rustc_codegen_ssa/back/
link.rs

1mod raw_dylib;
2
3use std::collections::BTreeSet;
4use std::ffi::OsString;
5use std::fs::{File, OpenOptions, read};
6use std::io::{BufReader, BufWriter, Write};
7use std::ops::{ControlFlow, Deref};
8use std::path::{Path, PathBuf};
9use std::process::{Output, Stdio};
10use std::{env, fmt, fs, io, mem, str};
11
12use find_msvc_tools;
13use itertools::Itertools;
14use regex::Regex;
15use rustc_arena::TypedArena;
16use rustc_ast::CRATE_NODE_ID;
17use rustc_attr_parsing::{ShouldEmit, eval_config_entry};
18use rustc_data_structures::fx::FxIndexSet;
19use rustc_data_structures::memmap::Mmap;
20use rustc_data_structures::temp_dir::MaybeTempDir;
21use rustc_errors::{DiagCtxtHandle, LintDiagnostic};
22use rustc_fs_util::{TempDirBuilder, fix_windows_verbatim_for_gcc, try_canonicalize};
23use rustc_hir::attrs::NativeLibKind;
24use rustc_hir::def_id::{CrateNum, LOCAL_CRATE};
25use rustc_macros::LintDiagnostic;
26use rustc_metadata::fs::{METADATA_FILENAME, copy_to_stdout, emit_wrapper_file};
27use rustc_metadata::{
28    EncodedMetadata, NativeLibSearchFallback, find_native_static_library,
29    walk_native_lib_search_dirs,
30};
31use rustc_middle::bug;
32use rustc_middle::lint::lint_level;
33use rustc_middle::middle::debugger_visualizer::DebuggerVisualizerFile;
34use rustc_middle::middle::dependency_format::Linkage;
35use rustc_middle::middle::exported_symbols::SymbolExportKind;
36use rustc_session::config::{
37    self, CFGuard, CrateType, DebugInfo, LinkerFeaturesCli, OutFileName, OutputFilenames,
38    OutputType, PrintKind, SplitDwarfKind, Strip,
39};
40use rustc_session::lint::builtin::LINKER_MESSAGES;
41use rustc_session::output::{check_file_is_writeable, invalid_output_for_target, out_filename};
42use rustc_session::search_paths::PathKind;
43/// For all the linkers we support, and information they might
44/// need out of the shared crate context before we get rid of it.
45use rustc_session::{Session, filesearch};
46use rustc_span::Symbol;
47use rustc_target::spec::crt_objects::CrtObjects;
48use rustc_target::spec::{
49    Abi, BinaryFormat, Cc, Env, LinkOutputKind, LinkSelfContainedComponents,
50    LinkSelfContainedDefault, LinkerFeatures, LinkerFlavor, LinkerFlavorCli, Lld, Os, RelocModel,
51    RelroLevel, SanitizerSet, SplitDebuginfo,
52};
53use tracing::{debug, info, warn};
54
55use super::archive::{ArchiveBuilder, ArchiveBuilderBuilder};
56use super::command::Command;
57use super::linker::{self, Linker};
58use super::metadata::{MetadataPosition, create_wrapper_file};
59use super::rpath::{self, RPathConfig};
60use super::{apple, versioned_llvm_target};
61use crate::base::needs_allocator_shim_for_linking;
62use crate::{
63    CodegenResults, CompiledModule, CrateInfo, NativeLib, errors, looks_like_rust_object_file,
64};
65
66pub fn ensure_removed(dcx: DiagCtxtHandle<'_>, path: &Path) {
67    if let Err(e) = fs::remove_file(path) {
68        if e.kind() != io::ErrorKind::NotFound {
69            dcx.err(format!("failed to remove {}: {}", path.display(), e));
70        }
71    }
72}
73
74/// Performs the linkage portion of the compilation phase. This will generate all
75/// of the requested outputs for this compilation session.
76pub fn link_binary(
77    sess: &Session,
78    archive_builder_builder: &dyn ArchiveBuilderBuilder,
79    codegen_results: CodegenResults,
80    metadata: EncodedMetadata,
81    outputs: &OutputFilenames,
82    codegen_backend: &'static str,
83) {
84    let _timer = sess.timer("link_binary");
85    let output_metadata = sess.opts.output_types.contains_key(&OutputType::Metadata);
86    let mut tempfiles_for_stdout_output: Vec<PathBuf> = Vec::new();
87    for &crate_type in &codegen_results.crate_info.crate_types {
88        // Ignore executable crates if we have -Z no-codegen, as they will error.
89        if (sess.opts.unstable_opts.no_codegen || !sess.opts.output_types.should_codegen())
90            && !output_metadata
91            && crate_type == CrateType::Executable
92        {
93            continue;
94        }
95
96        if invalid_output_for_target(sess, crate_type) {
97            bug!("invalid output type `{:?}` for target `{}`", crate_type, sess.opts.target_triple);
98        }
99
100        sess.time("link_binary_check_files_are_writeable", || {
101            for obj in codegen_results.modules.iter().filter_map(|m| m.object.as_ref()) {
102                check_file_is_writeable(obj, sess);
103            }
104        });
105
106        if outputs.outputs.should_link() {
107            let tmpdir = TempDirBuilder::new()
108                .prefix("rustc")
109                .tempdir()
110                .unwrap_or_else(|error| sess.dcx().emit_fatal(errors::CreateTempDir { error }));
111            let path = MaybeTempDir::new(tmpdir, sess.opts.cg.save_temps);
112            let output = out_filename(
113                sess,
114                crate_type,
115                outputs,
116                codegen_results.crate_info.local_crate_name,
117            );
118            let crate_name = format!("{}", codegen_results.crate_info.local_crate_name);
119            let out_filename = output.file_for_writing(
120                outputs,
121                OutputType::Exe,
122                &crate_name,
123                sess.invocation_temp.as_deref(),
124            );
125            match crate_type {
126                CrateType::Rlib => {
127                    let _timer = sess.timer("link_rlib");
128                    info!("preparing rlib to {:?}", out_filename);
129                    link_rlib(
130                        sess,
131                        archive_builder_builder,
132                        &codegen_results,
133                        &metadata,
134                        RlibFlavor::Normal,
135                        &path,
136                    )
137                    .build(&out_filename);
138                }
139                CrateType::Staticlib => {
140                    link_staticlib(
141                        sess,
142                        archive_builder_builder,
143                        &codegen_results,
144                        &metadata,
145                        &out_filename,
146                        &path,
147                    );
148                }
149                _ => {
150                    link_natively(
151                        sess,
152                        archive_builder_builder,
153                        crate_type,
154                        &out_filename,
155                        &codegen_results,
156                        &metadata,
157                        path.as_ref(),
158                        codegen_backend,
159                    );
160                }
161            }
162            if sess.opts.json_artifact_notifications {
163                sess.dcx().emit_artifact_notification(&out_filename, "link");
164            }
165
166            if sess.prof.enabled()
167                && let Some(artifact_name) = out_filename.file_name()
168            {
169                // Record size for self-profiling
170                let file_size = std::fs::metadata(&out_filename).map(|m| m.len()).unwrap_or(0);
171
172                sess.prof.artifact_size(
173                    "linked_artifact",
174                    artifact_name.to_string_lossy(),
175                    file_size,
176                );
177            }
178
179            if sess.target.binary_format == BinaryFormat::Elf {
180                if let Err(err) = warn_if_linked_with_gold(sess, &out_filename) {
181                    info!(?err, "Error while checking if gold was the linker");
182                }
183            }
184
185            if output.is_stdout() {
186                if output.is_tty() {
187                    sess.dcx().emit_err(errors::BinaryOutputToTty {
188                        shorthand: OutputType::Exe.shorthand(),
189                    });
190                } else if let Err(e) = copy_to_stdout(&out_filename) {
191                    sess.dcx().emit_err(errors::CopyPath::new(&out_filename, output.as_path(), e));
192                }
193                tempfiles_for_stdout_output.push(out_filename);
194            }
195        }
196    }
197
198    // Remove the temporary object file and metadata if we aren't saving temps.
199    sess.time("link_binary_remove_temps", || {
200        // If the user requests that temporaries are saved, don't delete any.
201        if sess.opts.cg.save_temps {
202            return;
203        }
204
205        let maybe_remove_temps_from_module =
206            |preserve_objects: bool, preserve_dwarf_objects: bool, module: &CompiledModule| {
207                if !preserve_objects && let Some(ref obj) = module.object {
208                    ensure_removed(sess.dcx(), obj);
209                }
210
211                if !preserve_dwarf_objects && let Some(ref dwo_obj) = module.dwarf_object {
212                    ensure_removed(sess.dcx(), dwo_obj);
213                }
214            };
215
216        let remove_temps_from_module =
217            |module: &CompiledModule| maybe_remove_temps_from_module(false, false, module);
218
219        // Otherwise, always remove the allocator module temporaries.
220        if let Some(ref allocator_module) = codegen_results.allocator_module {
221            remove_temps_from_module(allocator_module);
222        }
223
224        // Remove the temporary files if output goes to stdout
225        for temp in tempfiles_for_stdout_output {
226            ensure_removed(sess.dcx(), &temp);
227        }
228
229        // If no requested outputs require linking, then the object temporaries should
230        // be kept.
231        if !sess.opts.output_types.should_link() {
232            return;
233        }
234
235        // Potentially keep objects for their debuginfo.
236        let (preserve_objects, preserve_dwarf_objects) = preserve_objects_for_their_debuginfo(sess);
237        debug!(?preserve_objects, ?preserve_dwarf_objects);
238
239        for module in &codegen_results.modules {
240            maybe_remove_temps_from_module(preserve_objects, preserve_dwarf_objects, module);
241        }
242    });
243}
244
245// Crate type is not passed when calculating the dylibs to include for LTO. In that case all
246// crate types must use the same dependency formats.
247pub fn each_linked_rlib(
248    info: &CrateInfo,
249    crate_type: Option<CrateType>,
250    f: &mut dyn FnMut(CrateNum, &Path),
251) -> Result<(), errors::LinkRlibError> {
252    let fmts = if let Some(crate_type) = crate_type {
253        let Some(fmts) = info.dependency_formats.get(&crate_type) else {
254            return Err(errors::LinkRlibError::MissingFormat);
255        };
256
257        fmts
258    } else {
259        let mut dep_formats = info.dependency_formats.iter();
260        let (ty1, list1) = dep_formats.next().ok_or(errors::LinkRlibError::MissingFormat)?;
261        if let Some((ty2, list2)) = dep_formats.find(|(_, list2)| list1 != *list2) {
262            return Err(errors::LinkRlibError::IncompatibleDependencyFormats {
263                ty1: format!("{ty1:?}"),
264                ty2: format!("{ty2:?}"),
265                list1: format!("{list1:?}"),
266                list2: format!("{list2:?}"),
267            });
268        }
269        list1
270    };
271
272    let used_dep_crates = info.used_crates.iter();
273    for &cnum in used_dep_crates {
274        match fmts.get(cnum) {
275            Some(&Linkage::NotLinked | &Linkage::Dynamic | &Linkage::IncludedFromDylib) => continue,
276            Some(_) => {}
277            None => return Err(errors::LinkRlibError::MissingFormat),
278        }
279        let crate_name = info.crate_name[&cnum];
280        let used_crate_source = &info.used_crate_source[&cnum];
281        if let Some((path, _)) = &used_crate_source.rlib {
282            f(cnum, path);
283        } else if used_crate_source.rmeta.is_some() {
284            return Err(errors::LinkRlibError::OnlyRmetaFound { crate_name });
285        } else {
286            return Err(errors::LinkRlibError::NotFound { crate_name });
287        }
288    }
289    Ok(())
290}
291
292/// Create an 'rlib'.
293///
294/// An rlib in its current incarnation is essentially a renamed .a file (with "dummy" object files).
295/// The rlib primarily contains the object file of the crate, but it also some of the object files
296/// from native libraries.
297fn link_rlib<'a>(
298    sess: &'a Session,
299    archive_builder_builder: &dyn ArchiveBuilderBuilder,
300    codegen_results: &CodegenResults,
301    metadata: &EncodedMetadata,
302    flavor: RlibFlavor,
303    tmpdir: &MaybeTempDir,
304) -> Box<dyn ArchiveBuilder + 'a> {
305    let mut ab = archive_builder_builder.new_archive_builder(sess);
306
307    let trailing_metadata = match flavor {
308        RlibFlavor::Normal => {
309            let (metadata, metadata_position) =
310                create_wrapper_file(sess, ".rmeta".to_string(), metadata.stub_or_full());
311            let metadata = emit_wrapper_file(sess, &metadata, tmpdir.as_ref(), METADATA_FILENAME);
312            match metadata_position {
313                MetadataPosition::First => {
314                    // Most of the time metadata in rlib files is wrapped in a "dummy" object
315                    // file for the target platform so the rlib can be processed entirely by
316                    // normal linkers for the platform. Sometimes this is not possible however.
317                    // If it is possible however, placing the metadata object first improves
318                    // performance of getting metadata from rlibs.
319                    ab.add_file(&metadata);
320                    None
321                }
322                MetadataPosition::Last => Some(metadata),
323            }
324        }
325
326        RlibFlavor::StaticlibBase => None,
327    };
328
329    for m in &codegen_results.modules {
330        if let Some(obj) = m.object.as_ref() {
331            ab.add_file(obj);
332        }
333
334        if let Some(dwarf_obj) = m.dwarf_object.as_ref() {
335            ab.add_file(dwarf_obj);
336        }
337    }
338
339    match flavor {
340        RlibFlavor::Normal => {}
341        RlibFlavor::StaticlibBase => {
342            let obj = codegen_results.allocator_module.as_ref().and_then(|m| m.object.as_ref());
343            if let Some(obj) = obj {
344                ab.add_file(obj);
345            }
346        }
347    }
348
349    // Used if packed_bundled_libs flag enabled.
350    let mut packed_bundled_libs = Vec::new();
351
352    // Note that in this loop we are ignoring the value of `lib.cfg`. That is,
353    // we may not be configured to actually include a static library if we're
354    // adding it here. That's because later when we consume this rlib we'll
355    // decide whether we actually needed the static library or not.
356    //
357    // To do this "correctly" we'd need to keep track of which libraries added
358    // which object files to the archive. We don't do that here, however. The
359    // #[link(cfg(..))] feature is unstable, though, and only intended to get
360    // liblibc working. In that sense the check below just indicates that if
361    // there are any libraries we want to omit object files for at link time we
362    // just exclude all custom object files.
363    //
364    // Eventually if we want to stabilize or flesh out the #[link(cfg(..))]
365    // feature then we'll need to figure out how to record what objects were
366    // loaded from the libraries found here and then encode that into the
367    // metadata of the rlib we're generating somehow.
368    for lib in codegen_results.crate_info.used_libraries.iter() {
369        let NativeLibKind::Static { bundle: None | Some(true), .. } = lib.kind else {
370            continue;
371        };
372        if flavor == RlibFlavor::Normal
373            && let Some(filename) = lib.filename
374        {
375            let path = find_native_static_library(filename.as_str(), true, sess);
376            let src = read(path)
377                .unwrap_or_else(|e| sess.dcx().emit_fatal(errors::ReadFileError { message: e }));
378            let (data, _) = create_wrapper_file(sess, ".bundled_lib".to_string(), &src);
379            let wrapper_file = emit_wrapper_file(sess, &data, tmpdir.as_ref(), filename.as_str());
380            packed_bundled_libs.push(wrapper_file);
381        } else {
382            let path = find_native_static_library(lib.name.as_str(), lib.verbatim, sess);
383            ab.add_archive(&path, Box::new(|_| false)).unwrap_or_else(|error| {
384                sess.dcx().emit_fatal(errors::AddNativeLibrary { library_path: path, error })
385            });
386        }
387    }
388
389    // On Windows, we add the raw-dylib import libraries to the rlibs already.
390    // But on ELF, this is not possible, as a shared object cannot be a member of a static library.
391    // Instead, we add all raw-dylibs to the final link on ELF.
392    if sess.target.is_like_windows {
393        for output_path in raw_dylib::create_raw_dylib_dll_import_libs(
394            sess,
395            archive_builder_builder,
396            codegen_results.crate_info.used_libraries.iter(),
397            tmpdir.as_ref(),
398            true,
399        ) {
400            ab.add_archive(&output_path, Box::new(|_| false)).unwrap_or_else(|error| {
401                sess.dcx()
402                    .emit_fatal(errors::AddNativeLibrary { library_path: output_path, error });
403            });
404        }
405    }
406
407    if let Some(trailing_metadata) = trailing_metadata {
408        // Note that it is important that we add all of our non-object "magical
409        // files" *after* all of the object files in the archive. The reason for
410        // this is as follows:
411        //
412        // * When performing LTO, this archive will be modified to remove
413        //   objects from above. The reason for this is described below.
414        //
415        // * When the system linker looks at an archive, it will attempt to
416        //   determine the architecture of the archive in order to see whether its
417        //   linkable.
418        //
419        //   The algorithm for this detection is: iterate over the files in the
420        //   archive. Skip magical SYMDEF names. Interpret the first file as an
421        //   object file. Read architecture from the object file.
422        //
423        // * As one can probably see, if "metadata" and "foo.bc" were placed
424        //   before all of the objects, then the architecture of this archive would
425        //   not be correctly inferred once 'foo.o' is removed.
426        //
427        // * Most of the time metadata in rlib files is wrapped in a "dummy" object
428        //   file for the target platform so the rlib can be processed entirely by
429        //   normal linkers for the platform. Sometimes this is not possible however.
430        //
431        // Basically, all this means is that this code should not move above the
432        // code above.
433        ab.add_file(&trailing_metadata);
434    }
435
436    // Add all bundled static native library dependencies.
437    // Archives added to the end of .rlib archive, see comment above for the reason.
438    for lib in packed_bundled_libs {
439        ab.add_file(&lib)
440    }
441
442    ab
443}
444
445/// Create a static archive.
446///
447/// This is essentially the same thing as an rlib, but it also involves adding all of the upstream
448/// crates' objects into the archive. This will slurp in all of the native libraries of upstream
449/// dependencies as well.
450///
451/// Additionally, there's no way for us to link dynamic libraries, so we warn about all dynamic
452/// library dependencies that they're not linked in.
453///
454/// There's no need to include metadata in a static archive, so ensure to not link in the metadata
455/// object file (and also don't prepare the archive with a metadata file).
