref = cx.trait_ref(trait_path);
776
777        let self_params: Vec<_> = generics
778            .params
779            .iter()
780            .map(|param| match param.kind {
781                GenericParamKind::Lifetime { .. } => {
782                    GenericArg::Lifetime(cx.lifetime(param.ident.span.with_ctxt(ctxt), param.ident))
783                }
784                GenericParamKind::Type { .. } => {
785                    GenericArg::Type(cx.ty_ident(param.ident.span.with_ctxt(ctxt), param.ident))
786                }
787                GenericParamKind::Const { .. } => {
788                    GenericArg::Const(cx.const_ident(param.ident.span.with_ctxt(ctxt), param.ident))
789                }
790            })
791            .collect();
792
793        // Create the type of `self`.
794        let path = cx.path_all(self.span, false, vec![type_ident], self_params);
795        let self_type = cx.ty_path(path);
796        let rustc_const_unstable =
797            cx.path_ident(self.span, Ident::new(sym::rustc_const_unstable, self.span));
798
799        let mut attrs = thin_vec![cx.attr_word(sym::automatically_derived, self.span),];
800
801        // Only add `rustc_const_unstable` attributes if `derive_const` is used within libcore/libstd,
802        // Other crates don't need stability attributes, so adding them is not useful, but libcore needs them
803        // on all const trait impls.
804        if self.is_const && self.is_staged_api_crate {
805            attrs.push(
806                cx.attr_nested(
807                    rustc_ast::AttrItem {
808                        unsafety: Safety::Default,
809                        path: rustc_const_unstable,
810                        args: AttrArgs::Delimited(DelimArgs {
811                            dspan: DelimSpan::from_single(self.span),
812                            delim: rustc_ast::token::Delimiter::Parenthesis,
813                            tokens: [
814                                TokenKind::Ident(sym::feature, IdentIsRaw::No),
815                                TokenKind::Eq,
816                                TokenKind::lit(LitKind::Str, sym::derive_const, None),
817                                TokenKind::Comma,
818                                TokenKind::Ident(sym::issue, IdentIsRaw::No),
819                                TokenKind::Eq,
820                                TokenKind::lit(LitKind::Str, sym::derive_const_issue, None),
821                            ]
822                            .into_iter()
823                            .map(|kind| {
824                                TokenTree::Token(Token { kind, span: self.span }, Spacing::Alone)
825                            })
826                            .collect(),
827                        }),
828                        tokens: None,
829                    },
830                    self.span,
831                ),
832            )
833        }
834
835        if !self.document {
836            attrs.push(cx.attr_nested_word(sym::doc, sym::hidden, self.span));
837        }
838
839        cx.item(
840            self.span,
841            attrs,
842            ast::ItemKind::Impl(ast::Impl {
843                generics: trait_generics,
844                of_trait: Some(Box::new(ast::TraitImplHeader {
845                    safety: self.safety,
846                    polarity: ast::ImplPolarity::Positive,
847                    defaultness: ast::Defaultness::Final,
848                    trait_ref,
849                })),
850                constness: if self.is_const { ast::Const::Yes(DUMMY_SP) } else { ast::Const::No },
851                self_ty: self_type,
852                items: methods.into_iter().chain(associated_types).collect(),
853            }),
854        )
855    }
856
857    fn expand_struct_def(
858        &self,
859        cx: &ExtCtxt<'_>,
860        struct_def: &'a VariantData,
861        type_ident: Ident,
862        generics: &Generics,
863        from_scratch: bool,
864        is_packed: bool,
865    ) -> Box<ast::Item> {
866        let field_tys: Vec<Box<ast::Ty>> =
867            struct_def.fields().iter().map(|field| field.ty.clone()).collect();
868
869        let methods = self
870            .methods
871            .iter()
872            .map(|method_def| {
873                let (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys) =
874                    method_def.extract_arg_details(cx, self, type_ident, generics);
875
876                let body = if from_scratch || method_def.is_static() {
877                    method_def.expand_static_struct_method_body(
878                        cx,
879                        self,
880                        struct_def,
881                        type_ident,
882                        &nonselflike_args,
883                    )
884                } else {
885                    method_def.expand_struct_method_body(
886                        cx,
887                        self,
888                        struct_def,
889                        type_ident,
