rustc_const_eval/interpret/
visitor.rs

1//! Visitor for a run-time value with a given layout: Traverse enums, structs and other compound
2//! types until we arrive at the leaves, with custom handling for primitive types.
3
4use std::num::NonZero;
5
6use rustc_abi::{FieldIdx, FieldsShape, VariantIdx, Variants};
7use rustc_index::IndexVec;
8use rustc_middle::mir::interpret::InterpResult;
9use rustc_middle::ty::{self, Ty};
10use tracing::trace;
11
12use super::{InterpCx, MPlaceTy, Machine, Projectable, interp_ok, throw_inval};
13
14/// How to traverse a value and what to do when we are at the leaves.
15pub trait ValueVisitor<'tcx, M: Machine<'tcx>>: Sized {
16    type V: Projectable<'tcx, M::Provenance> + From<MPlaceTy<'tcx, M::Provenance>>;
17
18    /// The visitor must have an `InterpCx` in it.
19    fn ecx(&self) -> &InterpCx<'tcx, M>;
20
21    /// `read_discriminant` can be hooked for better error messages.
22    #[inline(always)]
23    fn read_discriminant(&mut self, v: &Self::V) -> InterpResult<'tcx, VariantIdx> {
24        self.ecx().read_discriminant(&v.to_op(self.ecx())?)
25    }
26
27    /// This function provides the chance to reorder the order in which fields are visited for
28    /// `FieldsShape::Aggregate`.
29    ///
30    /// The default means we iterate in source declaration order; alternatively this can do some
31    /// work with `memory_index` to iterate in memory order.
32    #[inline(always)]
33    fn aggregate_field_iter(
34        memory_index: &IndexVec<FieldIdx, u32>,
35    ) -> impl Iterator<Item = FieldIdx> + 'static {
36        memory_index.indices()
37    }
38
39    // Recursive actions, ready to be overloaded.
40    /// Visits the given value, dispatching as appropriate to more specialized visitors.
41    #[inline(always)]
42    fn visit_value(&mut self, v: &Self::V) -> InterpResult<'tcx> {
43        self.walk_value(v)
44    }
45    /// Visits the given value as a union. No automatic recursion can happen here.
46    #[inline(always)]
47    fn visit_union(&mut self, _v: &Self::V, _fields: NonZero<usize>) -> InterpResult<'tcx> {
48        interp_ok(())
49    }
50    /// Visits the given value as the pointer of a `Box`. There is nothing to recurse into.
51    /// The type of `v` will be a raw pointer to `T`, but this is a field of `Box<T>` and the
52    /// pointee type is the actual `T`. `box_ty` provides the full type of the `Box` itself.
53    #[inline(always)]
54    fn visit_box(&mut self, _box_ty: Ty<'tcx>, _v: &Self::V) -> InterpResult<'tcx> {
55        interp_ok(())
56    }
57
58    /// Called each time we recurse down to a field of a "product-like" aggregate
59    /// (structs, tuples, arrays and the like, but not enums), passing in old (outer)
60    /// and new (inner) value.
61    /// This gives the visitor the chance to track the stack of nested fields that
62    /// we are descending through.
63    #[inline(always)]
64    fn visit_field(
65        &mut self,
66        _old_val: &Self::V,
67        _field: usize,
68        new_val: &Self::V,
69    ) -> InterpResult<'tcx> {
70        self.visit_value(new_val)
71    }
72    /// Called when recursing into an enum variant.
73    /// This gives the visitor the chance to track the stack of nested fields that
74    /// we are descending through.
75    #[inline(always)]
76    fn visit_variant(
77        &mut self,
78        _old_val: &Self::V,
79        _variant: VariantIdx,
80        new_val: &Self::V,
81    ) -> InterpResult<'tcx> {
82        self.visit_value(new_val)
83    }
84
85    /// Traversal logic; should not be overloaded.
86    fn walk_value(&mut self, v: &Self::V) -> InterpResult<'tcx> {
87        let ty = v.layout().ty;
88        trace!("walk_value: type: {ty}");
89
90        // Special treatment for special types, where the (static) layout is not sufficient.
91        match *ty.kind() {
92            // If it is a trait object, switch to the real type that was used to create it.
93            ty::Dynamic(data, _, ty::Dyn) => {
94                // Dyn types. This is unsized, and the actual dynamic type of the data is given by the
95                // vtable stored in the place metadata.
96                // unsized values are never immediate, so we can assert_mem_place
97                let op = v.to_op(self.ecx())?;
98                let dest = op.assert_mem_place();
99                let inner_mplace = self.ecx().unpack_dyn_trait(&dest, data)?;
100                trace!("walk_value: dyn object layout: {:#?}", inner_mplace.layout);
101                // recurse with the inner type
102                return self.visit_field(v, 0, &inner_mplace.into());
103            }
104            // Slices do not need special handling here: they have `Array` field
105            // placement with length 0, so we enter the `Array` case below which
106            // indirectly uses the metadata to determine the actual length.