456fn link_staticlib(
457    sess: &Session,
458    archive_builder_builder: &dyn ArchiveBuilderBuilder,
459    codegen_results: &CodegenResults,
460    metadata: &EncodedMetadata,
461    out_filename: &Path,
462    tempdir: &MaybeTempDir,
463) {
464    info!("preparing staticlib to {:?}", out_filename);
465    let mut ab = link_rlib(
466        sess,
467        archive_builder_builder,
468        codegen_results,
469        metadata,
470        RlibFlavor::StaticlibBase,
471        tempdir,
472    );
473    let mut all_native_libs = vec![];
474
475    let res = each_linked_rlib(
476        &codegen_results.crate_info,
477        Some(CrateType::Staticlib),
478        &mut |cnum, path| {
479            let lto = are_upstream_rust_objects_already_included(sess)
480                && !ignored_for_lto(sess, &codegen_results.crate_info, cnum);
481
482            let native_libs = codegen_results.crate_info.native_libraries[&cnum].iter();
483            let relevant = native_libs.clone().filter(|lib| relevant_lib(sess, lib));
484            let relevant_libs: FxIndexSet<_> = relevant.filter_map(|lib| lib.filename).collect();
485
486            let bundled_libs: FxIndexSet<_> = native_libs.filter_map(|lib| lib.filename).collect();
487            ab.add_archive(
488                path,
489                Box::new(move |fname: &str| {
490                    // Ignore metadata files, no matter the name.
491                    if fname == METADATA_FILENAME {
492                        return true;
493                    }
494
495                    // Don't include Rust objects if LTO is enabled
496                    if lto && looks_like_rust_object_file(fname) {
497                        return true;
498                    }
499
500                    // Skip objects for bundled libs.
501                    if bundled_libs.contains(&Symbol::intern(fname)) {
502                        return true;
503                    }
504
505                    false
506                }),
507            )
508            .unwrap();
509
510            archive_builder_builder
511                .extract_bundled_libs(path, tempdir.as_ref(), &relevant_libs)
512                .unwrap_or_else(|e| sess.dcx().emit_fatal(e));
513
514            for filename in relevant_libs.iter() {
515                let joined = tempdir.as_ref().join(filename.as_str());
516                let path = joined.as_path();
517                ab.add_archive(path, Box::new(|_| false)).unwrap();
518            }
519
520            all_native_libs
521                .extend(codegen_results.crate_info.native_libraries[&cnum].iter().cloned());
522        },
523    );
524    if let Err(e) = res {
525        sess.dcx().emit_fatal(e);
526    }
527
528    ab.build(out_filename);
529
530    let crates = codegen_results.crate_info.used_crates.iter();
531
532    let fmts = codegen_results
533        .crate_info
534        .dependency_formats
535        .get(&CrateType::Staticlib)
536        .expect("no dependency formats for staticlib");
537
538    let mut all_rust_dylibs = vec![];
539    for &cnum in crates {
540        let Some(Linkage::Dynamic) = fmts.get(cnum) else {
541            continue;
542        };
543        let crate_name = codegen_results.crate_info.crate_name[&cnum];
544        let used_crate_source = &codegen_results.crate_info.used_crate_source[&cnum];
545        if let Some((path, _)) = &used_crate_source.dylib {
546            all_rust_dylibs.push(&**path);
547        } else if used_crate_source.rmeta.is_some() {
548            sess.dcx().emit_fatal(errors::LinkRlibError::OnlyRmetaFound { crate_name });
549        } else {
550            sess.dcx().emit_fatal(errors::LinkRlibError::NotFound { crate_name });
551        }
552    }
553
554    all_native_libs.extend_from_slice(&codegen_results.crate_info.used_libraries);
555
556    for print in &sess.opts.prints {
557        if print.kind == PrintKind::NativeStaticLibs {
558            print_native_static_libs(sess, &print.out, &all_native_libs, &all_rust_dylibs);
559        }
560    }
561}
562
563/// Use `thorin` (rust implementation of a dwarf packaging utility) to link DWARF objects into a
564/// DWARF package.
565fn link_dwarf_object(sess: &Session, cg_results: &CodegenResults, executable_out_filename: &Path) {
566    let mut dwp_out_filename = executable_out_filename.to_path_buf().into_os_string();
567    dwp_out_filename.push(".dwp");
568    debug!(?dwp_out_filename, ?executable_out_filename);
569
570    #[derive(Default)]
571    struct ThorinSession<Relocations> {
572        arena_data: TypedArena<Vec<u8>>,
573        arena_mmap: TypedArena<Mmap>,
574        arena_relocations: TypedArena<Relocations>,
575    }
576
577    impl<Relocations> ThorinSession<Relocations> {
578        fn alloc_mmap(&self, data: Mmap) -> &Mmap {
579            &*self.arena_mmap.alloc(data)
580        }
581    }
582
583    impl<Relocations> thorin::Session<Relocations> for ThorinSession<Relocations> {
584        fn alloc_data(&self, data: Vec<u8>) -> &[u8] {
585            &*self.arena_data.alloc(data)
586        }
587
588        fn alloc_relocation(&self, data: Relocations) -> &Relocations {
589            &*self.arena_relocations.alloc(data)
590        }
591
592        fn read_input(&self, path: &Path) -> std::io::Result<&[u8]> {
593            let file = File::open(&path)?;
594            let mmap = (unsafe { Mmap::map(file) })?;
595            Ok(self.alloc_mmap(mmap))
596        }
597    }
598
599    match sess.time("run_thorin", || -> Result<(), thorin::Error> {
600        let thorin_sess = ThorinSession::default();
601        let mut package = thorin::DwarfPackage::new(&thorin_sess);
602
603        // Input objs contain .o/.dwo files from the current crate.
604        match sess.opts.unstable_opts.split_dwarf_kind {
605            SplitDwarfKind::Single => {
606                for input_obj in cg_results.modules.iter().filter_map(|m| m.object.as_ref()) {
607                    package.add_input_object(input_obj)?;
608                }
609            }
610            SplitDwarfKind::Split => {
611                for input_obj in cg_results.modules.iter().filter_map(|m| m.dwarf_object.as_ref()) {
612                    package.add_input_object(input_obj)?;
613                }
614            }
615        }
616
617        // Input rlibs contain .o/.dwo files from dependencies.
618        let input_rlibs = cg_results
619            .crate_info
620            .used_crate_source
621            .items()
622            .filter_map(|(_, csource)| csource.rlib.as_ref())
623            .map(|(path, _)| path)
624            .into_sorted_stable_ord();
625
626        for input_rlib in input_rlibs {
627            debug!(?input_rlib);
628            package.add_input_object(input_rlib)?;
629        }
630
631        // Failing to read the referenced objects is expected for dependencies where the path in the
632        // executable will have been cleaned by Cargo, but the referenced objects will be contained
633        // within rlibs provided as inputs.
634        //
635        // If paths have been remapped, then .o/.dwo files from the current crate also won't be
636        // found, but are provided explicitly above.
637        //
638        // Adding an executable is primarily done to make `thorin` check that all the referenced
639        // dwarf objects are found in the end.
640        package.add_executable(
641            executable_out_filename,
642            thorin::MissingReferencedObjectBehaviour::Skip,
643        )?;
644
645        let output_stream = BufWriter::new(
646            OpenOptions::new()
647                .read(true)
648                .write(true)
649                .create(true)
650                .truncate(true)
651                .open(dwp_out_filename)?,
652        );
653        let mut output_stream = thorin::object::write::StreamingBuffer::new(output_stream);
654        package.finish()?.emit(&mut output_stream)?;
655        output_stream.result()?;
656        output_stream.into_inner().flush()?;
657
658        Ok(())
659    }) {
660        Ok(()) => {}
661        Err(e) => sess.dcx().emit_fatal(errors::ThorinErrorWrapper(e)),
662    }
663}
664
665#[derive(LintDiagnostic)]
666#[diag(codegen_ssa_linker_output)]
667/// Translating this is kind of useless. We don't pass translation flags to the linker, so we'd just
668/// end up with inconsistent languages within the same diagnostic.
669struct LinkerOutput {
670    inner: String,
671}
672
673/// Create a dynamic library or executable.
674///
675/// This will invoke the system linker/cc to create the resulting file. This links to all upstream
676/// files as well.
677fn link_natively(
678    sess: &Session,
679    archive_builder_builder: &dyn ArchiveBuilderBuilder,
680    crate_type: CrateType,
681    out_filename: &Path,
682    codegen_results: &CodegenResults,
683    metadata: &EncodedMetadata,
684    tmpdir: &Path,
685    codegen_backend: &'static str,
686) {
687    info!("preparing {:?} to {:?}", crate_type, out_filename);
688    let (linker_path, flavor) = linker_and_flavor(sess);
689    let self_contained_components = self_contained_components(sess, crate_type, &linker_path);
690
691    // On AIX, we ship all libraries as .a big_af archive
692    // the expected format is lib<name>.a(libname.so) for the actual
693    // dynamic library. So we link to a temporary .so file to be archived
694    // at the final out_filename location
695    let should_archive = crate_type != CrateType::Executable && sess.target.is_like_aix;
696    let archive_member =
697        should_archive.then(|| tmpdir.join(out_filename.file_name().unwrap()).with_extension("so"));
698    let temp_filename = archive_member.as_deref().unwrap_or(out_filename);
699
700    let mut cmd = linker_with_args(
701        &linker_path,
702        flavor,
703        sess,
704        archive_builder_builder,
705        crate_type,
706        tmpdir,
707        temp_filename,
708        codegen_results,
709        metadata,
710        self_contained_components,
711        codegen_backend,
712    );
713
714    linker::disable_localization(&mut cmd);
715
716    for (k, v) in sess.target.link_env.as_ref() {
717        cmd.env(k.as_ref(), v.as_ref());
718    }
719    for k in sess.target.link_env_remove.as_ref() {
720        cmd.env_remove(k.as_ref());
721    }
722
723    for print in &sess.opts.prints {
724        if print.kind == PrintKind::LinkArgs {
725            let content = format!("{cmd:?}\n");
726            print.out.overwrite(&content, sess);
727        }
728    }
729
730    // May have not found libraries in the right formats.
731    sess.dcx().abort_if_errors();
732
733    // Invoke the system linker
734    info!("{cmd:?}");
735    let unknown_arg_regex =
736        Regex::new(r"(unknown|unrecognized) (command line )?(option|argument)").unwrap();
737    let mut prog;
738    loop {
739        prog = sess.time("run_linker", || exec_linker(sess, &cmd, out_filename, flavor, tmpdir));
740        let Ok(ref output) = prog else {
741            break;
742        };
743        if output.status.success() {
744            break;
745        }
746        let mut out = output.stderr.clone();
747        out.extend(&output.stdout);
748        let out = String::from_utf8_lossy(&out);
749
750        // Check to see if the link failed with an error message that indicates it
751        // doesn't recognize the -no-pie option. If so, re-perform the link step
752        // without it. This is safe because if the linker doesn't support -no-pie
753        // then it should not default to linking executables as pie. Different
754        // versions of gcc seem to use different quotes in the error message so
755        // don't check for them.
756        if matches!(flavor, LinkerFlavor::Gnu(Cc::Yes, _))
757            && unknown_arg_regex.is_match(&out)
758            && out.contains("-no-pie")
759            && cmd.get_args().iter().any(|e| e == "-no-pie")
760        {
761            info!("linker output: {:?}", out);
762            warn!("Linker does not support -no-pie command line option. Retrying without.");
763            for arg in cmd.take_args() {
764                if arg != "-no-pie" {
765                    cmd.arg(arg);
766                }
767            }
768            info!("{cmd:?}");
769            continue;
770        }
771
772        // Check if linking failed with an error message that indicates the driver didn't recognize
773        // the `-fuse-ld=lld` option. If so, re-perform the link step without it. This avoids having
774        // to spawn multiple instances on the happy path to do version checking, and ensures things
775        // keep working on the tier 1 baseline of GLIBC 2.17+. That is generally understood as GCCs
776        // circa RHEL/CentOS 7, 4.5 or so, whereas lld support was added in GCC 9.
777        if matches!(flavor, LinkerFlavor::Gnu(Cc::Yes, Lld::Yes))
778            && unknown_arg_regex.is_match(&out)
779            && out.contains("-fuse-ld=lld")
780            && cmd.get_args().iter().any(|e| e.to_string_lossy() == "-fuse-ld=lld")
781        {
782            info!("linker output: {:?}", out);
783            info!("The linker driver does not support `-fuse-ld=lld`. Retrying without it.");
784            for arg in cmd.take_args() {
785                if arg.to_string_lossy() != "-fuse-ld=lld" {
786                    cmd.arg(arg);
787                }
788            }
789            info!("{cmd:?}");
790            continue;
791        }
792
793        // Detect '-static-pie' used with an older version of gcc or clang not supporting it.
794        // Fallback from '-static-pie' to '-static' in that case.
795        if matches!(flavor, LinkerFlavor::Gnu(Cc::Yes, _))
796            && unknown_arg_regex.is_match(&out)
797            && (out.contains("-static-pie") || out.contains("--no-dynamic-linker"))
798            && cmd.get_args().iter().any(|e| e == "-static-pie")
799        {
800            info!("linker output: {:?}", out);
801            warn!(
802                "Linker does not support -static-pie command line option. Retrying with -static instead."
803            );
804            // Mirror `add_(pre,post)_link_objects` to replace CRT objects.
805            let self_contained_crt_objects = self_contained_components.is_crt_objects_enabled();
806            let opts = &sess.target;
807            let pre_objects = if self_contained_crt_objects {
808                &opts.pre_link_objects_self_contained
809            } else {
810                &opts.pre_link_objects
811            };
812            let post_objects = if self_contained_crt_objects {
813                &opts.post_link_objects_self_contained
814            } else {
815                &opts.post_link_objects
816            };
817            let get_objects = |objects: &CrtObjects, kind| {
818                objects
819                    .get(&kind)
820                    .iter()
821                    .copied()
822                    .flatten()
823                    .map(|obj| {
824                        get_object_file_path(sess, obj, self_contained_crt_objects).into_os_string()
825                    })
826                    .collect::<Vec<_>>()
827            };
828            let pre_objects_static_pie = get_objects(pre_objects, LinkOutputKind::StaticPicExe);
829            let post_objects_static_pie = get_objects(post_objects, LinkOutputKind::StaticPicExe);
830            let mut pre_objects_static = get_objects(pre_objects, LinkOutputKind::StaticNoPicExe);
831            let mut post_objects_static = get_objects(post_objects, LinkOutputKind::StaticNoPicExe);
832            // Assume that we know insertion positions for the replacement arguments from replaced
833            // arguments, which is true for all supported targets.
834            assert!(pre_objects_static.is_empty() || !pre_objects_static_pie.is_empty());
835            assert!(post_objects_static.is_empty() || !post_objects_static_pie.is_empty());
836            for arg in cmd.take_args() {
837                if arg == "-static-pie" {
838                    // Replace the output kind.
839                    cmd.arg("-static");
840                } else if pre_objects_static_pie.contains(&arg) {
841                    // Replace the pre-link objects (replace the first and remove the rest).
842                    cmd.args(mem::take(&mut pre_objects_static));
843                } else if post_objects_static_pie.contains(&arg) {
844                    // Replace the post-link objects (replace the first and remove the rest).
845                    cmd.args(mem::take(&mut post_objects_static));
846                } else {
847                    cmd.arg(arg);
848                }
849            }
850            info!("{cmd:?}");
851            continue;
852        }
853
854        break;
855    }
856
857    match prog {
858        Ok(prog) => {
859            let is_msvc_link_exe = sess.target.is_like_msvc
860                && flavor == LinkerFlavor::Msvc(Lld::No)
861                // Match exactly "link.exe"
862                && linker_path.to_str() == Some("link.exe");
863
864            if !prog.status.success() {
865                let mut output = prog.stderr.clone();
866                output.extend_from_slice(&prog.stdout);
867                let escaped_output = escape_linker_output(&output, flavor);
868                let err = errors::LinkingFailed {
869                    linker_path: &linker_path,
870                    exit_status: prog.status,
871                    command: cmd,
872                    escaped_output,
873                    verbose: sess.opts.verbose,
874                    sysroot_dir: sess.opts.sysroot.path().to_owned(),
875                };
876                sess.dcx().emit_err(err);
877                // If MSVC's `link.exe` was expected but the return code
878                // is not a Microsoft LNK error then suggest a way to fix or
879                // install the Visual Studio build tools.
880                if let Some(code) = prog.status.code() {
881                    // All Microsoft `link.exe` linking ror codes are
882                    // four digit numbers in the range 1000 to 9999 inclusive
883                    if is_msvc_link_exe && (code < 1000 || code > 9999) {
884                        let is_vs_installed = find_msvc_tools::find_vs_version().is_ok();
885                        let has_linker =
886                            find_msvc_tools::find_tool(sess.target.arch.desc(), "link.exe")
887                                .is_some();
888
889                        sess.dcx().emit_note(errors::LinkExeUnexpectedError);
890
891                        // STATUS_STACK_BUFFER_OVERRUN is also used for fast abnormal program termination, e.g. abort().
892                        // Emit a special diagnostic to let people know that this most likely doesn't indicate a stack buffer overrun.
893                        const STATUS_STACK_BUFFER_OVERRUN: i32 = 0xc0000409u32 as _;
894                        if code == STATUS_STACK_BUFFER_OVERRUN {
895                            sess.dcx().emit_note(errors::LinkExeStatusStackBufferOverrun);
896                        }
897
898                        if is_vs_installed && has_linker {
899                            // the linker is broken
900                            sess.dcx().emit_note(errors::RepairVSBuildTools);
901                            sess.dcx().emit_note(errors::MissingCppBuildToolComponent);
902                        } else if is_vs_installed {
903                            // the linker is not installed
904                            sess.dcx().emit_note(errors::SelectCppBuildToolWorkload);
905                        } else {
906                            // visual studio is not installed
907                            sess.dcx().emit_note(errors::VisualStudioNotInstalled);
908                        }
909                    }
910                }
911
912                sess.dcx().abort_if_errors();
913            }
914
915            let stderr = escape_string(&prog.stderr);
916            let mut stdout = escape_string(&prog.stdout);
917            info!("linker stderr:\n{}", &stderr);
918            info!("linker stdout:\n{}", &stdout);
919
920            // Hide some progress messages from link.exe that we don't care about.