890                        &selflike_args,
891                        &nonselflike_args,
892                        is_packed,
893                    )
894                };
895
896                method_def.create_method(
897                    cx,
898                    self,
899                    type_ident,
900                    generics,
901                    explicit_self,
902                    nonself_arg_tys,
903                    body,
904                )
905            })
906            .collect();
907
908        self.create_derived_impl(cx, type_ident, generics, field_tys, methods, is_packed)
909    }
910
911    fn expand_enum_def(
912        &self,
913        cx: &ExtCtxt<'_>,
914        enum_def: &'a EnumDef,
915        type_ident: Ident,
916        generics: &Generics,
917        from_scratch: bool,
918    ) -> Box<ast::Item> {
919        let mut field_tys = Vec::new();
920
921        for variant in &enum_def.variants {
922            field_tys.extend(variant.data.fields().iter().map(|field| field.ty.clone()));
923        }
924
925        let methods = self
926            .methods
927            .iter()
928            .map(|method_def| {
929                let (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys) =
930                    method_def.extract_arg_details(cx, self, type_ident, generics);
931
932                let body = if from_scratch || method_def.is_static() {
933                    method_def.expand_static_enum_method_body(
934                        cx,
935                        self,
936                        enum_def,
937                        type_ident,
938                        &nonselflike_args,
939                    )
940                } else {
941                    method_def.expand_enum_method_body(
942                        cx,
943                        self,
944                        enum_def,
945                        type_ident,
946                        selflike_args,
947                        &nonselflike_args,
948                    )
949                };
950
951                method_def.create_method(
952                    cx,
953                    self,
954                    type_ident,
955                    generics,
956                    explicit_self,
957                    nonself_arg_tys,
958                    body,
959                )
960            })
961            .collect();
962
963        let is_packed = false; // enums are never packed
964        self.create_derived_impl(cx, type_ident, generics, field_tys, methods, is_packed)
965    }
966}
967
968impl<'a> MethodDef<'a> {
969    fn call_substructure_method(
970        &self,
971        cx: &ExtCtxt<'_>,
972        trait_: &TraitDef<'_>,
973        type_ident: Ident,
974        nonselflike_args: &[Box<Expr>],
975        fields: &SubstructureFields<'_>,
976    ) -> BlockOrExpr {
977        let span = trait_.span;
978        let substructure = Substructure { type_ident, nonselflike_args, fields };
979        let mut f = self.combine_substructure.borrow_mut();
980        let f: &mut CombineSubstructureFunc<'_> = &mut *f;
981        f(cx, span, &substructure)
982    }
983
984    fn get_ret_ty(
985        &self,
986        cx: &ExtCtxt<'_>,
987        trait_: &TraitDef<'_>,
988        generics: &Generics,
989        type_ident: Ident,
990    ) -> Box<ast::Ty> {
991        self.ret_ty.to_ty(cx, trait_.span, type_ident, generics)
992    }
993
994    fn is_static(&self) -> bool {
995        !self.explicit_self
996    }
997
998    // The return value includes:
999    // - explicit_self: The `&self` arg, if present.
1000    // - selflike_args: Expressions for `&self` (if present) and also any other
1001    //   args with the same type (e.g. the `other` arg in `PartialEq::eq`).
1002    // - nonselflike_args: Expressions for all the remaining args.
1003    // - nonself_arg_tys: Additional information about all the args other than
1004    //   `&self`.
1005    fn extract_arg_details(
1006        &self,
1007        cx: &ExtCtxt<'_>,
1008        trait_: &TraitDef<'_>,
1009        type_ident: Ident,
1010        generics: &Generics,
1011    ) -> (Option<ast::ExplicitSelf>, ThinVec<Box<Expr>>, Vec<Box<Expr>>, Vec<(Ident, Box<ast::Ty>)>)
1012    {
1013        let mut selflike_args = ThinVec::new();
1014        let mut nonselflike_args = Vec::new();
1015        let mut nonself_arg_tys = Vec::new();
1016        let span = trait_.span;
1017
1018        let explicit_self = self.explicit_self.then(|| {
1019            let (self_expr, explicit_self) = ty::get_explicit_self(cx, span);
1020            selflike_args.push(self_expr);
1021            explicit_self
1022        });
1023
1024        for (ty, name) in self.nonself_args.iter() {
1025            let ast_ty = ty.to_ty(cx, span, type_ident, generics);
1026            let ident = Ident::new(*name, span);
1027            nonself_arg_tys.push((ident, ast_ty));
1028
1029            let arg_expr = cx.expr_ident(span, ident);
1030
1031            match ty {
1032                // Selflike (`&Self`) arguments only occur in non-static methods.