107
108            // However, `Box`... let's talk about `Box`.
109            ty::Adt(def, ..) if def.is_box() => {
110                // `Box` is a hybrid primitive-library-defined type that one the one hand is
111                // a dereferenceable pointer, on the other hand has *basically arbitrary
112                // user-defined layout* since the user controls the 'allocator' field. So it
113                // cannot be treated like a normal pointer, since it does not fit into an
114                // `Immediate`. Yeah, it is quite terrible. But many visitors want to do
115                // something with "all boxed pointers", so we handle this mess for them.
116                //
117                // When we hit a `Box`, we do not do the usual field recursion; instead,
118                // we (a) call `visit_box` on the pointer value, and (b) recurse on the
119                // allocator field. We also assert tons of things to ensure we do not miss
120                // any other fields.
121
122                // `Box` has two fields: the pointer we care about, and the allocator.
123                assert_eq!(v.layout().fields.count(), 2, "`Box` must have exactly 2 fields");
124                let (unique_ptr, alloc) = (
125                    self.ecx().project_field(v, FieldIdx::ZERO)?,
126                    self.ecx().project_field(v, FieldIdx::ONE)?,
127                );
128                // Unfortunately there is some type junk in the way here: `unique_ptr` is a `Unique`...
129                // (which means another 2 fields, the second of which is a `PhantomData`)
130                assert_eq!(unique_ptr.layout().fields.count(), 2);
131                let (nonnull_ptr, phantom) = (
132                    self.ecx().project_field(&unique_ptr, FieldIdx::ZERO)?,
133                    self.ecx().project_field(&unique_ptr, FieldIdx::ONE)?,
134                );
135                assert!(
136                    phantom.layout().ty.ty_adt_def().is_some_and(|adt| adt.is_phantom_data()),
137                    "2nd field of `Unique` should be PhantomData but is {:?}",
138                    phantom.layout().ty,
139                );
140                // ... that contains a `NonNull`... (gladly, only a single field here)
141                assert_eq!(nonnull_ptr.layout().fields.count(), 1);
142                let raw_ptr = self.ecx().project_field(&nonnull_ptr, FieldIdx::ZERO)?; // the actual raw ptr
143                // ... whose only field finally is a raw ptr we can dereference.
144                self.visit_box(ty, &raw_ptr)?;
145
146                // The second `Box` field is the allocator, which we recursively check for validity
147                // like in regular structs.
148                self.visit_field(v, 1, &alloc)?;
149
150                // We visited all parts of this one.
151                return interp_ok(());
152            }
153
154            // Non-normalized types should never show up here.
155            ty::Param(..)
156            | ty::Alias(..)
157            | ty::Bound(..)
158            | ty::Placeholder(..)
159            | ty::Infer(..)
160            | ty::Error(..) => throw_inval!(TooGeneric),
161
162            // The rest is handled below.
163            _ => {}
164        };
165
166        // Visit the fields of this value.
167        match &v.layout().fields {
168            FieldsShape::Primitive => {}
169            &FieldsShape::Union(fields) => {
170                self.visit_union(v, fields)?;
171            }
172            FieldsShape::Arbitrary { memory_index, .. } => {
173                for idx in Self::aggregate_field_iter(memory_index) {
174                    let field = self.ecx().project_field(v, idx)?;
175                    self.visit_field(v, idx.as_usize(), &field)?;
176                }
177            }
178            FieldsShape::Array { .. } => {
179                let mut iter = self.ecx().project_array_fields(v)?;
180                while let Some((idx, field)) = iter.next(self.ecx())? {
181                    self.visit_field(v, idx.try_into().unwrap(), &field)?;
182                }
183            }
184        }
185
186        match v.layout().variants {
187            // If this is a multi-variant layout, find the right variant and proceed
188            // with *its* fields.
189            Variants::Multiple { .. } => {
190                let idx = self.read_discriminant(v)?;
191                // There are 3 cases where downcasts can turn a Scalar/ScalarPair into a different ABI which
192                // could be a problem for `ImmTy` (see layout_sanity_check):
193                // - variant.size == Size::ZERO: works fine because `ImmTy::offset` has a special case for
194                //   zero-sized layouts.
195                // - variant.fields.count() == 0: works fine because `ImmTy::offset` has a special case for
196                //   zero-field aggregates.
197                // - variant.abi.is_uninhabited(): triggers UB in `read_discriminant` so we never get here.
198                let inner = self.ecx().project_downcast(v, idx)?;
199                trace!("walk_value: variant layout: {:#?}", inner.layout());
200                // recurse with the inner type
201                self.visit_variant(v, idx, &inner)?;
202            }
203            // For single-variant layouts, we already did everything there is to do.
204            Variants::Single { .. } | Variants::Empty => {}
205        }
206
207        interp_ok(())
208    }
209}