921            // See https://github.com/chromium/chromium/blob/bfa41e41145ffc85f041384280caf2949bb7bd72/build/toolchain/win/tool_wrapper.py#L144-L146
922            if is_msvc_link_exe {
923                if let Ok(str) = str::from_utf8(&prog.stdout) {
924                    let mut output = String::with_capacity(str.len());
925                    for line in stdout.lines() {
926                        if line.starts_with("   Creating library")
927                            || line.starts_with("Generating code")
928                            || line.starts_with("Finished generating code")
929                        {
930                            continue;
931                        }
932                        output += line;
933                        output += "\r\n"
934                    }
935                    stdout = escape_string(output.trim().as_bytes())
936                }
937            }
938
939            let level = codegen_results.crate_info.lint_levels.linker_messages;
940            let lint = |msg| {
941                lint_level(sess, LINKER_MESSAGES, level, None, |diag| {
942                    LinkerOutput { inner: msg }.decorate_lint(diag)
943                })
944            };
945
946            if !prog.stderr.is_empty() {
947                // We already print `warning:` at the start of the diagnostic. Remove it from the linker output if present.
948                let stderr = stderr
949                    .strip_prefix("warning: ")
950                    .unwrap_or(&stderr)
951                    .replace(": warning: ", ": ");
952                lint(format!("linker stderr: {stderr}"));
953            }
954            if !stdout.is_empty() {
955                lint(format!("linker stdout: {}", stdout))
956            }
957        }
958        Err(e) => {
959            let linker_not_found = e.kind() == io::ErrorKind::NotFound;
960
961            let err = if linker_not_found {
962                sess.dcx().emit_err(errors::LinkerNotFound { linker_path, error: e })
963            } else {
964                sess.dcx().emit_err(errors::UnableToExeLinker {
965                    linker_path,
966                    error: e,
967                    command_formatted: format!("{cmd:?}"),
968                })
969            };
970
971            if sess.target.is_like_msvc && linker_not_found {
972                sess.dcx().emit_note(errors::MsvcMissingLinker);
973                sess.dcx().emit_note(errors::CheckInstalledVisualStudio);
974                sess.dcx().emit_note(errors::InsufficientVSCodeProduct);
975            }
976            err.raise_fatal();
977        }
978    }
979
980    match sess.split_debuginfo() {
981        // If split debug information is disabled or located in individual files
982        // there's nothing to do here.
983        SplitDebuginfo::Off | SplitDebuginfo::Unpacked => {}
984
985        // If packed split-debuginfo is requested, but the final compilation
986        // doesn't actually have any debug information, then we skip this step.
987        SplitDebuginfo::Packed if sess.opts.debuginfo == DebugInfo::None => {}
988
989        // On macOS the external `dsymutil` tool is used to create the packed
990        // debug information. Note that this will read debug information from
991        // the objects on the filesystem which we'll clean up later.
992        SplitDebuginfo::Packed if sess.target.is_like_darwin => {
993            let prog = Command::new("dsymutil").arg(out_filename).output();
994            match prog {
995                Ok(prog) => {
996                    if !prog.status.success() {
997                        let mut output = prog.stderr.clone();
998                        output.extend_from_slice(&prog.stdout);
999                        sess.dcx().emit_warn(errors::ProcessingDymutilFailed {
1000                            status: prog.status,
1001                            output: escape_string(&output),
1002                        });
1003                    }
1004                }
1005                Err(error) => sess.dcx().emit_fatal(errors::UnableToRunDsymutil { error }),
1006            }
1007        }
1008
1009        // On MSVC packed debug information is produced by the linker itself so
1010        // there's no need to do anything else here.
1011        SplitDebuginfo::Packed if sess.target.is_like_windows => {}
1012
1013        // ... and otherwise we're processing a `*.dwp` packed dwarf file.
1014        //
1015        // We cannot rely on the .o paths in the executable because they may have been
1016        // remapped by --remap-path-prefix and therefore invalid, so we need to provide
1017        // the .o/.dwo paths explicitly.
1018        SplitDebuginfo::Packed => link_dwarf_object(sess, codegen_results, out_filename),
1019    }
1020
1021    let strip = sess.opts.cg.strip;
1022
1023    if sess.target.is_like_darwin {
1024        let stripcmd = "rust-objcopy";
1025        match (strip, crate_type) {
1026            (Strip::Debuginfo, _) => {
1027                strip_with_external_utility(sess, stripcmd, out_filename, &["--strip-debug"])
1028            }
1029
1030            // Per the manpage, --discard-all is the maximum safe strip level for dynamic libraries. (#93988)
1031            (
1032                Strip::Symbols,
1033                CrateType::Dylib | CrateType::Cdylib | CrateType::ProcMacro | CrateType::Sdylib,
1034            ) => strip_with_external_utility(sess, stripcmd, out_filename, &["--discard-all"]),
1035            (Strip::Symbols, _) => {
1036                strip_with_external_utility(sess, stripcmd, out_filename, &["--strip-all"])
1037            }
1038            (Strip::None, _) => {}
1039        }
1040    }
1041
1042    if sess.target.is_like_solaris {
1043        // Many illumos systems will have both the native 'strip' utility and
1044        // the GNU one. Use the native version explicitly and do not rely on
1045        // what's in the path.
1046        //
1047        // If cross-compiling and there is not a native version, then use
1048        // `llvm-strip` and hope.
1049        let stripcmd = if !sess.host.is_like_solaris { "rust-objcopy" } else { "/usr/bin/strip" };
1050        match strip {
1051            // Always preserve the symbol table (-x).
1052            Strip::Debuginfo => strip_with_external_utility(sess, stripcmd, out_filename, &["-x"]),
1053            // Strip::Symbols is handled via the --strip-all linker option.
1054            Strip::Symbols => {}
1055            Strip::None => {}
1056        }
1057    }
1058
1059    if sess.target.is_like_aix {
1060        // `llvm-strip` doesn't work for AIX - their strip must be used.
1061        if !sess.host.is_like_aix {
1062            sess.dcx().emit_warn(errors::AixStripNotUsed);
1063        }
1064        let stripcmd = "/usr/bin/strip";
1065        match strip {
1066            Strip::Debuginfo => {
1067                // FIXME: AIX's strip utility only offers option to strip line number information.
1068                strip_with_external_utility(sess, stripcmd, temp_filename, &["-X32_64", "-l"])
1069            }
1070            Strip::Symbols => {
1071                // Must be noted this option might remove symbol __aix_rust_metadata and thus removes .info section which contains metadata.
1072                strip_with_external_utility(sess, stripcmd, temp_filename, &["-X32_64", "-r"])
1073            }
1074            Strip::None => {}
1075        }
1076    }
1077
1078    if should_archive {
1079        let mut ab = archive_builder_builder.new_archive_builder(sess);
1080        ab.add_file(temp_filename);
1081        ab.build(out_filename);
1082    }
1083}
1084
1085fn strip_with_external_utility(sess: &Session, util: &str, out_filename: &Path, options: &[&str]) {
1086    let mut cmd = Command::new(util);
1087    cmd.args(options);
1088
1089    let mut new_path = sess.get_tools_search_paths(false);
1090    if let Some(path) = env::var_os("PATH") {
1091        new_path.extend(env::split_paths(&path));
1092    }
1093    cmd.env("PATH", env::join_paths(new_path).unwrap());
1094
1095    let prog = cmd.arg(out_filename).output();
1096    match prog {
1097        Ok(prog) => {
1098            if !prog.status.success() {
1099                let mut output = prog.stderr.clone();
1100                output.extend_from_slice(&prog.stdout);
1101                sess.dcx().emit_warn(errors::StrippingDebugInfoFailed {
1102                    util,
1103                    status: prog.status,
1104                    output: escape_string(&output),
1105                });
1106            }
1107        }
1108        Err(error) => sess.dcx().emit_fatal(errors::UnableToRun { util, error }),
1109    }
1110}
1111
1112fn escape_string(s: &[u8]) -> String {
1113    match str::from_utf8(s) {
1114        Ok(s) => s.to_owned(),
1115        Err(_) => format!("Non-UTF-8 output: {}", s.escape_ascii()),
1116    }
1117}
1118
1119#[cfg(not(windows))]
1120fn escape_linker_output(s: &[u8], _flavour: LinkerFlavor) -> String {
1121    escape_string(s)
1122}
1123
1124/// If the output of the msvc linker is not UTF-8 and the host is Windows,
1125/// then try to convert the string from the OEM encoding.
1126#[cfg(windows)]
1127fn escape_linker_output(s: &[u8], flavour: LinkerFlavor) -> String {
1128    // This only applies to the actual MSVC linker.
1129    if flavour != LinkerFlavor::Msvc(Lld::No) {
1130        return escape_string(s);
1131    }
1132    match str::from_utf8(s) {
1133        Ok(s) => return s.to_owned(),
1134        Err(_) => match win::locale_byte_str_to_string(s, win::oem_code_page()) {
1135            Some(s) => s,
1136            // The string is not UTF-8 and isn't valid for the OEM code page
1137            None => format!("Non-UTF-8 output: {}", s.escape_ascii()),
1138        },
1139    }
1140}
1141
1142/// Wrappers around the Windows API.
1143#[cfg(windows)]
1144mod win {
1145    use windows::Win32::Globalization::{
1146        CP_OEMCP, GetLocaleInfoEx, LOCALE_IUSEUTF8LEGACYOEMCP, LOCALE_NAME_SYSTEM_DEFAULT,
1147        LOCALE_RETURN_NUMBER, MB_ERR_INVALID_CHARS, MultiByteToWideChar,
1148    };
1149
1150    /// Get the Windows system OEM code page. This is most notably the code page
1151    /// used for link.exe's output.
1152    pub(super) fn oem_code_page() -> u32 {
1153        unsafe {
1154            let mut cp: u32 = 0;
1155            // We're using the `LOCALE_RETURN_NUMBER` flag to return a u32.
1156            // But the API requires us to pass the data as though it's a [u16] string.
1157            let len = size_of::<u32>() / size_of::<u16>();
1158            let data = std::slice::from_raw_parts_mut(&mut cp as *mut u32 as *mut u16, len);
1159            let len_written = GetLocaleInfoEx(
1160                LOCALE_NAME_SYSTEM_DEFAULT,
1161                LOCALE_IUSEUTF8LEGACYOEMCP | LOCALE_RETURN_NUMBER,
1162                Some(data),
1163            );
1164            if len_written as usize == len { cp } else { CP_OEMCP }
1165        }
1166    }
1167    /// Try to convert a multi-byte string to a UTF-8 string using the given code page
1168    /// The string does not need to be null terminated.
1169    ///
1170    /// This is implemented as a wrapper around `MultiByteToWideChar`.
1171    /// See <https://learn.microsoft.com/en-us/windows/win32/api/stringapiset/nf-stringapiset-multibytetowidechar>
1172    ///
1173    /// It will fail if the multi-byte string is longer than `i32::MAX` or if it contains
1174    /// any invalid bytes for the expected encoding.
1175    pub(super) fn locale_byte_str_to_string(s: &[u8], code_page: u32) -> Option<String> {
1176        // `MultiByteToWideChar` requires a length to be a "positive integer".
1177        if s.len() > isize::MAX as usize {
1178            return None;
1179        }
1180        // Error if the string is not valid for the expected code page.
1181        let flags = MB_ERR_INVALID_CHARS;
1182        // Call MultiByteToWideChar twice.
1183        // First to calculate the length then to convert the string.
1184        let mut len = unsafe { MultiByteToWideChar(code_page, flags, s, None) };
1185        if len > 0 {
1186            let mut utf16 = vec![0; len as usize];
1187            len = unsafe { MultiByteToWideChar(code_page, flags, s, Some(&mut utf16)) };
1188            if len > 0 {
1189                return utf16.get(..len as usize).map(String::from_utf16_lossy);
1190            }
1191        }
1192        None
1193    }
1194}
1195
1196fn add_sanitizer_libraries(
1197    sess: &Session,
1198    flavor: LinkerFlavor,
1199    crate_type: CrateType,
1200    linker: &mut dyn Linker,
1201) {
1202    if sess.target.is_like_android {
1203        // Sanitizer runtime libraries are provided dynamically on Android
1204        // targets.
1205        return;
1206    }
1207
1208    if sess.opts.unstable_opts.external_clangrt {
1209        // Linking against in-tree sanitizer runtimes is disabled via
1210        // `-Z external-clangrt`
1211        return;
1212    }
1213
1214    if matches!(crate_type, CrateType::Rlib | CrateType::Staticlib) {
1215        return;
1216    }
1217
1218    // On macOS and Windows using MSVC the runtimes are distributed as dylibs
1219    // which should be linked to both executables and dynamic libraries.
1220    // Everywhere else the runtimes are currently distributed as static
1221    // libraries which should be linked to executables only.
1222    if matches!(
1223        crate_type,
1224        CrateType::Dylib | CrateType::Cdylib | CrateType::ProcMacro | CrateType::Sdylib
1225    ) && !(sess.target.is_like_darwin || sess.target.is_like_msvc)
1226    {
1227        return;
1228    }
1229
1230    let sanitizer = sess.sanitizers();
1231    if sanitizer.contains(SanitizerSet::ADDRESS) {
1232        link_sanitizer_runtime(sess, flavor, linker, "asan");
1233    }
1234    if sanitizer.contains(SanitizerSet::DATAFLOW) {
1235        link_sanitizer_runtime(sess, flavor, linker, "dfsan");
1236    }
1237    if sanitizer.contains(SanitizerSet::LEAK)
1238        && !sanitizer.contains(SanitizerSet::ADDRESS)
1239        && !sanitizer.contains(SanitizerSet::HWADDRESS)
1240    {
1241        link_sanitizer_runtime(sess, flavor, linker, "lsan");
1242    }
1243    if sanitizer.contains(SanitizerSet::MEMORY) {
1244        link_sanitizer_runtime(sess, flavor, linker, "msan");
1245    }
1246    if sanitizer.contains(SanitizerSet::THREAD) {
1247        link_sanitizer_runtime(sess, flavor, linker, "tsan");
1248    }
1249    if sanitizer.contains(SanitizerSet::HWADDRESS) {
1250        link_sanitizer_runtime(sess, flavor, linker, "hwasan");
1251    }
1252    if sanitizer.contains(SanitizerSet::SAFESTACK) {
1253        link_sanitizer_runtime(sess, flavor, linker, "safestack");
1254    }
1255    if sanitizer.contains(SanitizerSet::REALTIME) {
1256        link_sanitizer_runtime(sess, flavor, linker, "rtsan");
1257    }
1258}
1259
1260fn link_sanitizer_runtime(
1261    sess: &Session,
1262    flavor: LinkerFlavor,
1263    linker: &mut dyn Linker,
1264    name: &str,
1265) {
1266    fn find_sanitizer_runtime(sess: &Session, filename: &str) -> PathBuf {
1267        let path = sess.target_tlib_path.dir.join(filename);
1268        if path.exists() {
1269            sess.target_tlib_path.dir.clone()
1270        } else {
1271            filesearch::make_target_lib_path(
1272                &sess.opts.sysroot.default,
1273                sess.opts.target_triple.tuple(),
1274            )
1275        }
1276    }
1277
1278    let channel =
1279        option_env!("CFG_RELEASE_CHANNEL").map(|channel| format!("-{channel}")).unwrap_or_default();
1280
1281    if sess.target.is_like_darwin {
1282        // On Apple platforms, the sanitizer is always built as a dylib, and
1283        // LLVM will link to `@rpath/*.dylib`, so we need to specify an
1284        // rpath to the library as well (the rpath should be absolute, see
1285        // PR #41352 for details).
1286        let filename = format!("rustc{channel}_rt.{name}");
1287        let path = find_sanitizer_runtime(sess, &filename);
1288        let rpath = path.to_str().expect("non-utf8 component in path");
1289        linker.link_args(&["-rpath", rpath]);
1290        linker.link_dylib_by_name(&filename, false, true);
1291    } else if sess.target.is_like_msvc && flavor == LinkerFlavor::Msvc(Lld::No) && name == "asan" {
1292        // MSVC provides the `/INFERASANLIBS` argument to automatically find the
1293        // compatible ASAN library.
1294        linker.link_arg("/INFERASANLIBS");
1295    } else {
1296        let filename = format!("librustc{channel}_rt.{name}.a");
1297        let path = find_sanitizer_runtime(sess, &filename).join(&filename);
1298        linker.link_staticlib_by_path(&path, true);
1299    }
1300}
1301
1302/// Returns a boolean indicating whether the specified crate should be ignored
1303/// during LTO.
1304///
1305/// Crates ignored during LTO are not lumped together in the "massive object
1306/// file" that we create and are linked in their normal rlib states. See
1307/// comments below for what crates do not participate in LTO.
1308///
1309/// It's unusual for a crate to not participate in LTO. Typically only
1310/// compiler-specific and unstable crates have a reason to not participate in
1311/// LTO.
1312pub fn ignored_for_lto(sess: &Session, info: &CrateInfo, cnum: CrateNum) -> bool {
1313    // If our target enables builtin function lowering in LLVM then the
1314    // crates providing these functions don't participate in LTO (e.g.
1315    // no_builtins or compiler builtins crates).
1316    !sess.target.no_builtins
1317        && (info.compiler_builtins == Some(cnum) || info.is_no_builtins.contains(&cnum))
1318}
1319
1320/// This functions tries to determine the appropriate linker (and corresponding LinkerFlavor) to use
1321pub fn linker_and_flavor(sess: &Session) -> (PathBuf, LinkerFlavor) {
1322    fn infer_from(
1323        sess: &Session,
1324        linker: Option<PathBuf>,
1325        flavor: Option<LinkerFlavor>,
1326        features: LinkerFeaturesCli,
1327    ) -> Option<(PathBuf, LinkerFlavor)> {
1328        let flavor = flavor.map(|flavor| adjust_flavor_to_features(flavor, features));
1329        match (linker, flavor) {
1330            (Some(linker), Some(flavor)) => Some((linker, flavor)),
1331            // only the linker flavor is known; use the default linker for the selected flavor
1332            (None, Some(flavor)) => Some((
1333                PathBuf::from(match flavor {
1334                    LinkerFlavor::Gnu(Cc::Yes, _)
1335                    | LinkerFlavor::Darwin(Cc::Yes, _)
1336                    | LinkerFlavor::WasmLld(Cc::Yes)
1337                    | LinkerFlavor::Unix(Cc::Yes) => {
1338                        if cfg!(any(target_os = "solaris", target_os = "illumos")) {
1339                            // On historical Solaris systems, "cc" may have
1340                            // been Sun Studio, which is not flag-compatible
1341                            // with "gcc". This history casts a long shadow,
1342                            // and many modern illumos distributions today
1343                            // ship GCC as "gcc" without also making it
1344                            // available as "cc".