1033                Ref(box Self_, _) if !self.is_static() => selflike_args.push(arg_expr),
1034                Self_ => cx.dcx().span_bug(span, "`Self` in non-return position"),
1035                _ => nonselflike_args.push(arg_expr),
1036            }
1037        }
1038
1039        (explicit_self, selflike_args, nonselflike_args, nonself_arg_tys)
1040    }
1041
1042    fn create_method(
1043        &self,
1044        cx: &ExtCtxt<'_>,
1045        trait_: &TraitDef<'_>,
1046        type_ident: Ident,
1047        generics: &Generics,
1048        explicit_self: Option<ast::ExplicitSelf>,
1049        nonself_arg_tys: Vec<(Ident, Box<ast::Ty>)>,
1050        body: BlockOrExpr,
1051    ) -> Box<ast::AssocItem> {
1052        let span = trait_.span;
1053        // Create the generics that aren't for `Self`.
1054        let fn_generics = self.generics.to_generics(cx, span, type_ident, generics);
1055
1056        let args = {
1057            let self_arg = explicit_self.map(|explicit_self| {
1058                let ident = Ident::with_dummy_span(kw::SelfLower).with_span_pos(span);
1059                ast::Param::from_self(ast::AttrVec::default(), explicit_self, ident)
1060            });
1061            let nonself_args =
1062                nonself_arg_tys.into_iter().map(|(name, ty)| cx.param(span, name, ty));
1063            self_arg.into_iter().chain(nonself_args).collect()
1064        };
1065
1066        let ret_type = self.get_ret_ty(cx, trait_, generics, type_ident);
1067
1068        let method_ident = Ident::new(self.name, span);
1069        let fn_decl = cx.fn_decl(args, ast::FnRetTy::Ty(ret_type));
1070        let body_block = body.into_block(cx, span);
1071
1072        let trait_lo_sp = span.shrink_to_lo();
1073
1074        let sig = ast::FnSig { header: ast::FnHeader::default(), decl: fn_decl, span };
1075        let defaultness = ast::Defaultness::Final;
1076
1077        // Create the method.
1078        Box::new(ast::AssocItem {
1079            id: ast::DUMMY_NODE_ID,
1080            attrs: self.attributes.clone(),
1081            span,
1082            vis: ast::Visibility {
1083                span: trait_lo_sp,
1084                kind: ast::VisibilityKind::Inherited,
1085                tokens: None,
1086            },
1087            kind: ast::AssocItemKind::Fn(Box::new(ast::Fn {
1088                defaultness,
1089                sig,
1090                ident: method_ident,
1091                generics: fn_generics,
1092                contract: None,
1093                body: Some(body_block),
1094                define_opaque: None,
1095            })),
1096            tokens: None,
1097        })
1098    }
1099
1100    /// The normal case uses field access.
1101    ///
1102    /// ```
1103    /// #[derive(PartialEq)]
1104    /// # struct Dummy;
1105    /// struct A { x: u8, y: u8 }
1106    ///
1107    /// // equivalent to:
1108    /// impl PartialEq for A {
1109    ///     fn eq(&self, other: &A) -> bool {
1110    ///         self.x == other.x && self.y == other.y
1111    ///     }
1112    /// }
1113    /// ```
1114    ///
1115    /// But if the struct is `repr(packed)`, we can't use something like
1116    /// `&self.x` because that might cause an unaligned ref. So for any trait
1117    /// method that takes a reference, we use a local block to force a copy.
1118    /// This requires that the field impl `Copy`.