1345                            "gcc"
1346                        } else {
1347                            "cc"
1348                        }
1349                    }
1350                    LinkerFlavor::Gnu(_, Lld::Yes)
1351                    | LinkerFlavor::Darwin(_, Lld::Yes)
1352                    | LinkerFlavor::WasmLld(..)
1353                    | LinkerFlavor::Msvc(Lld::Yes) => "lld",
1354                    LinkerFlavor::Gnu(..) | LinkerFlavor::Darwin(..) | LinkerFlavor::Unix(..) => {
1355                        "ld"
1356                    }
1357                    LinkerFlavor::Msvc(..) => "link.exe",
1358                    LinkerFlavor::EmCc => {
1359                        if cfg!(windows) {
1360                            "emcc.bat"
1361                        } else {
1362                            "emcc"
1363                        }
1364                    }
1365                    LinkerFlavor::Bpf => "bpf-linker",
1366                    LinkerFlavor::Llbc => "llvm-bitcode-linker",
1367                    LinkerFlavor::Ptx => "rust-ptx-linker",
1368                }),
1369                flavor,
1370            )),
1371            (Some(linker), None) => {
1372                let stem = linker.file_stem().and_then(|stem| stem.to_str()).unwrap_or_else(|| {
1373                    sess.dcx().emit_fatal(errors::LinkerFileStem);
1374                });
1375                let flavor = sess.target.linker_flavor.with_linker_hints(stem);
1376                let flavor = adjust_flavor_to_features(flavor, features);
1377                Some((linker, flavor))
1378            }
1379            (None, None) => None,
1380        }
1381    }
1382
1383    // While linker flavors and linker features are isomorphic (and thus targets don't need to
1384    // define features separately), we use the flavor as the root piece of data and have the
1385    // linker-features CLI flag influence *that*, so that downstream code does not have to check for
1386    // both yet.
1387    fn adjust_flavor_to_features(
1388        flavor: LinkerFlavor,
1389        features: LinkerFeaturesCli,
1390    ) -> LinkerFlavor {
1391        // Note: a linker feature cannot be both enabled and disabled on the CLI.
1392        if features.enabled.contains(LinkerFeatures::LLD) {
1393            flavor.with_lld_enabled()
1394        } else if features.disabled.contains(LinkerFeatures::LLD) {
1395            flavor.with_lld_disabled()
1396        } else {
1397            flavor
1398        }
1399    }
1400
1401    let features = sess.opts.cg.linker_features;
1402
1403    // linker and linker flavor specified via command line have precedence over what the target
1404    // specification specifies
1405    let linker_flavor = match sess.opts.cg.linker_flavor {
1406        // The linker flavors that are non-target specific can be directly translated to LinkerFlavor
1407        Some(LinkerFlavorCli::Llbc) => Some(LinkerFlavor::Llbc),
1408        Some(LinkerFlavorCli::Ptx) => Some(LinkerFlavor::Ptx),
1409        // The linker flavors that corresponds to targets needs logic that keeps the base LinkerFlavor
1410        linker_flavor => {
1411            linker_flavor.map(|flavor| sess.target.linker_flavor.with_cli_hints(flavor))
1412        }
1413    };
1414    if let Some(ret) = infer_from(sess, sess.opts.cg.linker.clone(), linker_flavor, features) {
1415        return ret;
1416    }
1417
1418    if let Some(ret) = infer_from(
1419        sess,
1420        sess.target.linker.as_deref().map(PathBuf::from),
1421        Some(sess.target.linker_flavor),
1422        features,
1423    ) {
1424        return ret;
1425    }
1426
1427    bug!("Not enough information provided to determine how to invoke the linker");
1428}
1429
1430/// Returns a pair of boolean indicating whether we should preserve the object and
1431/// dwarf object files on the filesystem for their debug information. This is often
1432/// useful with split-dwarf like schemes.
1433fn preserve_objects_for_their_debuginfo(sess: &Session) -> (bool, bool) {
1434    // If the objects don't have debuginfo there's nothing to preserve.
1435    if sess.opts.debuginfo == config::DebugInfo::None {
1436        return (false, false);
1437    }
1438
1439    match (sess.split_debuginfo(), sess.opts.unstable_opts.split_dwarf_kind) {
1440        // If there is no split debuginfo then do not preserve objects.
1441        (SplitDebuginfo::Off, _) => (false, false),
1442        // If there is packed split debuginfo, then the debuginfo in the objects
1443        // has been packaged and the objects can be deleted.
1444        (SplitDebuginfo::Packed, _) => (false, false),
1445        // If there is unpacked split debuginfo and the current target can not use
1446        // split dwarf, then keep objects.
1447        (SplitDebuginfo::Unpacked, _) if !sess.target_can_use_split_dwarf() => (true, false),
1448        // If there is unpacked split debuginfo and the target can use split dwarf, then
1449        // keep the object containing that debuginfo (whether that is an object file or
1450        // dwarf object file depends on the split dwarf kind).
1451        (SplitDebuginfo::Unpacked, SplitDwarfKind::Single) => (true, false),
1452        (SplitDebuginfo::Unpacked, SplitDwarfKind::Split) => (false, true),
1453    }
1454}
1455
1456#[derive(PartialEq)]
1457enum RlibFlavor {
1458    Normal,
1459    StaticlibBase,
1460}
1461
1462fn print_native_static_libs(
1463    sess: &Session,
1464    out: &OutFileName,
1465    all_native_libs: &[NativeLib],
1466    all_rust_dylibs: &[&Path],
1467) {
1468    let mut lib_args: Vec<_> = all_native_libs
1469        .iter()
1470        .filter(|l| relevant_lib(sess, l))
1471        .filter_map(|lib| {
1472            let name = lib.name;
1473            match lib.kind {
1474                NativeLibKind::Static { bundle: Some(false), .. }
1475                | NativeLibKind::Dylib { .. }
1476                | NativeLibKind::Unspecified => {
1477                    let verbatim = lib.verbatim;
1478                    if sess.target.is_like_msvc {
1479                        let (prefix, suffix) = sess.staticlib_components(verbatim);
1480                        Some(format!("{prefix}{name}{suffix}"))
1481                    } else if sess.target.linker_flavor.is_gnu() {
1482                        Some(format!("-l{}{}", if verbatim { ":" } else { "" }, name))
1483                    } else {
1484                        Some(format!("-l{name}"))
1485                    }
1486                }
1487                NativeLibKind::Framework { .. } => {
1488                    // ld-only syntax, since there are no frameworks in MSVC
1489                    Some(format!("-framework {name}"))
1490                }
1491                // These are included, no need to print them
1492                NativeLibKind::Static { bundle: None | Some(true), .. }
1493                | NativeLibKind::LinkArg
1494                | NativeLibKind::WasmImportModule
1495                | NativeLibKind::RawDylib { .. } => None,
1496            }
1497        })
1498        // deduplication of consecutive repeated libraries, see rust-lang/rust#113209
1499        .dedup()
1500        .collect();
1501    for path in all_rust_dylibs {
1502        // FIXME deduplicate with add_dynamic_crate
1503
1504        // Just need to tell the linker about where the library lives and
1505        // what its name is
1506        let parent = path.parent();
1507        if let Some(dir) = parent {
1508            let dir = fix_windows_verbatim_for_gcc(dir);
1509            if sess.target.is_like_msvc {
1510                let mut arg = String::from("/LIBPATH:");
1511                arg.push_str(&dir.display().to_string());
1512                lib_args.push(arg);
1513            } else {
1514                lib_args.push("-L".to_owned());
1515                lib_args.push(dir.display().to_string());
1516            }
1517        }
1518        let stem = path.file_stem().unwrap().to_str().unwrap();
1519        // Convert library file-stem into a cc -l argument.
1520        let lib = if let Some(lib) = stem.strip_prefix("lib")
1521            && !sess.target.is_like_windows
1522        {
1523            lib
1524        } else {
1525            stem
1526        };
1527        let path = parent.unwrap_or_else(|| Path::new(""));
1528        if sess.target.is_like_msvc {
1529            // When producing a dll, the MSVC linker may not actually emit a
1530            // `foo.lib` file if the dll doesn't actually export any symbols, so we
1531            // check to see if the file is there and just omit linking to it if it's
1532            // not present.
1533            let name = format!("{lib}.dll.lib");
1534            if path.join(&name).exists() {
1535                lib_args.push(name);
1536            }
1537        } else {
1538            lib_args.push(format!("-l{lib}"));
1539        }
1540    }
1541
1542    match out {
1543        OutFileName::Real(path) => {
1544            out.overwrite(&lib_args.join(" "), sess);
1545            sess.dcx().emit_note(errors::StaticLibraryNativeArtifactsToFile { path });
1546        }
1547        OutFileName::Stdout => {
1548            sess.dcx().emit_note(errors::StaticLibraryNativeArtifacts);
1549            // Prefix for greppability
1550            // Note: This must not be translated as tools are allowed to depend on this exact string.
1551            sess.dcx().note(format!("native-static-libs: {}", lib_args.join(" ")));
1552        }
1553    }
1554}
1555
1556fn get_object_file_path(sess: &Session, name: &str, self_contained: bool) -> PathBuf {
1557    let file_path = sess.target_tlib_path.dir.join(name);
1558    if file_path.exists() {
1559        return file_path;
1560    }
1561    // Special directory with objects used only in self-contained linkage mode
1562    if self_contained {
1563        let file_path = sess.target_tlib_path.dir.join("self-contained").join(name);
1564        if file_path.exists() {
1565            return file_path;
1566        }
1567    }
1568    for search_path in sess.target_filesearch().search_paths(PathKind::Native) {
1569        let file_path = search_path.dir.join(name);
1570        if file_path.exists() {
1571            return file_path;
1572        }
1573    }
1574    PathBuf::from(name)
1575}
1576
1577fn exec_linker(
1578    sess: &Session,
1579    cmd: &Command,
1580    out_filename: &Path,
1581    flavor: LinkerFlavor,
1582    tmpdir: &Path,
1583) -> io::Result<Output> {
1584    // When attempting to spawn the linker we run a risk of blowing out the
1585    // size limits for spawning a new process with respect to the arguments
1586    // we pass on the command line.
1587    //
1588    // Here we attempt to handle errors from the OS saying "your list of
1589    // arguments is too big" by reinvoking the linker again with an `@`-file
1590    // that contains all the arguments (aka 'response' files).
1591    // The theory is that this is then accepted on all linkers and the linker
1592    // will read all its options out of there instead of looking at the command line.
1593    if !cmd.very_likely_to_exceed_some_spawn_limit() {
1594        match cmd.command().stdout(Stdio::piped()).stderr(Stdio::piped()).spawn() {
1595            Ok(child) => {
1596                let output = child.wait_with_output();
1597                flush_linked_file(&output, out_filename)?;
1598                return output;
1599            }
1600            Err(ref e) if command_line_too_big(e) => {
1601                info!("command line to linker was too big: {}", e);
1602            }
1603            Err(e) => return Err(e),
1604        }
1605    }
1606
1607    info!("falling back to passing arguments to linker via an @-file");
1608    let mut cmd2 = cmd.clone();
1609    let mut args = String::new();
1610    for arg in cmd2.take_args() {
1611        args.push_str(
1612            &Escape {
1613                arg: arg.to_str().unwrap(),
1614                // Windows-style escaping for @-files is used by
1615                // - all linkers targeting MSVC-like targets, including LLD
1616                // - all LLD flavors running on Windows hosts
1617                // С/С++ compilers use Posix-style escaping (except clang-cl, which we do not use).
1618                is_like_msvc: sess.target.is_like_msvc
1619                    || (cfg!(windows) && flavor.uses_lld() && !flavor.uses_cc()),
1620            }
1621            .to_string(),
1622        );
1623        args.push('\n');
1624    }
1625    let file = tmpdir.join("linker-arguments");
1626    let bytes = if sess.target.is_like_msvc {
1627        let mut out = Vec::with_capacity((1 + args.len()) * 2);
1628        // start the stream with a UTF-16 BOM
1629        for c in std::iter::once(0xFEFF).chain(args.encode_utf16()) {
1630            // encode in little endian
1631            out.push(c as u8);
1632            out.push((c >> 8) as u8);
1633        }
1634        out
1635    } else {
1636        args.into_bytes()
1637    };
1638    fs::write(&file, &bytes)?;
1639    cmd2.arg(format!("@{}", file.display()));
1640    info!("invoking linker {:?}", cmd2);
1641    let output = cmd2.output();
1642    flush_linked_file(&output, out_filename)?;
1643    return output;
1644
1645    #[cfg(not(windows))]
1646    fn flush_linked_file(_: &io::Result<Output>, _: &Path) -> io::Result<()> {
1647        Ok(())
1648    }
1649
1650    #[cfg(windows)]
1651    fn flush_linked_file(
1652        command_output: &io::Result<Output>,
1653        out_filename: &Path,
1654    ) -> io::Result<()> {
1655        // On Windows, under high I/O load, output buffers are sometimes not flushed,
1656        // even long after process exit, causing nasty, non-reproducible output bugs.
1657        //
1658        // File::sync_all() calls FlushFileBuffers() down the line, which solves the problem.
1659        //
1660        // А full writeup of the original Chrome bug can be found at
1661        // randomascii.wordpress.com/2018/02/25/compiler-bug-linker-bug-windows-kernel-bug/amp
1662
1663        if let &Ok(ref out) = command_output {
1664            if out.status.success() {
1665                if let Ok(of) = fs::OpenOptions::new().write(true).open(out_filename) {
1666                    of.sync_all()?;
1667                }
1668            }
1669        }
1670
1671        Ok(())
1672    }
1673
1674    #[cfg(unix)]
1675    fn command_line_too_big(err: &io::Error) -> bool {
1676        err.raw_os_error() == Some(::libc::E2BIG)
1677    }
1678
1679    #[cfg(windows)]
1680    fn command_line_too_big(err: &io::Error) -> bool {
1681        const ERROR_FILENAME_EXCED_RANGE: i32 = 206;
1682        err.raw_os_error() == Some(ERROR_FILENAME_EXCED_RANGE)
1683    }
1684
1685    #[cfg(not(any(unix, windows)))]
1686    fn command_line_too_big(_: &io::Error) -> bool {
1687        false
1688    }
1689
1690    struct Escape<'a> {
1691        arg: &'a str,
1692        is_like_msvc: bool,
1693    }
1694
1695    impl<'a> fmt::Display for Escape<'a> {
1696        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1697            if self.is_like_msvc {
1698                // This is "documented" at
1699                // https://docs.microsoft.com/en-us/cpp/build/reference/at-specify-a-linker-response-file
1700                //
1701                // Unfortunately there's not a great specification of the
1702                // syntax I could find online (at least) but some local
1703                // testing showed that this seemed sufficient-ish to catch
1704                // at least a few edge cases.
1705                write!(f, "\"")?;
1706                for c in self.arg.chars() {
1707                    match c {
1708                        '"' => write!(f, "\\{c}")?,
1709                        c => write!(f, "{c}")?,
1710                    }
1711                }
1712                write!(f, "\"")?;
1713            } else {
1714                // This is documented at https://linux.die.net/man/1/ld, namely:
1715                //
1716                // > Options in file are separated by whitespace. A whitespace
1717                // > character may be included in an option by surrounding the
1718                // > entire option in either single or double quotes. Any
1719                // > character (including a backslash) may be included by
1720                // > prefixing the character to be included with a backslash.
1721                //
1722                // We put an argument on each line, so all we need to do is
1723                // ensure the line is interpreted as one whole argument.
1724                for c in self.arg.chars() {
1725                    match c {
1726                        '\\' | ' ' => write!(f, "\\{c}")?,
1727                        c => write!(f, "{c}")?,
1728                    }
1729                }
1730            }
1731            Ok(())
1732        }
1733    }
1734}
1735
1736fn link_output_kind(sess: &Session, crate_type: CrateType) -> LinkOutputKind {
1737    let kind = match (crate_type, sess.crt_static(Some(crate_type)), sess.relocation_model()) {
1738        (CrateType::Executable, _, _) if sess.is_wasi_reactor() => LinkOutputKind::WasiReactorExe,
1739        (CrateType::Executable, false, RelocModel::Pic | RelocModel::Pie) => {
1740            LinkOutputKind::DynamicPicExe
1741        }
1742        (CrateType::Executable, false, _) => LinkOutputKind::DynamicNoPicExe,
1743        (CrateType::Executable, true, RelocModel::Pic | RelocModel::Pie) => {
1744            LinkOutputKind::StaticPicExe
1745        }
1746        (CrateType::Executable, true, _) => LinkOutputKind::StaticNoPicExe,
1747        (_, true, _) => LinkOutputKind::StaticDylib,
1748        (_, false, _) => LinkOutputKind::DynamicDylib,
1749    };
1750
1751    // Adjust the output kind to target capabilities.
1752    let opts = &sess.target;
1753    let pic_exe_supported = opts.position_independent_executables;
1754    let static_pic_exe_supported = opts.static_position_independent_executables;
1755    let static_dylib_supported = opts.crt_static_allows_dylibs;
1756    match kind {
1757        LinkOutputKind::DynamicPicExe if !pic_exe_supported => LinkOutputKind::DynamicNoPicExe,
1758        LinkOutputKind::StaticPicExe if !static_pic_exe_supported => LinkOutputKind::StaticNoPicExe,
1759        LinkOutputKind::StaticDylib if !static_dylib_supported => LinkOutputKind::DynamicDylib,
1760        _ => kind,
1761    }
1762}
1763
1764// Returns true if linker is located within sysroot
1765fn detect_self_contained_mingw(sess: &Session, linker: &Path) -> bool {
1766    // Assume `-C linker=rust-lld` as self-contained mode
1767    if linker == Path::new("rust-lld") {
1768        return true;
1769    }
1770    let linker_with_extension = if cfg!(windows) && linker.extension().is_none() {
1771        linker.with_extension("exe")
1772    } else {
1773        linker.to_path_buf()
1774    };
1775    for dir in env::split_paths(&env::var_os("PATH").unwrap_or_default()) {
1776        let full_path = dir.join(&linker_with_extension);
1777        // If linker comes from sysroot assume self-contained mode
1778        if full_path.is_file() && !full_path.starts_with(sess.opts.sysroot.path()) {
1779            return false;
1780        }
1781    }
1782    true
1783}
1784
1785/// Various toolchain components used during linking are used from rustc distribution
1786/// instead of being found somewhere on the host system.