1119    ///
1120    /// ```rust,ignore (example)
1121    /// # struct A { x: u8, y: u8 }
1122    /// impl PartialEq for A {
1123    ///     fn eq(&self, other: &A) -> bool {
1124    ///         // Desugars to `{ self.x }.eq(&{ other.y }) && ...`
1125    ///         { self.x } == { other.y } && { self.y } == { other.y }
1126    ///     }
1127    /// }
1128    /// impl Hash for A {
1129    ///     fn hash<__H: ::core::hash::Hasher>(&self, state: &mut __H) -> () {
1130    ///         ::core::hash::Hash::hash(&{ self.x }, state);
1131    ///         ::core::hash::Hash::hash(&{ self.y }, state);
1132    ///     }
1133    /// }
1134    /// ```
1135    fn expand_struct_method_body<'b>(
1136        &self,
1137        cx: &ExtCtxt<'_>,
1138        trait_: &TraitDef<'b>,
1139        struct_def: &'b VariantData,
1140        type_ident: Ident,
1141        selflike_args: &[Box<Expr>],
1142        nonselflike_args: &[Box<Expr>],
1143        is_packed: bool,
1144    ) -> BlockOrExpr {
1145        assert!(selflike_args.len() == 1 || selflike_args.len() == 2);
1146
1147        let selflike_fields =
1148            trait_.create_struct_field_access_fields(cx, selflike_args, struct_def, is_packed);
1149        self.call_substructure_method(
1150            cx,
1151            trait_,
1152            type_ident,
1153            nonselflike_args,
1154            &Struct(struct_def, selflike_fields),
1155        )
1156    }
1157
1158    fn expand_static_struct_method_body(
1159        &self,
1160        cx: &ExtCtxt<'_>,
1161        trait_: &TraitDef<'_>,
1162        struct_def: &VariantData,
1163        type_ident: Ident,
1164        nonselflike_args: &[Box<Expr>],
1165    ) -> BlockOrExpr {
1166        let summary = trait_.summarise_struct(cx, struct_def);
1167
1168        self.call_substructure_method(
1169            cx,
1170            trait_,
1171            type_ident,
1172            nonselflike_args,
1173            &StaticStruct(struct_def, summary),
1174        )
1175    }
1176
1177    /// ```
1178    /// #[derive(PartialEq)]
1179    /// # struct Dummy;
1180    /// enum A {
1181    ///     A1,
1182    ///     A2(i32)
1183    /// }
1184    /// ```
1185    ///
1186    /// is equivalent to:
1187    ///
1188    /// ```
1189    /// #![feature(core_intrinsics)]
1190    /// enum A {
1191    ///     A1,
1192    ///     A2(i32)
1193    /// }
1194    /// impl ::core::cmp::PartialEq for A {
1195    ///     #[inline]
1196    ///     fn eq(&self, other: &A) -> bool {
1197    ///         let __self_discr = ::core::intrinsics::discriminant_value(self);
1198    ///         let __arg1_discr = ::core::intrinsics::discriminant_value(other);
1199    ///         __self_discr == __arg1_discr
1200    ///             && match (self, other) {
1201    ///                 (A::A2(__self_0), A::A2(__arg1_0)) => *__self_0 == *__arg1_0,
1202    ///                 _ => true,
1203    ///             }
1204    ///     }
1205    /// }
1206    /// ```
1207    ///
1208    /// Creates a discriminant check combined with a match for a tuple of all
1209    /// `selflike_args`, with an arm for each variant with fields, possibly an
1210    /// arm for each fieldless variant (if `unify_fieldless_variants` is not
1211    /// `Unify`), and possibly a default arm.
1212    fn expand_enum_method_body<'b>(
1213        &self,
1214        cx: &ExtCtxt<'_>,
1215        trait_: &TraitDef<'b>,
1216        enum_def: &'b EnumDef,
1217        type_ident: Ident,
1218        mut selflike_args: ThinVec<Box<Expr>>,
1219        nonselflike_args: &[Box<Expr>],
1220    ) -> BlockOrExpr {
1221        assert!(
1222            !selflike_args.is_empty(),
1223            "static methods must use `expand_static_enum_method_body`",
1224        );
1225
1226        let span = trait_.span;
1227        let variants = &enum_def.variants;
1228
1229        // Traits that unify fieldless variants always use the discriminant(s).
1230        let unify_fieldless_variants =
1231            self.fieldless_variants_strategy == FieldlessVariantsStrategy::Unify;
1232
1233        // For zero-variant enum, this function body is unreachable. Generate
1234        // `match *self {}`. This produces machine code identical to `unsafe {
1235        // core::intrinsics::unreachable() }` while being safe and stable.
1236        if variants.is_empty() {
1237            selflike_args.truncate(1);
1238            let match_arg = cx.expr_deref(span, selflike_args.pop().unwrap());
1239            let match_arms = ThinVec::new();
1240            let expr = cx.expr_match(span, match_arg, match_arms);
1241            return BlockOrExpr(ThinVec::new(), Some(expr));
1242        }
1243
1244        let prefixes = iter::once("__self".to_string())
1245            .chain(
1246                selflike_args
1247                    .iter()
1248                    .enumerate()
1249                    .skip(1)
1250                    .map(|(arg_count, _selflike_arg)| format!("__arg{arg_count}")),
1251            )
1252            .collect::<Vec<String>>();
1253
1254        // Build a series of let statements mapping each selflike_arg
1255        // to its discriminant value.