1787/// We only provide such support for a very limited number of targets.
1788fn self_contained_components(
1789    sess: &Session,
1790    crate_type: CrateType,
1791    linker: &Path,
1792) -> LinkSelfContainedComponents {
1793    // Turn the backwards compatible bool values for `self_contained` into fully inferred
1794    // `LinkSelfContainedComponents`.
1795    let self_contained =
1796        if let Some(self_contained) = sess.opts.cg.link_self_contained.explicitly_set {
1797            // Emit an error if the user requested self-contained mode on the CLI but the target
1798            // explicitly refuses it.
1799            if sess.target.link_self_contained.is_disabled() {
1800                sess.dcx().emit_err(errors::UnsupportedLinkSelfContained);
1801            }
1802            self_contained
1803        } else {
1804            match sess.target.link_self_contained {
1805                LinkSelfContainedDefault::False => false,
1806                LinkSelfContainedDefault::True => true,
1807
1808                LinkSelfContainedDefault::WithComponents(components) => {
1809                    // For target specs with explicitly enabled components, we can return them
1810                    // directly.
1811                    return components;
1812                }
1813
1814                // FIXME: Find a better heuristic for "native musl toolchain is available",
1815                // based on host and linker path, for example.
1816                // (https://github.com/rust-lang/rust/pull/71769#issuecomment-626330237).
1817                LinkSelfContainedDefault::InferredForMusl => sess.crt_static(Some(crate_type)),
1818                LinkSelfContainedDefault::InferredForMingw => {
1819                    sess.host == sess.target
1820                        && sess.target.abi != Abi::Uwp
1821                        && detect_self_contained_mingw(sess, linker)
1822                }
1823            }
1824        };
1825    if self_contained {
1826        LinkSelfContainedComponents::all()
1827    } else {
1828        LinkSelfContainedComponents::empty()
1829    }
1830}
1831
1832/// Add pre-link object files defined by the target spec.
1833fn add_pre_link_objects(
1834    cmd: &mut dyn Linker,
1835    sess: &Session,
1836    flavor: LinkerFlavor,
1837    link_output_kind: LinkOutputKind,
1838    self_contained: bool,
1839) {
1840    // FIXME: we are currently missing some infra here (per-linker-flavor CRT objects),
1841    // so Fuchsia has to be special-cased.
1842    let opts = &sess.target;
1843    let empty = Default::default();
1844    let objects = if self_contained {
1845        &opts.pre_link_objects_self_contained
1846    } else if !(sess.target.os == Os::Fuchsia && matches!(flavor, LinkerFlavor::Gnu(Cc::Yes, _))) {
1847        &opts.pre_link_objects
1848    } else {
1849        &empty
1850    };
1851    for obj in objects.get(&link_output_kind).iter().copied().flatten() {
1852        cmd.add_object(&get_object_file_path(sess, obj, self_contained));
1853    }
1854}
1855
1856/// Add post-link object files defined by the target spec.
1857fn add_post_link_objects(
1858    cmd: &mut dyn Linker,
1859    sess: &Session,
1860    link_output_kind: LinkOutputKind,
1861    self_contained: bool,
1862) {
1863    let objects = if self_contained {
1864        &sess.target.post_link_objects_self_contained
1865    } else {
1866        &sess.target.post_link_objects
1867    };
1868    for obj in objects.get(&link_output_kind).iter().copied().flatten() {
1869        cmd.add_object(&get_object_file_path(sess, obj, self_contained));
1870    }
1871}
1872
1873/// Add arbitrary "pre-link" args defined by the target spec or from command line.
1874/// FIXME: Determine where exactly these args need to be inserted.
1875fn add_pre_link_args(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) {
1876    if let Some(args) = sess.target.pre_link_args.get(&flavor) {
1877        cmd.verbatim_args(args.iter().map(Deref::deref));
1878    }
1879
1880    cmd.verbatim_args(&sess.opts.unstable_opts.pre_link_args);
1881}
1882
1883/// Add a link script embedded in the target, if applicable.
1884fn add_link_script(cmd: &mut dyn Linker, sess: &Session, tmpdir: &Path, crate_type: CrateType) {
1885    match (crate_type, &sess.target.link_script) {
1886        (CrateType::Cdylib | CrateType::Executable, Some(script)) => {
1887            if !sess.target.linker_flavor.is_gnu() {
1888                sess.dcx().emit_fatal(errors::LinkScriptUnavailable);
1889            }
1890
1891            let file_name = ["rustc", &sess.target.llvm_target, "linkfile.ld"].join("-");
1892
1893            let path = tmpdir.join(file_name);
1894            if let Err(error) = fs::write(&path, script.as_ref()) {
1895                sess.dcx().emit_fatal(errors::LinkScriptWriteFailure { path, error });
1896            }
1897
1898            cmd.link_arg("--script").link_arg(path);
1899        }
1900        _ => {}
1901    }
1902}
1903
1904/// Add arbitrary "user defined" args defined from command line.
1905/// FIXME: Determine where exactly these args need to be inserted.
1906fn add_user_defined_link_args(cmd: &mut dyn Linker, sess: &Session) {
1907    cmd.verbatim_args(&sess.opts.cg.link_args);
1908}
1909
1910/// Add arbitrary "late link" args defined by the target spec.
1911/// FIXME: Determine where exactly these args need to be inserted.
1912fn add_late_link_args(
1913    cmd: &mut dyn Linker,
1914    sess: &Session,
1915    flavor: LinkerFlavor,
1916    crate_type: CrateType,
1917    codegen_results: &CodegenResults,
1918) {
1919    let any_dynamic_crate = crate_type == CrateType::Dylib
1920        || crate_type == CrateType::Sdylib
1921        || codegen_results.crate_info.dependency_formats.iter().any(|(ty, list)| {
1922            *ty == crate_type && list.iter().any(|&linkage| linkage == Linkage::Dynamic)
1923        });
1924    if any_dynamic_crate {
1925        if let Some(args) = sess.target.late_link_args_dynamic.get(&flavor) {
1926            cmd.verbatim_args(args.iter().map(Deref::deref));
1927        }
1928    } else if let Some(args) = sess.target.late_link_args_static.get(&flavor) {
1929        cmd.verbatim_args(args.iter().map(Deref::deref));
1930    }
1931    if let Some(args) = sess.target.late_link_args.get(&flavor) {
1932        cmd.verbatim_args(args.iter().map(Deref::deref));
1933    }
1934}
1935
1936/// Add arbitrary "post-link" args defined by the target spec.
1937/// FIXME: Determine where exactly these args need to be inserted.
1938fn add_post_link_args(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) {
1939    if let Some(args) = sess.target.post_link_args.get(&flavor) {
1940        cmd.verbatim_args(args.iter().map(Deref::deref));
1941    }
1942}
1943
1944/// Add a synthetic object file that contains reference to all symbols that we want to expose to
1945/// the linker.
1946///
1947/// Background: we implement rlibs as static library (archives). Linkers treat archives
1948/// differently from object files: all object files participate in linking, while archives will
1949/// only participate in linking if they can satisfy at least one undefined reference (version
1950/// scripts doesn't count). This causes `#[no_mangle]` or `#[used]` items to be ignored by the
1951/// linker, and since they never participate in the linking, using `KEEP` in the linker scripts
1952/// can't keep them either. This causes #47384.
1953///
1954/// To keep them around, we could use `--whole-archive`, `-force_load` and equivalents to force rlib
1955/// to participate in linking like object files, but this proves to be expensive (#93791). Therefore
1956/// we instead just introduce an undefined reference to them. This could be done by `-u` command
1957/// line option to the linker or `EXTERN(...)` in linker scripts, however they does not only
1958/// introduce an undefined reference, but also make them the GC roots, preventing `--gc-sections`
1959/// from removing them, and this is especially problematic for embedded programming where every
1960/// byte counts.
1961///
1962/// This method creates a synthetic object file, which contains undefined references to all symbols
1963/// that are necessary for the linking. They are only present in symbol table but not actually
1964/// used in any sections, so the linker will therefore pick relevant rlibs for linking, but
1965/// unused `#[no_mangle]` or `#[used(compiler)]` can still be discard by GC sections.
1966///
1967/// There's a few internal crates in the standard library (aka libcore and
1968/// libstd) which actually have a circular dependence upon one another. This
1969/// currently arises through "weak lang items" where libcore requires things
1970/// like `rust_begin_unwind` but libstd ends up defining it. To get this
1971/// circular dependence to work correctly we declare some of these things
1972/// in this synthetic object.
1973fn add_linked_symbol_object(
1974    cmd: &mut dyn Linker,
1975    sess: &Session,
1976    tmpdir: &Path,
1977    symbols: &[(String, SymbolExportKind)],
1978) {
1979    if symbols.is_empty() {
1980        return;
1981    }
1982
1983    let Some(mut file) = super::metadata::create_object_file(sess) else {
1984        return;
1985    };
1986
1987    if file.format() == object::BinaryFormat::Coff {
1988        // NOTE(nbdd0121): MSVC will hang if the input object file contains no sections,
1989        // so add an empty section.
1990        file.add_section(Vec::new(), ".text".into(), object::SectionKind::Text);
1991
1992        // We handle the name decoration of COFF targets in `symbol_export.rs`, so disable the
1993        // default mangler in `object` crate.
1994        file.set_mangling(object::write::Mangling::None);
1995    }
1996
1997    if file.format() == object::BinaryFormat::MachO {
1998        // Divide up the sections into sub-sections via symbols for dead code stripping.
1999        // Without this flag, unused `#[no_mangle]` or `#[used(compiler)]` cannot be
2000        // discard on MachO targets.
2001        file.set_subsections_via_symbols();
2002    }
2003
2004    // ld64 requires a relocation to load undefined symbols, see below.
2005    // Not strictly needed if linking with lld, but might as well do it there too.
2006    let ld64_section_helper = if file.format() == object::BinaryFormat::MachO {
2007        Some(file.add_section(
2008            file.segment_name(object::write::StandardSegment::Data).to_vec(),
2009            "__data".into(),
2010            object::SectionKind::Data,
2011        ))
2012    } else {
2013        None
2014    };
2015
2016    for (sym, kind) in symbols.iter() {
2017        let symbol = file.add_symbol(object::write::Symbol {
2018            name: sym.clone().into(),
2019            value: 0,
2020            size: 0,
2021            kind: match kind {
2022                SymbolExportKind::Text => object::SymbolKind::Text,
2023                SymbolExportKind::Data => object::SymbolKind::Data,
2024                SymbolExportKind::Tls => object::SymbolKind::Tls,
2025            },
2026            scope: object::SymbolScope::Unknown,
2027            weak: false,
2028            section: object::write::SymbolSection::Undefined,
2029            flags: object::SymbolFlags::None,
2030        });
2031
2032        // The linker shipped with Apple's Xcode, ld64, works a bit differently from other linkers.
2033        //
2034        // Code-wise, the relevant parts of ld64 are roughly:
2035        // 1. Find the `ArchiveLoadMode` based on commandline options, default to `parseObjects`.
2036        //    https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/Options.cpp#L924-L932
2037        //    https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/Options.h#L55
2038        //
2039        // 2. Read the archive table of contents (__.SYMDEF file).
2040        //    https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/parsers/archive_file.cpp#L294-L325
2041        //
2042        // 3. Begin linking by loading "atoms" from input files.
2043        //    https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/doc/design/linker.html
2044        //    https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/InputFiles.cpp#L1349
2045        //
2046        //   a. Directly specified object files (`.o`) are parsed immediately.
2047        //      https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/parsers/macho_relocatable_file.cpp#L4611-L4627
2048        //
2049        //     - Undefined symbols are not atoms (`n_value > 0` denotes a common symbol).
2050        //       https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/parsers/macho_relocatable_file.cpp#L2455-L2468
2051        //       https://maskray.me/blog/2022-02-06-all-about-common-symbols
2052        //
2053        //     - Relocations/fixups are atoms.
2054        //       https://github.com/apple-oss-distributions/ld64/blob/ce6341ae966b3451aa54eeb049f2be865afbd578/src/ld/parsers/macho_relocatable_file.cpp#L2088-L2114
2055        //
2056        //   b. Archives are not parsed yet.
2057        //      https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/parsers/archive_file.cpp#L467-L577
2058        //
2059        // 4. When a symbol is needed by an atom, parse the object file that contains the symbol.
2060        //    https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/InputFiles.cpp#L1417-L1491
2061        //    https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/parsers/archive_file.cpp#L579-L597
2062        //
2063        // All of the steps above are fairly similar to other linkers, except that **it completely
2064        // ignores undefined symbols**.
2065        //
2066        // So to make this trick work on ld64, we need to do something else to load the relevant
2067        // object files. We do this by inserting a relocation (fixup) for each symbol.
2068        if let Some(section) = ld64_section_helper {
2069            apple::add_data_and_relocation(&mut file, section, symbol, &sess.target, *kind)
2070                .expect("failed adding relocation");
2071        }
2072    }
2073
2074    let path = tmpdir.join("symbols.o");
2075    let result = std::fs::write(&path, file.write().unwrap());
2076    if let Err(error) = result {
2077        sess.dcx().emit_fatal(errors::FailedToWrite { path, error });
2078    }
2079    cmd.add_object(&path);
2080}
2081
2082/// Add object files containing code from the current crate.
2083fn add_local_crate_regular_objects(cmd: &mut dyn Linker, codegen_results: &CodegenResults) {
2084    for obj in codegen_results.modules.iter().filter_map(|m| m.object.as_ref()) {
2085        cmd.add_object(obj);
2086    }
2087}
2088
2089/// Add object files for allocator code linked once for the whole crate tree.
2090fn add_local_crate_allocator_objects(
2091    cmd: &mut dyn Linker,
2092    codegen_results: &CodegenResults,
2093    crate_type: CrateType,
2094) {
2095    if needs_allocator_shim_for_linking(&codegen_results.crate_info.dependency_formats, crate_type)
2096    {
2097        if let Some(obj) = codegen_results.allocator_module.as_ref().and_then(|m| m.object.as_ref())
2098        {
2099            cmd.add_object(obj);
2100        }
2101    }
2102}
2103
2104/// Add object files containing metadata for the current crate.
2105fn add_local_crate_metadata_objects(
2106    cmd: &mut dyn Linker,
2107    sess: &Session,
2108    archive_builder_builder: &dyn ArchiveBuilderBuilder,
2109    crate_type: CrateType,
2110    tmpdir: &Path,
2111    codegen_results: &CodegenResults,
2112    metadata: &EncodedMetadata,
2113) {
2114    // When linking a dynamic library, we put the metadata into a section of the
2115    // executable. This metadata is in a separate object file from the main
2116    // object file, so we create and link it in here.
2117    if matches!(crate_type, CrateType::Dylib | CrateType::ProcMacro) {
2118        let data = archive_builder_builder.create_dylib_metadata_wrapper(
2119            sess,
2120            &metadata,
2121            &codegen_results.crate_info.metadata_symbol,
2122        );
2123        let obj = emit_wrapper_file(sess, &data, tmpdir, "rmeta.o");
2124
2125        cmd.add_object(&obj);
2126    }
2127}
2128
2129/// Add sysroot and other globally set directories to the directory search list.
2130fn add_library_search_dirs(
2131    cmd: &mut dyn Linker,
2132    sess: &Session,
2133    self_contained_components: LinkSelfContainedComponents,
2134    apple_sdk_root: Option<&Path>,
2135) {
2136    if !sess.opts.unstable_opts.link_native_libraries {
2137        return;
2138    }
2139
2140    let fallback = Some(NativeLibSearchFallback { self_contained_components, apple_sdk_root });
2141    let _ = walk_native_lib_search_dirs(sess, fallback, |dir, is_framework| {
2142        if is_framework {
2143            cmd.framework_path(dir);
2144        } else {
2145            cmd.include_path(&fix_windows_verbatim_for_gcc(dir));
2146        }
2147        ControlFlow::<()>::Continue(())
2148    });
2149}
2150
2151/// Add options making relocation sections in the produced ELF files read-only
2152/// and suppressing lazy binding.
2153fn add_relro_args(cmd: &mut dyn Linker, sess: &Session) {
2154    match sess.opts.cg.relro_level.unwrap_or(sess.target.relro_level) {
2155        RelroLevel::Full => cmd.full_relro(),
2156        RelroLevel::Partial => cmd.partial_relro(),
2157        RelroLevel::Off => cmd.no_relro(),
2158        RelroLevel::None => {}
2159    }
2160}
2161
2162/// Add library search paths used at runtime by dynamic linkers.
2163fn add_rpath_args(
2164    cmd: &mut dyn Linker,
2165    sess: &Session,
2166    codegen_results: &CodegenResults,
2167    out_filename: &Path,
2168) {
2169    if !sess.target.has_rpath {
2170        return;
2171    }
2172
2173    // FIXME (#2397): At some point we want to rpath our guesses as to
2174    // where extern libraries might live, based on the
2175    // add_lib_search_paths
2176    if sess.opts.cg.rpath {
2177        let libs = codegen_results
2178            .crate_info
2179            .used_crates
2180            .iter()
2181            .filter_map(|cnum| {
2182                codegen_results.crate_info.used_crate_source[cnum]
2183                    .dylib
2184                    .as_ref()
2185                    .map(|(path, _)| &**path)
2186            })
2187            .collect::<Vec<_>>();
2188        let rpath_config = RPathConfig {
2189            libs: &*libs,
2190            out_filename: out_filename.to_path_buf(),
2191            is_like_darwin: sess.target.is_like_darwin,
2192            linker_is_gnu: sess.target.linker_flavor.is_gnu(),
2193        };
2194        cmd.link_args(&rpath::get_rpath_linker_args(&rpath_config));
2195    }
2196}
2197
2198/// Produce the linker command line containing linker path and arguments.