1256        //
1257        // e.g. for `PartialEq::eq` builds two statements:
1258        // ```
1259        // let __self_discr = ::core::intrinsics::discriminant_value(self);
1260        // let __arg1_discr = ::core::intrinsics::discriminant_value(other);
1261        // ```
1262        let get_discr_pieces = |cx: &ExtCtxt<'_>| {
1263            let discr_idents: Vec<_> = prefixes
1264                .iter()
1265                .map(|name| Ident::from_str_and_span(&format!("{name}_discr"), span))
1266                .collect();
1267
1268            let mut discr_exprs: Vec<_> = discr_idents
1269                .iter()
1270                .map(|&ident| cx.expr_addr_of(span, cx.expr_ident(span, ident)))
1271                .collect();
1272
1273            let self_expr = discr_exprs.remove(0);
1274            let other_selflike_exprs = discr_exprs;
1275            let discr_field =
1276                FieldInfo { span, name: None, self_expr, other_selflike_exprs, maybe_scalar: true };
1277
1278            let discr_let_stmts: ThinVec<_> = iter::zip(&discr_idents, &selflike_args)
1279                .map(|(&ident, selflike_arg)| {
1280                    let variant_value = deriving::call_intrinsic(
1281                        cx,
1282                        span,
1283                        sym::discriminant_value,
1284                        thin_vec![selflike_arg.clone()],
1285                    );
1286                    cx.stmt_let(span, false, ident, variant_value)
1287                })
1288                .collect();
1289
1290            (discr_field, discr_let_stmts)
1291        };
1292
1293        // There are some special cases involving fieldless enums where no
1294        // match is necessary.
1295        let all_fieldless = variants.iter().all(|v| v.data.fields().is_empty());
1296        if all_fieldless {
1297            if variants.len() > 1 {
1298                match self.fieldless_variants_strategy {
1299                    FieldlessVariantsStrategy::Unify => {
1300                        // If the type is fieldless and the trait uses the discriminant and
1301                        // there are multiple variants, we need just an operation on
1302                        // the discriminant(s).
1303                        let (discr_field, mut discr_let_stmts) = get_discr_pieces(cx);
1304                        let mut discr_check = self.call_substructure_method(
1305                            cx,
1306                            trait_,
1307                            type_ident,
1308                            nonselflike_args,
1309                            &EnumDiscr(discr_field, None),
1310                        );
1311                        discr_let_stmts.append(&mut discr_check.0);
1312                        return BlockOrExpr(discr_let_stmts, discr_check.1);
1313                    }
1314                    FieldlessVariantsStrategy::SpecializeIfAllVariantsFieldless => {
1315                        return self.call_substructure_method(
1316                            cx,
1317                            trait_,
1318                            type_ident,
1319                            nonselflike_args,
1320                            &AllFieldlessEnum(enum_def),
1321                        );
1322                    }
1323                    FieldlessVariantsStrategy::Default => (),
1324                }
1325            } else if let [variant] = variants.as_slice() {
1326                // If there is a single variant, we don't need an operation on
1327                // the discriminant(s). Just use the most degenerate result.
1328                return self.call_substructure_method(
1329                    cx,
1330                    trait_,
1331                    type_ident,
1332                    nonselflike_args,
1333                    &EnumMatching(variant, Vec::new()),
1334                );
1335            }
1336        }
1337
1338        // These arms are of the form:
1339        // (Variant1, Variant1, ...) => Body1
1340        // (Variant2, Variant2, ...) => Body2
1341        // ...
1342        // where each tuple has length = selflike_args.len()
1343        let mut match_arms: ThinVec<ast::Arm> = variants
1344            .iter()
1345            .filter(|&v| !(unify_fieldless_variants && v.data.fields().is_empty()))
1346            .map(|variant| {
1347                // A single arm has form (&VariantK, &VariantK, ...) => BodyK
1348                // (see "Final wrinkle" note below for why.)
1349
1350                let fields = trait_.create_struct_pattern_fields(cx, &variant.data, &prefixes);
1351
1352                let sp = variant.span.with_ctxt(trait_.span.ctxt());
1353                let variant_path = cx.path(sp, vec![type_ident, variant.ident]);
1354                let by_ref = ByRef::No; // because enums can't be repr(packed)
1355                let mut subpats = trait_.create_struct_patterns(
1356                    cx,
1357                    variant_path,
1358                    &variant.data,
1359                    &prefixes,
1360                    by_ref,
1361                );
1362
1363                // `(VariantK, VariantK, ...)` or just `VariantK`.
1364                let single_pat = if subpats.len() == 1 {
1365                    subpats.pop().unwrap()
1366                } else {
1367                    cx.pat_tuple(span, subpats)
1368                };
1369
1370                // For the BodyK, we need to delegate to our caller,
1371                // passing it an EnumMatching to indicate which case
1372                // we are in.
1373                //
1374                // Now, for some given VariantK, we have built up
1375                // expressions for referencing every field of every
1376                // Self arg, assuming all are instances of VariantK.