2199///
2200/// When comments in the function say "order-(in)dependent" they mean order-dependence between
2201/// options and libraries/object files. For example `--whole-archive` (order-dependent) applies
2202/// to specific libraries passed after it, and `-o` (output file, order-independent) applies
2203/// to the linking process as a whole.
2204/// Order-independent options may still override each other in order-dependent fashion,
2205/// e.g `--foo=yes --foo=no` may be equivalent to `--foo=no`.
2206fn linker_with_args(
2207    path: &Path,
2208    flavor: LinkerFlavor,
2209    sess: &Session,
2210    archive_builder_builder: &dyn ArchiveBuilderBuilder,
2211    crate_type: CrateType,
2212    tmpdir: &Path,
2213    out_filename: &Path,
2214    codegen_results: &CodegenResults,
2215    metadata: &EncodedMetadata,
2216    self_contained_components: LinkSelfContainedComponents,
2217    codegen_backend: &'static str,
2218) -> Command {
2219    let self_contained_crt_objects = self_contained_components.is_crt_objects_enabled();
2220    let cmd = &mut *super::linker::get_linker(
2221        sess,
2222        path,
2223        flavor,
2224        self_contained_components.are_any_components_enabled(),
2225        &codegen_results.crate_info.target_cpu,
2226        codegen_backend,
2227    );
2228    let link_output_kind = link_output_kind(sess, crate_type);
2229
2230    // ------------ Early order-dependent options ------------
2231
2232    // If we're building something like a dynamic library then some platforms
2233    // need to make sure that all symbols are exported correctly from the
2234    // dynamic library.
2235    // Must be passed before any libraries to prevent the symbols to export from being thrown away,
2236    // at least on some platforms (e.g. windows-gnu).
2237    cmd.export_symbols(
2238        tmpdir,
2239        crate_type,
2240        &codegen_results.crate_info.exported_symbols[&crate_type],
2241    );
2242
2243    // Can be used for adding custom CRT objects or overriding order-dependent options above.
2244    // FIXME: In practice built-in target specs use this for arbitrary order-independent options,
2245    // introduce a target spec option for order-independent linker options and migrate built-in
2246    // specs to it.
2247    add_pre_link_args(cmd, sess, flavor);
2248
2249    // ------------ Object code and libraries, order-dependent ------------
2250
2251    // Pre-link CRT objects.
2252    add_pre_link_objects(cmd, sess, flavor, link_output_kind, self_contained_crt_objects);
2253
2254    add_linked_symbol_object(
2255        cmd,
2256        sess,
2257        tmpdir,
2258        &codegen_results.crate_info.linked_symbols[&crate_type],
2259    );
2260
2261    // Sanitizer libraries.
2262    add_sanitizer_libraries(sess, flavor, crate_type, cmd);
2263
2264    // Object code from the current crate.
2265    // Take careful note of the ordering of the arguments we pass to the linker
2266    // here. Linkers will assume that things on the left depend on things to the
2267    // right. Things on the right cannot depend on things on the left. This is
2268    // all formally implemented in terms of resolving symbols (libs on the right
2269    // resolve unknown symbols of libs on the left, but not vice versa).
2270    //
2271    // For this reason, we have organized the arguments we pass to the linker as
2272    // such:
2273    //
2274    // 1. The local object that LLVM just generated
2275    // 2. Local native libraries
2276    // 3. Upstream rust libraries
2277    // 4. Upstream native libraries
2278    //
2279    // The rationale behind this ordering is that those items lower down in the
2280    // list can't depend on items higher up in the list. For example nothing can
2281    // depend on what we just generated (e.g., that'd be a circular dependency).
2282    // Upstream rust libraries are not supposed to depend on our local native
2283    // libraries as that would violate the structure of the DAG, in that
2284    // scenario they are required to link to them as well in a shared fashion.
2285    //
2286    // Note that upstream rust libraries may contain native dependencies as
2287    // well, but they also can't depend on what we just started to add to the
2288    // link line. And finally upstream native libraries can't depend on anything
2289    // in this DAG so far because they can only depend on other native libraries
2290    // and such dependencies are also required to be specified.
2291    add_local_crate_regular_objects(cmd, codegen_results);
2292    add_local_crate_metadata_objects(
2293        cmd,
2294        sess,
2295        archive_builder_builder,
2296        crate_type,
2297        tmpdir,
2298        codegen_results,
2299        metadata,
2300    );
2301    add_local_crate_allocator_objects(cmd, codegen_results, crate_type);
2302
2303    // Avoid linking to dynamic libraries unless they satisfy some undefined symbols
2304    // at the point at which they are specified on the command line.
2305    // Must be passed before any (dynamic) libraries to have effect on them.
2306    // On Solaris-like systems, `-z ignore` acts as both `--as-needed` and `--gc-sections`
2307    // so it will ignore unreferenced ELF sections from relocatable objects.
2308    // For that reason, we put this flag after metadata objects as they would otherwise be removed.
2309    // FIXME: Support more fine-grained dead code removal on Solaris/illumos
2310    // and move this option back to the top.
2311    cmd.add_as_needed();
2312
2313    // Local native libraries of all kinds.
2314    add_local_native_libraries(
2315        cmd,
2316        sess,
2317        archive_builder_builder,
2318        codegen_results,
2319        tmpdir,
2320        link_output_kind,
2321    );
2322
2323    // Upstream rust crates and their non-dynamic native libraries.
2324    add_upstream_rust_crates(
2325        cmd,
2326        sess,
2327        archive_builder_builder,
2328        codegen_results,
2329        crate_type,
2330        tmpdir,
2331        link_output_kind,
2332    );
2333
2334    // Dynamic native libraries from upstream crates.
2335    add_upstream_native_libraries(
2336        cmd,
2337        sess,
2338        archive_builder_builder,
2339        codegen_results,
2340        tmpdir,
2341        link_output_kind,
2342    );
2343
2344    // Raw-dylibs from all crates.
2345    let raw_dylib_dir = tmpdir.join("raw-dylibs");
2346    if sess.target.binary_format == BinaryFormat::Elf {
2347        // On ELF we can't pass the raw-dylibs stubs to the linker as a path,
2348        // instead we need to pass them via -l. To find the stub, we need to add
2349        // the directory of the stub to the linker search path.
2350        // We make an extra directory for this to avoid polluting the search path.
2351        if let Err(error) = fs::create_dir(&raw_dylib_dir) {
2352            sess.dcx().emit_fatal(errors::CreateTempDir { error })
2353        }
2354        cmd.include_path(&raw_dylib_dir);
2355    }
2356
2357    // Link with the import library generated for any raw-dylib functions.
2358    if sess.target.is_like_windows {
2359        for output_path in raw_dylib::create_raw_dylib_dll_import_libs(
2360            sess,
2361            archive_builder_builder,
2362            codegen_results.crate_info.used_libraries.iter(),
2363            tmpdir,
2364            true,
2365        ) {
2366            cmd.add_object(&output_path);
2367        }
2368    } else {
2369        for (link_path, as_needed) in raw_dylib::create_raw_dylib_elf_stub_shared_objects(
2370            sess,
2371            codegen_results.crate_info.used_libraries.iter(),
2372            &raw_dylib_dir,
2373        ) {
2374            // Always use verbatim linkage, see comments in create_raw_dylib_elf_stub_shared_objects.
2375            cmd.link_dylib_by_name(&link_path, true, as_needed);
2376        }
2377    }
2378    // As with add_upstream_native_libraries, we need to add the upstream raw-dylib symbols in case
2379    // they are used within inlined functions or instantiated generic functions. We do this *after*
2380    // handling the raw-dylib symbols in the current crate to make sure that those are chosen first
2381    // by the linker.
2382    let dependency_linkage = codegen_results
2383        .crate_info
2384        .dependency_formats
2385        .get(&crate_type)
2386        .expect("failed to find crate type in dependency format list");
2387
2388    // We sort the libraries below
2389    #[allow(rustc::potential_query_instability)]
2390    let mut native_libraries_from_nonstatics = codegen_results
2391        .crate_info
2392        .native_libraries
2393        .iter()
2394        .filter_map(|(&cnum, libraries)| {
2395            if sess.target.is_like_windows {
2396                (dependency_linkage[cnum] != Linkage::Static).then_some(libraries)
2397            } else {
2398                Some(libraries)
2399            }
2400        })
2401        .flatten()
2402        .collect::<Vec<_>>();
2403    native_libraries_from_nonstatics.sort_unstable_by(|a, b| a.name.as_str().cmp(b.name.as_str()));
2404
2405    if sess.target.is_like_windows {
2406        for output_path in raw_dylib::create_raw_dylib_dll_import_libs(
2407            sess,
2408            archive_builder_builder,
2409            native_libraries_from_nonstatics,
2410            tmpdir,
2411            false,
2412        ) {
2413            cmd.add_object(&output_path);
2414        }
2415    } else {
2416        for (link_path, as_needed) in raw_dylib::create_raw_dylib_elf_stub_shared_objects(
2417            sess,
2418            native_libraries_from_nonstatics,
2419            &raw_dylib_dir,
2420        ) {
2421            // Always use verbatim linkage, see comments in create_raw_dylib_elf_stub_shared_objects.
2422            cmd.link_dylib_by_name(&link_path, true, as_needed);
2423        }
2424    }
2425
2426    // Library linking above uses some global state for things like `-Bstatic`/`-Bdynamic` to make
2427    // command line shorter, reset it to default here before adding more libraries.
2428    cmd.reset_per_library_state();
2429
2430    // FIXME: Built-in target specs occasionally use this for linking system libraries,
2431    // eliminate all such uses by migrating them to `#[link]` attributes in `lib(std,c,unwind)`
2432    // and remove the option.
2433    add_late_link_args(cmd, sess, flavor, crate_type, codegen_results);
2434
2435    // ------------ Arbitrary order-independent options ------------
2436
2437    // Add order-independent options determined by rustc from its compiler options,
2438    // target properties and source code.
2439    add_order_independent_options(
2440        cmd,
2441        sess,
2442        link_output_kind,
2443        self_contained_components,
2444        flavor,
2445        crate_type,
2446        codegen_results,
2447        out_filename,
2448        tmpdir,
2449    );
2450
2451    // Can be used for arbitrary order-independent options.
2452    // In practice may also be occasionally used for linking native libraries.
2453    // Passed after compiler-generated options to support manual overriding when necessary.
2454    add_user_defined_link_args(cmd, sess);
2455
2456    // ------------ Builtin configurable linker scripts ------------
2457    // The user's link args should be able to overwrite symbols in the compiler's
2458    // linker script that were weakly defined (i.e. defined with `PROVIDE()`). For this
2459    // to work correctly, the user needs to be able to specify linker arguments like
2460    // `--defsym` and `--script` *before* any builtin linker scripts are evaluated.
2461    add_link_script(cmd, sess, tmpdir, crate_type);
2462
2463    // ------------ Object code and libraries, order-dependent ------------
2464
2465    // Post-link CRT objects.
2466    add_post_link_objects(cmd, sess, link_output_kind, self_contained_crt_objects);
2467
2468    // ------------ Late order-dependent options ------------
2469
2470    // Doesn't really make sense.
2471    // FIXME: In practice built-in target specs use this for arbitrary order-independent options.
2472    // Introduce a target spec option for order-independent linker options, migrate built-in specs
2473    // to it and remove the option. Currently the last holdout is wasm32-unknown-emscripten.
2474    add_post_link_args(cmd, sess, flavor);
2475
2476    cmd.take_cmd()
2477}
2478
2479fn add_order_independent_options(
2480    cmd: &mut dyn Linker,
2481    sess: &Session,
2482    link_output_kind: LinkOutputKind,
2483    self_contained_components: LinkSelfContainedComponents,
2484    flavor: LinkerFlavor,
2485    crate_type: CrateType,
2486    codegen_results: &CodegenResults,
2487    out_filename: &Path,
2488    tmpdir: &Path,
2489) {
2490    // Take care of the flavors and CLI options requesting the `lld` linker.
2491    add_lld_args(cmd, sess, flavor, self_contained_components);
2492
2493    add_apple_link_args(cmd, sess, flavor);
2494
2495    let apple_sdk_root = add_apple_sdk(cmd, sess, flavor);
2496
2497    if sess.target.os == Os::Fuchsia
2498        && crate_type == CrateType::Executable
2499        && !matches!(flavor, LinkerFlavor::Gnu(Cc::Yes, _))
2500    {
2501        let prefix = if sess.sanitizers().contains(SanitizerSet::ADDRESS) { "asan/" } else { "" };
2502        cmd.link_arg(format!("--dynamic-linker={prefix}ld.so.1"));
2503    }
2504
2505    if sess.target.eh_frame_header {
2506        cmd.add_eh_frame_header();
2507    }
2508
2509    // Make the binary compatible with data execution prevention schemes.
2510    cmd.add_no_exec();
2511
2512    if self_contained_components.is_crt_objects_enabled() {
2513        cmd.no_crt_objects();
2514    }
2515
2516    if sess.target.os == Os::Emscripten {
2517        cmd.cc_arg(if sess.opts.unstable_opts.emscripten_wasm_eh {
2518            "-fwasm-exceptions"
2519        } else if sess.panic_strategy().unwinds() {
2520            "-sDISABLE_EXCEPTION_CATCHING=0"
2521        } else {
2522            "-sDISABLE_EXCEPTION_CATCHING=1"
2523        });
2524    }
2525
2526    if flavor == LinkerFlavor::Llbc {
2527        cmd.link_args(&[
2528            "--target",
2529            &versioned_llvm_target(sess),
2530            "--target-cpu",
2531            &codegen_results.crate_info.target_cpu,
2532        ]);
2533        if codegen_results.crate_info.target_features.len() > 0 {
2534            cmd.link_arg(&format!(
2535                "--target-feature={}",
2536                &codegen_results.crate_info.target_features.join(",")
2537            ));
2538        }
2539    } else if flavor == LinkerFlavor::Ptx {
2540        cmd.link_args(&["--fallback-arch", &codegen_results.crate_info.target_cpu]);
2541    } else if flavor == LinkerFlavor::Bpf {
2542        cmd.link_args(&["--cpu", &codegen_results.crate_info.target_cpu]);
2543        if let Some(feat) = [sess.opts.cg.target_feature.as_str(), &sess.target.options.features]
2544            .into_iter()
2545            .find(|feat| !feat.is_empty())
2546        {
2547            cmd.link_args(&["--cpu-features", feat]);
2548        }
2549    }
2550
2551    cmd.linker_plugin_lto();
2552
2553    add_library_search_dirs(cmd, sess, self_contained_components, apple_sdk_root.as_deref());
2554
2555    cmd.output_filename(out_filename);
2556
2557    if crate_type == CrateType::Executable
2558        && sess.target.is_like_windows
2559        && let Some(s) = &codegen_results.crate_info.windows_subsystem
2560    {
2561        cmd.subsystem(s);
2562    }
2563
2564    // Try to strip as much out of the generated object by removing unused
2565    // sections if possible. See more comments in linker.rs
2566    if !sess.link_dead_code() {
2567        // If PGO is enabled sometimes gc_sections will remove the profile data section
2568        // as it appears to be unused. This can then cause the PGO profile file to lose
2569        // some functions. If we are generating a profile we shouldn't strip those metadata
2570        // sections to ensure we have all the data for PGO.
2571        let keep_metadata =
2572            crate_type == CrateType::Dylib || sess.opts.cg.profile_generate.enabled();
2573        cmd.gc_sections(keep_metadata);
2574    }
2575
2576    cmd.set_output_kind(link_output_kind, crate_type, out_filename);
2577
2578    add_relro_args(cmd, sess);
2579
2580    // Pass optimization flags down to the linker.
2581    cmd.optimize();
2582
2583    // Gather the set of NatVis files, if any, and write them out to a temp directory.
2584    let natvis_visualizers = collect_natvis_visualizers(
2585        tmpdir,
2586        sess,
2587        &codegen_results.crate_info.local_crate_name,
2588        &codegen_results.crate_info.natvis_debugger_visualizers,
2589    );
2590
2591    // Pass debuginfo, NatVis debugger visualizers and strip flags down to the linker.
2592    cmd.debuginfo(sess.opts.cg.strip, &natvis_visualizers);
2593
2594    // We want to prevent the compiler from accidentally leaking in any system libraries,
2595    // so by default we tell linkers not to link to any default libraries.
2596    if !sess.opts.cg.default_linker_libraries && sess.target.no_default_libraries {
2597        cmd.no_default_libraries();
2598    }
2599
2600    if sess.opts.cg.profile_generate.enabled() || sess.instrument_coverage() {
2601        cmd.pgo_gen();
2602    }
2603
2604    if sess.opts.cg.control_flow_guard != CFGuard::Disabled {
2605        cmd.control_flow_guard();
2606    }
2607
2608    // OBJECT-FILES-NO, AUDIT-ORDER
2609    if sess.opts.unstable_opts.ehcont_guard {
2610        cmd.ehcont_guard();
2611    }
2612
2613    add_rpath_args(cmd, sess, codegen_results, out_filename);
2614}
2615
2616// Write the NatVis debugger visualizer files for each crate to the temp directory and gather the file paths.
2617fn collect_natvis_visualizers(
2618    tmpdir: &Path,
2619    sess: &Session,
2620    crate_name: &Symbol,
2621    natvis_debugger_visualizers: &BTreeSet<DebuggerVisualizerFile>,
2622) -> Vec<PathBuf> {
2623    let mut visualizer_paths = Vec::with_capacity(natvis_debugger_visualizers.len());
2624
2625    for (index, visualizer) in natvis_debugger_visualizers.iter().enumerate() {
2626        let visualizer_out_file = tmpdir.join(format!("{}-{}.natvis", crate_name.as_str(), index));
2627
2628        match fs::write(&visualizer_out_file, &visualizer.src) {
2629            Ok(()) => {
2630                visualizer_paths.push(visualizer_out_file);
2631            }
2632            Err(error) => {
2633                sess.dcx().emit_warn(errors::UnableToWriteDebuggerVisualizer {
2634                    path: visualizer_out_file,
2635                    error,
2636                });
2637            }
2638        };
2639    }
2640    visualizer_paths
2641}
2642
2643fn add_native_libs_from_crate(
2644    cmd: &mut dyn Linker,
2645    sess: &Session,
2646    archive_builder_builder: &dyn ArchiveBuilderBuilder,
2647    codegen_results: &CodegenResults,
2648    tmpdir: &Path,
2649    bundled_libs: &FxIndexSet<Symbol>,
2650    cnum: CrateNum,
2651    link_static: bool,
2652    link_dynamic: bool,
2653    link_output_kind: LinkOutputKind,
2654) {
2655    if !sess.opts.unstable_opts.link_native_libraries {
2656        // If `-Zlink-native-libraries=false` is set, then the assumption is that an
2657        // external build system already has the native dependencies defined, and it
2658        // will provide them to the linker itself.
2659        return;
2660    }
2661
2662    if link_static && cnum != LOCAL_CRATE && !bundled_libs.is_empty() {
2663        // If rlib contains native libs as archives, unpack them to tmpdir.
2664        let rlib = &codegen_results.crate_info.used_crate_source[&cnum].rlib.as_ref().unwrap().0;
2665        archive_builder_builder
2666            .extract_bundled_libs(rlib, tmpdir, bundled_libs)
2667            .unwrap_or_else(|e| sess.dcx().emit_fatal(e));
2668    }
2669
2670    let native_libs = match cnum {
2671        LOCAL_CRATE => &codegen_results.crate_info.used_libraries,
2672        _ => &codegen_results.crate_info.native_libraries[&cnum],
2673    };
2674
2675    let mut last = (None, NativeLibKind::Unspecified, false);
2676    for lib in native_libs {
2677        if !relevant_lib(sess, lib) {
2678            continue;
2679        }
2680
2681        // Skip if this library is the same as the last.
2682        last = if (Some(lib.name), lib.kind, lib.verbatim) == last {
2683            continue;
2684        } else {
2685            (Some(lib.name), lib.kind, lib.verbatim)
2686        };
2687
2688        let name = lib.name.as_str();
2689        let verbatim = lib.verbatim;
2690        match lib.kind {
2691            NativeLibKind::Static { bundle, whole_archive } => {
2692                if link_static {
2693                    let bundle = bundle.unwrap_or(true);
2694                    let whole_archive = whole_archive == Some(true);
2695                    if bundle && cnum != LOCAL_CRATE {
2696                        if let Some(filename) = lib.filename {
2697                            // If rlib contains native libs as archives, they are unpacked to tmpdir.
2698                            let path = tmpdir.join(filename.as_str());
2699                            cmd.link_staticlib_by_path(&path, whole_archive);
2700                        }
2701                    } else {
2702                        cmd.link_staticlib_by_name(name, verbatim, whole_archive);
2703                    }
2704                }
2705            }
2706            NativeLibKind::Dylib { as_needed } => {
2707                if link_dynamic {
2708                    cmd.link_dylib_by_name(name, verbatim, as_needed.unwrap_or(true))
2709                }
2710            }
2711            NativeLibKind::Unspecified => {
2712                // If we are generating a static binary, prefer static library when the
2713                // link kind is unspecified.
2714                if !link_output_kind.can_link_dylib() && !sess.target.crt_static_allows_dylibs {
2715                    if link_static {
2716                        cmd.link_staticlib_by_name(name, verbatim, false);
2717                    }
2718                } else if link_dynamic {
2719                    cmd.link_dylib_by_name(name, verbatim, true);
2720                }
2721            }
2722            NativeLibKind::Framework { as_needed } => {
2723                if link_dynamic {
2724                    cmd.link_framework_by_name(name, verbatim, as_needed.unwrap_or(true))
2725                }
2726            }
2727            NativeLibKind::RawDylib { as_needed: _ } => {
2728                // Handled separately in `linker_with_args`.
2729            }
2730            NativeLibKind::WasmImportModule => {}
2731            NativeLibKind::LinkArg => {
2732                if link_static {
2733                    if verbatim {
2734                        cmd.verbatim_arg(name);
2735                    } else {
2736                        cmd.link_arg(name);
2737                    }
2738                }
2739            }
2740        }
2741    }
2742}
2743
2744fn add_local_native_libraries(
2745    cmd: &mut dyn Linker,
2746    sess: &Session,
2747    archive_builder_builder: &dyn ArchiveBuilderBuilder,
2748    codegen_results: &CodegenResults,
2749    tmpdir: &Path,
2750    link_output_kind: LinkOutputKind,
2751) {
2752    // All static and dynamic native library dependencies are linked to the local crate.
2753    let link_static = true;
2754    let link_dynamic = true;
2755    add_native_libs_from_crate(
2756        cmd,
2757        sess,
2758        archive_builder_builder,
2759        codegen_results,
2760        tmpdir,
2761        &Default::default(),
2762        LOCAL_CRATE,
2763        link_static,
2764        link_dynamic,
2765        link_output_kind,
2766    );
2767}
2768
2769fn add_upstream_rust_crates(
2770    cmd: &mut dyn Linker,
2771    sess: &Session,
2772    archive_builder_builder: &dyn ArchiveBuilderBuilder,
2773    codegen_results: &CodegenResults,
2774    crate_type: CrateType,
2775    tmpdir: &Path,
2776    link_output_kind: LinkOutputKind,
2777) {
2778    // All of the heavy lifting has previously been accomplished by the
2779    // dependency_format module of the compiler. This is just crawling the
2780    // output of that module, adding crates as necessary.
2781    //
2782    // Linking to a rlib involves just passing it to the linker (the linker
2783    // will slurp up the object files inside), and linking to a dynamic library
2784    // involves just passing the right -l flag.
2785    let data = codegen_results
2786        .crate_info
2787        .dependency_formats
2788        .get(&crate_type)
2789        .expect("failed to find crate type in dependency format list");
2790
2791    if sess.target.is_like_aix {
2792        // Unlike ELF linkers, AIX doesn't feature `DT_SONAME` to override
2793        // the dependency name when outputting a shared library. Thus, `ld` will
2794        // use the full path to shared libraries as the dependency if passed it
2795        // by default unless `noipath` is passed.
2796        // https://www.ibm.com/docs/en/aix/7.3?topic=l-ld-command.
2797        cmd.link_or_cc_arg("-bnoipath");
2798    }
2799
2800    for &cnum in &codegen_results.crate_info.used_crates {
2801        // We may not pass all crates through to the linker. Some crates may appear statically in
2802        // an existing dylib, meaning we'll pick up all the symbols from the dylib.
2803        // We must always link crates `compiler_builtins` and `profiler_builtins` statically.
2804        // Even if they were already included into a dylib
2805        // (e.g. `libstd` when `-C prefer-dynamic` is used).
2806        // FIXME: `dependency_formats` can report `profiler_builtins` as `NotLinked` for some
2807        // reason, it shouldn't do that because `profiler_builtins` should indeed be linked.
2808        let linkage = data[cnum];
2809        let link_static_crate = linkage == Linkage::Static
2810            || (linkage == Linkage::IncludedFromDylib || linkage == Linkage::NotLinked)
2811                && (codegen_results.crate_info.compiler_builtins == Some(cnum)
2812                    || codegen_results.crate_info.profiler_runtime == Some(cnum));
2813
2814        let mut bundled_libs = Default::default();
2815        match linkage {
2816            Linkage::Static | Linkage::IncludedFromDylib | Linkage::NotLinked => {
2817                if link_static_crate {
2818                    bundled_libs = codegen_results.crate_info.native_libraries[&cnum]
2819                        .iter()
2820                        .filter_map(|lib| lib.filename)
2821                        .collect();
2822                    add_static_crate(
2823                        cmd,
2824                        sess,
2825                        archive_builder_builder,
2826                        codegen_results,
2827                        tmpdir,
2828                        cnum,
2829                        &bundled_libs,
2830                    );
2831                }
2832            }
2833            Linkage::Dynamic => {
2834                let src = &codegen_results.crate_info.used_crate_source[&cnum];
2835                add_dynamic_crate(cmd, sess, &src.dylib.as_ref().unwrap().0);
2836            }
2837        }
2838
2839        // Static libraries are linked for a subset of linked upstream crates.
2840        // 1. If the upstream crate is a directly linked rlib then we must link the native library
2841        // because the rlib is just an archive.
2842        // 2. If the upstream crate is a dylib or a rlib linked through dylib, then we do not link
2843        // the native library because it is already linked into the dylib, and even if
2844        // inline/const/generic functions from the dylib can refer to symbols from the native
2845        // library, those symbols should be exported and available from the dylib anyway.
2846        // 3. Libraries bundled into `(compiler,profiler)_builtins` are special, see above.
2847        let link_static = link_static_crate;
2848        // Dynamic libraries are not linked here, see the FIXME in `add_upstream_native_libraries`.
2849        let link_dynamic = false;
2850        add_native_libs_from_crate(
2851            cmd,
2852            sess,
2853            archive_builder_builder,
2854            codegen_results,
2855            tmpdir,
2856            &bundled_libs,
2857            cnum,
2858            link_static,
2859            link_dynamic,
2860            link_output_kind,
2861        );
2862    }
2863}
2864
2865fn add_upstream_native_libraries(
2866    cmd: &mut dyn Linker,
2867    sess: &Session,
2868    archive_builder_builder: &dyn ArchiveBuilderBuilder,
2869    codegen_results: &CodegenResults,
2870    tmpdir: &Path,
2871    link_output_kind: LinkOutputKind,
2872) {
2873    for &cnum in &codegen_results.crate_info.used_crates {
2874        // Static libraries are not linked here, they are linked in `add_upstream_rust_crates`.
2875        // FIXME: Merge this function to `add_upstream_rust_crates` so that all native libraries
2876        // are linked together with their respective upstream crates, and in their originally
2877        // specified order. This is slightly breaking due to our use of `--as-needed` (see crater
2878        // results in https://github.com/rust-lang/rust/pull/102832#issuecomment-1279772306).
2879        let link_static = false;
2880        // Dynamic libraries are linked for all linked upstream crates.
2881        // 1. If the upstream crate is a directly linked rlib then we must link the native library
2882        // because the rlib is just an archive.
2883        // 2. If the upstream crate is a dylib or a rlib linked through dylib, then we have to link
2884        // the native library too because inline/const/generic functions from the dylib can refer
2885        // to symbols from the native library, so the native library providing those symbols should
2886        // be available when linking our final binary.
2887        let link_dynamic = true;
2888        add_native_libs_from_crate(
2889            cmd,
2890            sess,
2891            archive_builder_builder,
2892            codegen_results,
2893            tmpdir,
2894            &Default::default(),
2895            cnum,
2896            link_static,
2897            link_dynamic,
2898            link_output_kind,
2899        );
2900    }
2901}
2902
2903// Rehome lib paths (which exclude the library file name) that point into the sysroot lib directory
2904// to be relative to the sysroot directory, which may be a relative path specified by the user.
2905//
2906// If the sysroot is a relative path, and the sysroot libs are specified as an absolute path, the
2907// linker command line can be non-deterministic due to the paths including the current working
2908// directory. The linker command line needs to be deterministic since it appears inside the PDB
2909// file generated by the MSVC linker. See https://github.com/rust-lang/rust/issues/112586.
2910//
2911// The returned path will always have `fix_windows_verbatim_for_gcc()` applied to it.
2912fn rehome_sysroot_lib_dir(sess: &Session, lib_dir: &Path) -> PathBuf {
2913    let sysroot_lib_path = &sess.target_tlib_path.dir;
2914    let canonical_sysroot_lib_path =
2915        { try_canonicalize(sysroot_lib_path).unwrap_or_else(|_| sysroot_lib_path.clone()) };
2916
2917    let canonical_lib_dir = try_canonicalize(lib_dir).unwrap_or_else(|_| lib_dir.to_path_buf());
2918    if canonical_lib_dir == canonical_sysroot_lib_path {
2919        // This path already had `fix_windows_verbatim_for_gcc()` applied if needed.
2920        sysroot_lib_path.clone()
2921    } else {
2922        fix_windows_verbatim_for_gcc(lib_dir)
2923    }
2924}
2925
2926fn rehome_lib_path(sess: &Session, path: &Path) -> PathBuf {
2927    if let Some(dir) = path.parent() {
2928        let file_name = path.file_name().expect("library path has no file name component");
2929        rehome_sysroot_lib_dir(sess, dir).join(file_name)
2930    } else {
2931        fix_windows_verbatim_for_gcc(path)
2932    }
2933}
2934
2935// Adds the static "rlib" versions of all crates to the command line.
2936// There's a bit of magic which happens here specifically related to LTO,
2937// namely that we remove upstream object files.
2938//
2939// When performing LTO, almost(*) all of the bytecode from the upstream
2940// libraries has already been included in our object file output. As a
2941// result we need to remove the object files in the upstream libraries so
2942// the linker doesn't try to include them twice (or whine about duplicate
2943// symbols). We must continue to include the rest of the rlib, however, as
2944// it may contain static native libraries which must be linked in.
2945//
2946// (*) Crates marked with `#![no_builtins]` don't participate in LTO and
2947// their bytecode wasn't included. The object files in those libraries must
2948// still be passed to the linker.
2949//
2950// Note, however, that if we're not doing LTO we can just pass the rlib
2951// blindly to the linker (fast) because it's fine if it's not actually
2952// included as we're at the end of the dependency chain.
2953fn add_static_crate(
2954    cmd: &mut dyn Linker,
2955    sess: &Session,
2956    archive_builder_builder: &dyn ArchiveBuilderBuilder,
2957    codegen_results: &CodegenResults,
2958    tmpdir: &Path,
2959    cnum: CrateNum,
2960    bundled_lib_file_names: &FxIndexSet<Symbol>,
2961) {
2962    let src = &codegen_results.crate_info.used_crate_source[&cnum];
2963    let cratepath = &src.rlib.as_ref().unwrap().0;
2964
2965    let mut link_upstream =
2966        |path: &Path| cmd.link_staticlib_by_path(&rehome_lib_path(sess, path), false);
2967
2968    if !are_upstream_rust_objects_already_included(sess)
2969        || ignored_for_lto(sess, &codegen_results.crate_info, cnum)
2970    {
2971        link_upstream(cratepath);
2972        return;
2973    }
2974
2975    let dst = tmpdir.join(cratepath.file_name().unwrap());
2976    let name = cratepath.file_name().unwrap().to_str().unwrap();
2977    let name = &name[3..name.len() - 5]; // chop off lib/.rlib
2978    let bundled_lib_file_names = bundled_lib_file_names.clone();
2979
2980    sess.prof.generic_activity_with_arg("link_altering_rlib", name).run(|| {
2981        let canonical_name = name.replace('-', "_");
2982        let upstream_rust_objects_already_included =
2983            are_upstream_rust_objects_already_included(sess);
2984        let is_builtins =
2985            sess.target.no_builtins || !codegen_results.crate_info.is_no_builtins.contains(&cnum);
2986
2987        let mut archive = archive_builder_builder.new_archive_builder(sess);
2988        if let Err(error) = archive.add_archive(
2989            cratepath,
2990            Box::new(move |f| {
2991                if f == METADATA_FILENAME {
2992                    return true;
2993                }
2994
2995                let canonical = f.replace('-', "_");
2996
2997                let is_rust_object =
2998                    canonical.starts_with(&canonical_name) && looks_like_rust_object_file(f);
2999
3000                // If we're performing LTO and this is a rust-generated object
3001                // file, then we don't need the object file as it's part of the
3002                // LTO module. Note that `#![no_builtins]` is excluded from LTO,
3003                // though, so we let that object file slide.
3004                if upstream_rust_objects_already_included && is_rust_object && is_builtins {
3005                    return true;
3006                }
3007
3008                // We skip native libraries because:
3009                // 1. This native libraries won't be used from the generated rlib,
3010                //    so we can throw them away to avoid the copying work.
3011                // 2. We can't allow it to be a single remaining entry in archive
3012                //    as some linkers may complain on that.
3013                if bundled_lib_file_names.contains(&Symbol::intern(f)) {
3014                    return true;
3015                }
3016
3017                false
3018            }),
3019        ) {
3020            sess.dcx()
3021                .emit_fatal(errors::RlibArchiveBuildFailure { path: cratepath.clone(), error });
3022        }
3023        if archive.build(&dst) {
3024            link_upstream(&dst);
3025        }
3026    });
3027}
3028
3029// Same thing as above, but for dynamic crates instead of static crates.
3030fn add_dynamic_crate(cmd: &mut dyn Linker, sess: &Session, cratepath: &Path) {
3031    cmd.link_dylib_by_path(&rehome_lib_path(sess, cratepath), true);
3032}
3033
3034fn relevant_lib(sess: &Session, lib: &NativeLib) -> bool {
3035    match lib.cfg {
3036        Some(ref cfg) => {
3037            eval_config_entry(sess, cfg, CRATE_NODE_ID, ShouldEmit::ErrorsAndLints).as_bool()
3038        }
3039        None => true,
3040    }
3041}
3042
3043pub(crate) fn are_upstream_rust_objects_already_included(sess: &Session) -> bool {
3044    match sess.lto() {
3045        config::Lto::Fat => true,
3046        config::Lto::Thin => {
3047            // If we defer LTO to the linker, we haven't run LTO ourselves, so
3048            // any upstream object files have not been copied yet.
3049            !sess.opts.cg.linker_plugin_lto.enabled()
3050        }
3051        config::Lto::No | config::Lto::ThinLocal => false,
3052    }
3053}
3054
3055/// We need to communicate five things to the linker on Apple/Darwin targets:
3056/// - The architecture.
3057/// - The operating system (and that it's an Apple platform).
3058/// - The environment.
3059/// - The deployment target.
3060/// - The SDK version.
3061fn add_apple_link_args(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) {
3062    if !sess.target.is_like_darwin {
3063        return;
3064    }
3065    let LinkerFlavor::Darwin(cc, _) = flavor else {
3066        return;
3067    };
3068
3069    // `sess.target.arch` (`target_arch`) is not detailed enough.
3070    let llvm_arch = sess.target.llvm_target.split_once('-').expect("LLVM target must have arch").0;
3071    let target_os = &sess.target.os;
3072    let target_env = &sess.target.env;
3073
3074    // The architecture name to forward to the linker.
3075    //
3076    // Supported architecture names can be found in the source:
3077    // https://github.com/apple-oss-distributions/ld64/blob/ld64-951.9/src/abstraction/MachOFileAbstraction.hpp#L578-L648
3078    //
3079    // Intentionally verbose to ensure that the list always matches correctly
3080    // with the list in the source above.