1377                // Build up code associated with such a case.
1378                let substructure = EnumMatching(variant, fields);
1379                let arm_expr = self
1380                    .call_substructure_method(
1381                        cx,
1382                        trait_,
1383                        type_ident,
1384                        nonselflike_args,
1385                        &substructure,
1386                    )
1387                    .into_expr(cx, span);
1388
1389                cx.arm(span, single_pat, arm_expr)
1390            })
1391            .collect();
1392
1393        // Add a default arm to the match, if necessary.
1394        let first_fieldless = variants.iter().find(|v| v.data.fields().is_empty());
1395        let default = match first_fieldless {
1396            Some(v) if unify_fieldless_variants => {
1397                // We need a default case that handles all the fieldless
1398                // variants. The index and actual variant aren't meaningful in
1399                // this case, so just use dummy values.
1400                Some(
1401                    self.call_substructure_method(
1402                        cx,
1403                        trait_,
1404                        type_ident,
1405                        nonselflike_args,
1406                        &EnumMatching(v, Vec::new()),
1407                    )
1408                    .into_expr(cx, span),
1409                )
1410            }
1411            _ if variants.len() > 1 && selflike_args.len() > 1 => {
1412                // Because we know that all the arguments will match if we reach
1413                // the match expression we add the unreachable intrinsics as the
1414                // result of the default which should help llvm in optimizing it.
1415                Some(deriving::call_unreachable(cx, span))
1416            }
1417            _ => None,
1418        };
1419        if let Some(arm) = default {
1420            match_arms.push(cx.arm(span, cx.pat_wild(span), arm));
1421        }
1422
1423        // Create a match expression with one arm per discriminant plus
1424        // possibly a default arm, e.g.:
1425        //      match (self, other) {
1426        //          (Variant1, Variant1, ...) => Body1
1427        //          (Variant2, Variant2, ...) => Body2,
1428        //          ...
1429        //          _ => ::core::intrinsics::unreachable(),
1430        //      }
1431        let get_match_expr = |mut selflike_args: ThinVec<Box<Expr>>| {
1432            let match_arg = if selflike_args.len() == 1 {
1433                selflike_args.pop().unwrap()
1434            } else {
1435                cx.expr(span, ast::ExprKind::Tup(selflike_args))
1436            };
1437            cx.expr_match(span, match_arg, match_arms)
1438        };
1439
1440        // If the trait uses the discriminant and there are multiple variants, we need
1441        // to add a discriminant check operation before the match. Otherwise, the match
1442        // is enough.
1443        if unify_fieldless_variants && variants.len() > 1 {
1444            let (discr_field, mut discr_let_stmts) = get_discr_pieces(cx);
1445
1446            // Combine a discriminant check with the match.
1447            let mut discr_check_plus_match = self.call_substructure_method(
1448                cx,
1449                trait_,
1450                type_ident,
1451                nonselflike_args,
1452                &EnumDiscr(discr_field, Some(get_match_expr(selflike_args))),
1453            );
1454            discr_let_stmts.append(&mut discr_check_plus_match.0);
1455            BlockOrExpr(discr_let_stmts, discr_check_plus_match.1)
1456        } else {
1457            BlockOrExpr(ThinVec::new(), Some(get_match_expr(selflike_args)))
1458        }
1459    }
1460
1461    fn expand_static_enum_method_body(
1462        &self,
1463        cx: &ExtCtxt<'_>,
1464        trait_: &TraitDef<'_>,
1465        enum_def: &EnumDef,
1466        type_ident: Ident,
1467        nonselflike_args: &[Box<Expr>],
1468    ) -> BlockOrExpr {
1469        self.call_substructure_method(
1470            cx,
1471            trait_,
1472            type_ident,
1473            nonselflike_args,
1474            &StaticEnum(enum_def),
1475        )
1476    }
1477}
1478
1479// general helper methods.
1480impl<'a> TraitDef<'a> {
1481    fn summarise_struct(&self, cx: &ExtCtxt<'_>, struct_def: &VariantData) -> StaticFields {
1482        let mut named_idents = Vec::new();
1483        let mut just_spans = Vec::new();
1484        for field in struct_def.fields() {
1485            let sp = field.span.with_ctxt(self.span.ctxt());
1486            match field.ident {
1487                Some(ident) => named_idents.push((ident, sp, field.default.clone())),
1488                _ => just_spans.push(sp),
1489            }
1490        }
1491
1492        let is_tuple = match struct_def {
1493            ast::VariantData::Tuple(..) => IsTuple::Yes,
1494            _ => IsTuple::No,
1495        };
1496        match (just_spans.is_empty(), named_idents.is_empty()) {
1497            (false, false) => cx
1498                .dcx()
1499                .span_bug(self.span, "a struct with named and unnamed fields in generic `derive`"),
1500            // named fields
1501            (_, false) => Named(named_idents),
1502            // unnamed fields
1503            (false, _) => Unnamed(just_spans, is_tuple),
1504            // empty
1505            _ => Named(Vec::new()),
1506        }
1507    }
1508
1509    fn create_struct_patterns(
1510        &self,
1511        cx: &ExtCtxt<'_>,
1512        struct_path: ast::Path,
1513        struct_def: &'a VariantData,
1514        prefixes: &[String],
1515        by_ref: ByRef,
1516    ) -> ThinVec<ast::Pat> {
1517        prefixes
1518            .iter()
1519            .map(|prefix| {
1520                let pieces_iter =
1521                    struct_def.fields().iter().enumerate().map(|(i, struct_field)| {
1522                        let sp = struct_field.span.with_ctxt(self.span.ctxt());
1523                        let ident = self.mk_pattern_ident(prefix, i);
1524                        let path = ident.with_span_pos(sp);
1525                        (
1526                            sp,
1527                            struct_field.ident,
1528                            cx.pat(
1529                                path.span,
1530                                PatKind::Ident(BindingMode(by_ref, Mutability::Not), path, None),
1531                            ),
1532                        )
1533                    });
1534
1535                let struct_path = struct_path.clone();
1536                match *struct_def {
1537                    VariantData::Struct { .. } => {
1538                        let field_pats = pieces_iter
1539                            .map(|(sp, ident, pat)| {
1540                                if ident.is_none() {
1541                                    cx.dcx().span_bug(
1542                                        sp,
1543                                        "a braced struct with unnamed fields in `derive`",
1544                                    );
1545                                }
1546                                ast::PatField {
1547                                    ident: ident.unwrap(),
1548                                    is_shorthand: false,
1549                                    attrs: ast::AttrVec::new(),
1550                                    id: ast::DUMMY_NODE_ID,
1551                                    span: pat.span.with_ctxt(self.span.ctxt()),
1552                                    pat: Box::new(pat),
1553                                    is_placeholder: false,
1554                                }
1555                            })
1556                            .collect();
1557                        cx.pat_struct(self.span, struct_path, field_pats)
1558                    }
1559                    VariantData::Tuple(..) => {
1560                        let subpats = pieces_iter.map(|(_, _, subpat)| subpat).collect();
1561                        cx.pat_tuple_struct(self.span, struct_path, subpats)
1562                    }
1563                    VariantData::Unit(..) => cx.pat_path(self.span, struct_path),
1564                }
1565            })
1566            .collect()
1567    }
1568
1569    fn create_fields<F>(&self, struct_def: &'a VariantData, mk_exprs: F) -> Vec<FieldInfo>
1570    where
1571        F: Fn(usize, &ast::FieldDef, Span) -> Vec<Box<ast::Expr>>,
1572    {
1573        struct_def
1574            .fields()
1575            .iter()
1576            .enumerate()
1577            .map(|(i, struct_field)| {
1578                // For this field, get an expr for each selflike_arg. E.g. for
1579                // `PartialEq::eq`, one for each of `&self` and `other`.
1580                let sp = struct_field.span.with_ctxt(self.span.ctxt());
1581                let mut exprs: Vec<_> = mk_exprs(i, struct_field, sp);
1582                let self_expr = exprs.remove(0);
1583                let other_selflike_exprs = exprs;
1584                FieldInfo {
1585                    span: sp.with_ctxt(self.span.ctxt()),
1586                    name: struct_field.ident,
1587                    self_expr,
1588                    other_selflike_exprs,
1589                    maybe_scalar: struct_field.ty.peel_refs().kind.maybe_scalar(),
1590                }
1591            })
1592            .collect()
1593    }
1594
1595    fn mk_pattern_ident(&self, prefix: &str, i: usize) -> Ident {
1596        Ident::from_str_and_span(&format!("{prefix}_{i}"), self.span)
1597    }
1598
1599    fn create_struct_pattern_fields(
1600        &self,
1601        cx: &ExtCtxt<'_>,
1602        struct_def: &'a VariantData,
1603        prefixes: &[String],
1604    ) -> Vec<FieldInfo> {
1605        self.create_fields(struct_def, |i, _struct_field, sp| {
1606            prefixes
1607                .iter()
1608                .map(|prefix| {
1609                    let ident = self.mk_pattern_ident(prefix, i);
1610                    cx.expr_path(cx.path_ident(sp, ident))
1611                })
1612                .collect()
1613        })
1614    }
1615
1616    fn create_struct_field_access_fields(
1617        &self,
1618        cx: &ExtCtxt<'_>,
1619        selflike_args: &[Box<Expr>],
1620        struct_def: &'a VariantData,
1621        is_packed: bool,
1622    ) -> Vec<FieldInfo> {
1623        self.create_fields(struct_def, |i, struct_field, sp| {
1624            selflike_args
1625                .iter()
1626                .map(|selflike_arg| {
1627                    // Note: we must use `struct_field.span` rather than `sp` in the
1628                    // `unwrap_or_else` case otherwise the hygiene is wrong and we get
1629                    // "field `0` of struct `Point` is private" errors on tuple
1630                    // structs.