3081    let ld64_arch = match llvm_arch {
3082        "armv7k" => "armv7k",
3083        "armv7s" => "armv7s",
3084        "arm64" => "arm64",
3085        "arm64e" => "arm64e",
3086        "arm64_32" => "arm64_32",
3087        // ld64 doesn't understand i686, so fall back to i386 instead.
3088        //
3089        // Same story when linking with cc, since that ends up invoking ld64.
3090        "i386" | "i686" => "i386",
3091        "x86_64" => "x86_64",
3092        "x86_64h" => "x86_64h",
3093        _ => bug!("unsupported architecture in Apple target: {}", sess.target.llvm_target),
3094    };
3095
3096    if cc == Cc::No {
3097        // From the man page for ld64 (`man ld`):
3098        // > The linker accepts universal (multiple-architecture) input files,
3099        // > but always creates a "thin" (single-architecture), standard
3100        // > Mach-O output file. The architecture for the output file is
3101        // > specified using the -arch option.
3102        //
3103        // The linker has heuristics to determine the desired architecture,
3104        // but to be safe, and to avoid a warning, we set the architecture
3105        // explicitly.
3106        cmd.link_args(&["-arch", ld64_arch]);
3107
3108        // Man page says that ld64 supports the following platform names:
3109        // > - macos
3110        // > - ios
3111        // > - tvos
3112        // > - watchos
3113        // > - bridgeos
3114        // > - visionos
3115        // > - xros
3116        // > - mac-catalyst
3117        // > - ios-simulator
3118        // > - tvos-simulator
3119        // > - watchos-simulator
3120        // > - visionos-simulator
3121        // > - xros-simulator
3122        // > - driverkit
3123        let platform_name = match (target_os, target_env) {
3124            (os, Env::Unspecified) => os.desc(),
3125            (Os::IOs, Env::MacAbi) => "mac-catalyst",
3126            (Os::IOs, Env::Sim) => "ios-simulator",
3127            (Os::TvOs, Env::Sim) => "tvos-simulator",
3128            (Os::WatchOs, Env::Sim) => "watchos-simulator",
3129            (Os::VisionOs, Env::Sim) => "visionos-simulator",
3130            _ => bug!("invalid OS/env combination for Apple target: {target_os}, {target_env}"),
3131        };
3132
3133        let min_version = sess.apple_deployment_target().fmt_full().to_string();
3134
3135        // The SDK version is used at runtime when compiling with a newer SDK / version of Xcode:
3136        // - By dyld to give extra warnings and errors, see e.g.:
3137        //   <https://github.com/apple-oss-distributions/dyld/blob/dyld-1165.3/common/MachOFile.cpp#L3029>
3138        //   <https://github.com/apple-oss-distributions/dyld/blob/dyld-1165.3/common/MachOFile.cpp#L3738-L3857>
3139        // - By system frameworks to change certain behaviour. For example, the default value of
3140        //   `-[NSView wantsBestResolutionOpenGLSurface]` is `YES` when the SDK version is >= 10.15.
3141        //   <https://developer.apple.com/documentation/appkit/nsview/1414938-wantsbestresolutionopenglsurface?language=objc>
3142        //
3143        // We do not currently know the actual SDK version though, so we have a few options:
3144        // 1. Use the minimum version supported by rustc.
3145        // 2. Use the same as the deployment target.
3146        // 3. Use an arbitrary recent version.
3147        // 4. Omit the version.
3148        //
3149        // The first option is too low / too conservative, and means that users will not get the
3150        // same behaviour from a binary compiled with rustc as with one compiled by clang.
3151        //
3152        // The second option is similarly conservative, and also wrong since if the user specified a
3153        // higher deployment target than the SDK they're compiling/linking with, the runtime might
3154        // make invalid assumptions about the capabilities of the binary.
3155        //
3156        // The third option requires that `rustc` is periodically kept up to date with Apple's SDK
3157        // version, and is also wrong for similar reasons as above.
3158        //
3159        // The fourth option is bad because while `ld`, `otool`, `vtool` and such understand it to
3160        // mean "absent" or `n/a`, dyld doesn't actually understand it, and will end up interpreting
3161        // it as 0.0, which is again too low/conservative.
3162        //
3163        // Currently, we lie about the SDK version, and choose the second option.
3164        //
3165        // FIXME(madsmtm): Parse the SDK version from the SDK root instead.
3166        // <https://github.com/rust-lang/rust/issues/129432>
3167        let sdk_version = &*min_version;
3168
3169        // From the man page for ld64 (`man ld`):
3170        // > This is set to indicate the platform, oldest supported version of
3171        // > that platform that output is to be used on, and the SDK that the
3172        // > output was built against.
3173        //
3174        // Like with `-arch`, the linker can figure out the platform versions
3175        // itself from the binaries being linked, but to be safe, we specify
3176        // the desired versions here explicitly.
3177        cmd.link_args(&["-platform_version", platform_name, &*min_version, sdk_version]);
3178    } else {
3179        // cc == Cc::Yes
3180        //
3181        // We'd _like_ to use `-target` everywhere, since that can uniquely
3182        // communicate all the required details except for the SDK version
3183        // (which is read by Clang itself from the SDKROOT), but that doesn't
3184        // work on GCC, and since we don't know whether the `cc` compiler is
3185        // Clang, GCC, or something else, we fall back to other options that
3186        // also work on GCC when compiling for macOS.
3187        //
3188        // Targets other than macOS are ill-supported by GCC (it doesn't even
3189        // support e.g. `-miphoneos-version-min`), so in those cases we can
3190        // fairly safely use `-target`. See also the following, where it is
3191        // made explicit that the recommendation by LLVM developers is to use
3192        // `-target`: <https://github.com/llvm/llvm-project/issues/88271>
3193        if *target_os == Os::MacOs {
3194            // `-arch` communicates the architecture.
3195            //
3196            // CC forwards the `-arch` to the linker, so we use the same value
3197            // here intentionally.
3198            cmd.cc_args(&["-arch", ld64_arch]);
3199
3200            // The presence of `-mmacosx-version-min` makes CC default to
3201            // macOS, and it sets the deployment target.
3202            let version = sess.apple_deployment_target().fmt_full();
3203            // Intentionally pass this as a single argument, Clang doesn't
3204            // seem to like it otherwise.
3205            cmd.cc_arg(&format!("-mmacosx-version-min={version}"));
3206
3207            // macOS has no environment, so with these two, we've told CC the
3208            // four desired parameters.
3209            //
3210            // We avoid `-m32`/`-m64`, as this is already encoded by `-arch`.
3211        } else {
3212            cmd.cc_args(&["-target", &versioned_llvm_target(sess)]);
3213        }
3214    }
3215}
3216
3217fn add_apple_sdk(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) -> Option<PathBuf> {
3218    if !sess.target.is_like_darwin {
3219        return None;
3220    }
3221    let LinkerFlavor::Darwin(cc, _) = flavor else {
3222        return None;
3223    };
3224
3225    // The default compiler driver on macOS is at `/usr/bin/cc`. This is a trampoline binary that
3226    // effectively invokes `xcrun cc` internally to look up both the compiler binary and the SDK
3227    // root from the current Xcode installation. When cross-compiling, when `rustc` is invoked
3228    // inside Xcode, or when invoking the linker directly, this default logic is unsuitable, so
3229    // instead we invoke `xcrun` manually.
3230    //
3231    // (Note that this doesn't mean we get a duplicate lookup here - passing `SDKROOT` below will
3232    // cause the trampoline binary to skip looking up the SDK itself).
3233    let sdkroot = sess.time("get_apple_sdk_root", || get_apple_sdk_root(sess))?;
3234
3235    if cc == Cc::Yes {
3236        // There are a few options to pass the SDK root when linking with a C/C++ compiler:
3237        // - The `--sysroot` flag.
3238        // - The `-isysroot` flag.
3239        // - The `SDKROOT` environment variable.
3240        //
3241        // `--sysroot` isn't actually enough to get Clang to treat it as a platform SDK, you need
3242        // to specify `-isysroot`. This is admittedly a bit strange, as on most targets `-isysroot`
3243        // only applies to include header files, but on Apple targets it also applies to libraries
3244        // and frameworks.
3245        //
3246        // This leaves the choice between `-isysroot` and `SDKROOT`. Both are supported by Clang and
3247        // GCC, though they may not be supported by all compiler drivers. We choose `SDKROOT`,
3248        // primarily because that is the same interface that is used when invoking the tool under
3249        // `xcrun -sdk macosx $tool`.
3250        //
3251        // In that sense, if a given compiler driver does not support `SDKROOT`, the blame is fairly
3252        // clearly in the tool in question, since they also don't support being run under `xcrun`.
3253        //
3254        // Additionally, `SDKROOT` is an environment variable and thus optional. It also has lower
3255        // precedence than `-isysroot`, so a custom compiler driver that does not support it and
3256        // instead figures out the SDK on their own can easily do so by using `-isysroot`.
3257        //
3258        // (This in particular affects Clang built with the `DEFAULT_SYSROOT` CMake flag, such as
3259        // the one provided by some versions of Homebrew's `llvm` package. Those will end up
3260        // ignoring the value we set here, and instead use their built-in sysroot).
3261        cmd.cmd().env("SDKROOT", &sdkroot);
3262    } else {
3263        // When invoking the linker directly, we use the `-syslibroot` parameter. `SDKROOT` is not
3264        // read by the linker, so it's really the only option.
3265        //
3266        // This is also what Clang does.
3267        cmd.link_arg("-syslibroot");
3268        cmd.link_arg(&sdkroot);
3269    }
3270
3271    Some(sdkroot)
3272}
3273
3274fn get_apple_sdk_root(sess: &Session) -> Option<PathBuf> {
3275    if let Ok(sdkroot) = env::var("SDKROOT") {
3276        let p = PathBuf::from(&sdkroot);
3277
3278        // Ignore invalid SDKs, similar to what clang does:
3279        // https://github.com/llvm/llvm-project/blob/llvmorg-19.1.6/clang/lib/Driver/ToolChains/Darwin.cpp#L2212-L2229
3280        //
3281        // NOTE: Things are complicated here by the fact that `rustc` can be run by Cargo to compile
3282        // build scripts and proc-macros for the host, and thus we need to ignore SDKROOT if it's
3283        // clearly set for the wrong platform.
3284        //
3285        // FIXME(madsmtm): Make this more robust (maybe read `SDKSettings.json` like Clang does?).
3286        match &*apple::sdk_name(&sess.target).to_lowercase() {
3287            "appletvos"
3288                if sdkroot.contains("TVSimulator.platform")
3289                    || sdkroot.contains("MacOSX.platform") => {}
3290            "appletvsimulator"
3291                if sdkroot.contains("TVOS.platform") || sdkroot.contains("MacOSX.platform") => {}
3292            "iphoneos"
3293                if sdkroot.contains("iPhoneSimulator.platform")
3294                    || sdkroot.contains("MacOSX.platform") => {}
3295            "iphonesimulator"
3296                if sdkroot.contains("iPhoneOS.platform") || sdkroot.contains("MacOSX.platform") => {
3297            }
3298            "macosx"
3299                if sdkroot.contains("iPhoneOS.platform")
3300                    || sdkroot.contains("iPhoneSimulator.platform")
3301                    || sdkroot.contains("AppleTVOS.platform")
3302                    || sdkroot.contains("AppleTVSimulator.platform")
3303                    || sdkroot.contains("WatchOS.platform")
3304                    || sdkroot.contains("WatchSimulator.platform")
3305                    || sdkroot.contains("XROS.platform")
3306                    || sdkroot.contains("XRSimulator.platform") => {}
3307            "watchos"
3308                if sdkroot.contains("WatchSimulator.platform")
3309                    || sdkroot.contains("MacOSX.platform") => {}
3310            "watchsimulator"
3311                if sdkroot.contains("WatchOS.platform") || sdkroot.contains("MacOSX.platform") => {}
3312            "xros"
3313                if sdkroot.contains("XRSimulator.platform")
3314                    || sdkroot.contains("MacOSX.platform") => {}
3315            "xrsimulator"
3316                if sdkroot.contains("XROS.platform") || sdkroot.contains("MacOSX.platform") => {}
3317            // Ignore `SDKROOT` if it's not a valid path.
3318            _ if !p.is_absolute() || p == Path::new("/") || !p.exists() => {}
3319            _ => return Some(p),
3320        }
3321    }
3322
3323    apple::get_sdk_root(sess)
3324}
3325
3326/// When using the linker flavors opting in to `lld`, add the necessary paths and arguments to
3327/// invoke it:
3328/// - when the self-contained linker flag is active: the build of `lld` distributed with rustc,
3329/// - or any `lld` available to `cc`.
3330fn add_lld_args(
3331    cmd: &mut dyn Linker,
3332    sess: &Session,
3333    flavor: LinkerFlavor,
3334    self_contained_components: LinkSelfContainedComponents,
3335) {
3336    debug!(
3337        "add_lld_args requested, flavor: '{:?}', target self-contained components: {:?}",
3338        flavor, self_contained_components,
3339    );
3340
3341    // If the flavor doesn't use a C/C++ compiler to invoke the linker, or doesn't opt in to `lld`,
3342    // we don't need to do anything.
3343    if !(flavor.uses_cc() && flavor.uses_lld()) {
3344        return;
3345    }
3346
3347    // 1. Implement the "self-contained" part of this feature by adding rustc distribution
3348    // directories to the tool's search path, depending on a mix between what users can specify on
3349    // the CLI, and what the target spec enables (as it can't disable components):
3350    // - if the self-contained linker is enabled on the CLI or by the target spec,
3351    // - and if the self-contained linker is not disabled on the CLI.
3352    let self_contained_cli = sess.opts.cg.link_self_contained.is_linker_enabled();
3353    let self_contained_target = self_contained_components.is_linker_enabled();
3354
3355    let self_contained_linker = self_contained_cli || self_contained_target;
3356    if self_contained_linker && !sess.opts.cg.link_self_contained.is_linker_disabled() {
3357        let mut linker_path_exists = false;
3358        for path in sess.get_tools_search_paths(false) {
3359            let linker_path = path.join("gcc-ld");
3360            linker_path_exists |= linker_path.exists();
3361            cmd.cc_arg({
3362                let mut arg = OsString::from("-B");
3363                arg.push(linker_path);
3364                arg
3365            });
3366        }
3367        if !linker_path_exists {
3368            // As a sanity check, we emit an error if none of these paths exist: we want
3369            // self-contained linking and have no linker.
3370            sess.dcx().emit_fatal(errors::SelfContainedLinkerMissing);
3371        }
3372    }
3373
3374    // 2. Implement the "linker flavor" part of this feature by asking `cc` to use some kind of
3375    // `lld` as the linker.
3376    //
3377    // Note that wasm targets skip this step since the only option there anyway
3378    // is to use LLD but the `wasm32-wasip2` target relies on a wrapper around
3379    // this, `wasm-component-ld`, which is overridden if this option is passed.
3380    if !sess.target.is_like_wasm {
3381        cmd.cc_arg("-fuse-ld=lld");
3382    }
3383
3384    if !flavor.is_gnu() {
3385        // Tell clang to use a non-default LLD flavor.
3386        // Gcc doesn't understand the target option, but we currently assume
3387        // that gcc is not used for Apple and Wasm targets (#97402).
3388        //
3389        // Note that we don't want to do that by default on macOS: e.g. passing a
3390        // 10.7 target to LLVM works, but not to recent versions of clang/macOS, as
3391        // shown in issue #101653 and the discussion in PR #101792.
3392        //
3393        // It could be required in some cases of cross-compiling with
3394        // LLD, but this is generally unspecified, and we don't know
3395        // which specific versions of clang, macOS SDK, host and target OS
3396        // combinations impact us here.
3397        //
3398        // So we do a simple first-approximation until we know more of what the
3399        // Apple targets require (and which would be handled prior to hitting this
3400        // LLD codepath anyway), but the expectation is that until then
3401        // this should be manually passed if needed. We specify the target when
3402        // targeting a different linker flavor on macOS, and that's also always
3403        // the case when targeting WASM.
3404        if sess.target.linker_flavor != sess.host.linker_flavor {
3405            cmd.cc_arg(format!("--target={}", versioned_llvm_target(sess)));
3406        }
3407    }
3408}
3409
3410// gold has been deprecated with binutils 2.44
3411// and is known to behave incorrectly around Rust programs.
3412// There have been reports of being unable to bootstrap with gold:
3413// https://github.com/rust-lang/rust/issues/139425
3414// Additionally, gold miscompiles SHF_GNU_RETAIN sections, which are
3415// emitted with `#[used(linker)]`.
3416fn warn_if_linked_with_gold(sess: &Session, path: &Path) -> Result<(), Box<dyn std::error::Error>> {
3417    use object::read::elf::{FileHeader, SectionHeader};
3418    use object::read::{ReadCache, ReadRef, Result};
3419    use object::{Endianness, elf};
3420
3421    fn elf_has_gold_version_note<'a>(
3422        elf: &impl FileHeader,
3423        data: impl ReadRef<'a>,
3424    ) -> Result<bool> {
3425        let endian = elf.endian()?;
3426
3427        let section =
3428            elf.sections(endian, data)?.section_by_name(endian, b".note.gnu.gold-version");
3429        if let Some((_, section)) = section
3430            && let Some(mut notes) = section.notes(endian, data)?
3431        {
3432            return Ok(notes.any(|note| {
3433                note.is_ok_and(|note| note.n_type(endian) == elf::NT_GNU_GOLD_VERSION)
3434            }));
3435        }
3436
3437        Ok(false)
3438    }
3439
3440    let data = ReadCache::new(BufReader::new(File::open(path)?));
3441
3442    let was_linked_with_gold = if sess.target.pointer_width == 64 {
3443        let elf = elf::FileHeader64::<Endianness>::parse(&data)?;
3444        elf_has_gold_version_note(elf, &data)?
3445    } else if sess.target.pointer_width == 32 {
3446        let elf = elf::FileHeader32::<Endianness>::parse(&data)?;
3447        elf_has_gold_version_note(elf, &data)?
3448    } else {
3449        return Ok(());
3450    };
3451
3452    if was_linked_with_gold {
3453        let mut warn =
3454            sess.dcx().struct_warn("the gold linker is deprecated and has known bugs with Rust");
3455        warn.help("consider using LLD or ld from GNU binutils instead");
3456        warn.emit();
3457    }
3458    Ok(())
3459}