1631                    let mut field_expr = cx.expr(
1632                        sp,
1633                        ast::ExprKind::Field(
1634                            selflike_arg.clone(),
1635                            struct_field.ident.unwrap_or_else(|| {
1636                                Ident::from_str_and_span(&i.to_string(), struct_field.span)
1637                            }),
1638                        ),
1639                    );
1640                    if is_packed {
1641                        // Fields in packed structs are wrapped in a block, e.g. `&{self.0}`,
1642                        // causing a copy instead of a (potentially misaligned) reference.
1643                        field_expr = cx.expr_block(
1644                            cx.block(struct_field.span, thin_vec![cx.stmt_expr(field_expr)]),
1645                        );
1646                    }
1647                    cx.expr_addr_of(sp, field_expr)
1648                })
1649                .collect()
1650        })
1651    }
1652}
1653
1654/// The function passed to `cs_fold` is called repeatedly with a value of this
1655/// type. It describes one part of the code generation. The result is always an
1656/// expression.
1657pub(crate) enum CsFold<'a> {
1658    /// The basic case: a field expression for one or more selflike args. E.g.
1659    /// for `PartialEq::eq` this is something like `self.x == other.x`.
1660    Single(&'a FieldInfo),
1661
1662    /// The combination of two field expressions. E.g. for `PartialEq::eq` this
1663    /// is something like `<field1 equality> && <field2 equality>`.
1664    Combine(Span, Box<Expr>, Box<Expr>),
1665
1666    // The fallback case for a struct or enum variant with no fields.
1667    Fieldless,
1668}
1669
1670/// Folds over fields, combining the expressions for each field in a sequence.
1671/// Statics may not be folded over.
1672pub(crate) fn cs_fold<F>(
1673    use_foldl: bool,
1674    cx: &ExtCtxt<'_>,
1675    trait_span: Span,
1676    substructure: &Substructure<'_>,
1677    mut f: F,
1678) -> Box<Expr>
1679where
1680    F: FnMut(&ExtCtxt<'_>, CsFold<'_>) -> Box<Expr>,
1681{
1682    match substructure.fields {
1683        EnumMatching(.., all_fields) | Struct(_, all_fields) => {
1684            if all_fields.is_empty() {
1685                return f(cx, CsFold::Fieldless);
1686            }
1687
1688            let (base_field, rest) = if use_foldl {
1689                all_fields.split_first().unwrap()
1690            } else {
1691                all_fields.split_last().unwrap()
1692            };
1693
1694            let base_expr = f(cx, CsFold::Single(base_field));
1695
1696            let op = |old, field: &FieldInfo| {
1697                let new = f(cx, CsFold::Single(field));
1698                f(cx, CsFold::Combine(field.span, old, new))
1699            };
1700
1701            if use_foldl {
1702                rest.iter().fold(base_expr, op)
1703            } else {
1704                rest.iter().rfold(base_expr, op)
1705            }
1706        }
1707        EnumDiscr(discr_field, match_expr) => {
1708            let discr_check_expr = f(cx, CsFold::Single(discr_field));
1709            if let Some(match_expr) = match_expr {
1710                if use_foldl {
1711                    f(cx, CsFold::Combine(trait_span, discr_check_expr, match_expr.clone()))
1712                } else {
1713                    f(cx, CsFold::Combine(trait_span, match_expr.clone(), discr_check_expr))
1714                }
1715            } else {
1716                discr_check_expr
1717            }
1718        }
1719        StaticEnum(..) | StaticStruct(..) => {
1720            cx.dcx().span_bug(trait_span, "static function in `derive`")
1721        }
1722        AllFieldlessEnum(..) => cx.dcx().span_bug(trait_span, "fieldless enum in `derive`"),
1723    }
1724}