rustc_hir_analysis/check/region.rs
1//! This file builds up the `ScopeTree`, which describes
2//! the parent links in the region hierarchy.
3//!
4//! For more information about how MIR-based region-checking works,
5//! see the [rustc dev guide].
6//!
7//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/borrow_check.html
8
9use std::mem;
10
11use rustc_data_structures::fx::FxHashMap;
12use rustc_hir as hir;
13use rustc_hir::def::{CtorKind, DefKind, Res};
14use rustc_hir::def_id::DefId;
15use rustc_hir::intravisit::{self, Visitor};
16use rustc_hir::{Arm, Block, Expr, LetStmt, Pat, PatKind, Stmt};
17use rustc_index::Idx;
18use rustc_middle::middle::region::*;
19use rustc_middle::ty::TyCtxt;
20use rustc_session::lint;
21use rustc_span::source_map;
22use tracing::debug;
23
24#[derive(Debug, Copy, Clone)]
25struct Context {
26 /// The scope that contains any new variables declared.
27 var_parent: Option<Scope>,
28
29 /// Region parent of expressions, etc.
30 parent: Option<Scope>,
31}
32
33struct ScopeResolutionVisitor<'tcx> {
34 tcx: TyCtxt<'tcx>,
35
36 // The generated scope tree.
37 scope_tree: ScopeTree,
38
39 cx: Context,
40
41 extended_super_lets: FxHashMap<hir::ItemLocalId, Option<Scope>>,
42}
43
44/// Records the lifetime of a local variable as `cx.var_parent`
45fn record_var_lifetime(visitor: &mut ScopeResolutionVisitor<'_>, var_id: hir::ItemLocalId) {
46 match visitor.cx.var_parent {
47 None => {
48 // this can happen in extern fn declarations like
49 //
50 // extern fn isalnum(c: c_int) -> c_int
51 }
52 Some(parent_scope) => visitor.scope_tree.record_var_scope(var_id, parent_scope),
53 }
54}
55
56fn resolve_block<'tcx>(
57 visitor: &mut ScopeResolutionVisitor<'tcx>,
58 blk: &'tcx hir::Block<'tcx>,
59 terminating: bool,
60) {
61 debug!("resolve_block(blk.hir_id={:?})", blk.hir_id);
62
63 let prev_cx = visitor.cx;
64
65 // We treat the tail expression in the block (if any) somewhat
66 // differently from the statements. The issue has to do with
67 // temporary lifetimes. Consider the following:
68 //
69 // quux({
70 // let inner = ... (&bar()) ...;
71 //
72 // (... (&foo()) ...) // (the tail expression)
73 // }, other_argument());
74 //
75 // Each of the statements within the block is a terminating
76 // scope, and thus a temporary (e.g., the result of calling
77 // `bar()` in the initializer expression for `let inner = ...;`)
78 // will be cleaned up immediately after its corresponding
79 // statement (i.e., `let inner = ...;`) executes.
80 //
81 // On the other hand, temporaries associated with evaluating the
82 // tail expression for the block are assigned lifetimes so that
83 // they will be cleaned up as part of the terminating scope
84 // *surrounding* the block expression. Here, the terminating
85 // scope for the block expression is the `quux(..)` call; so
86 // those temporaries will only be cleaned up *after* both
87 // `other_argument()` has run and also the call to `quux(..)`
88 // itself has returned.
89
90 visitor.enter_node_scope_with_dtor(blk.hir_id.local_id, terminating);
91 visitor.cx.var_parent = visitor.cx.parent;
92
93 {
94 // This block should be kept approximately in sync with
95 // `intravisit::walk_block`. (We manually walk the block, rather
96 // than call `walk_block`, in order to maintain precise
97 // index information.)
98
99 for (i, statement) in blk.stmts.iter().enumerate() {
100 match statement.kind {
101 hir::StmtKind::Let(LetStmt { els: Some(els), .. }) => {
102 // Let-else has a special lexical structure for variables.
103 // First we take a checkpoint of the current scope context here.
104 let mut prev_cx = visitor.cx;
105
106 visitor.enter_scope(Scope {
107 local_id: blk.hir_id.local_id,
108 data: ScopeData::Remainder(FirstStatementIndex::new(i)),
109 });
110 visitor.cx.var_parent = visitor.cx.parent;
111 visitor.visit_stmt(statement);
112 // We need to back out temporarily to the last enclosing scope
113 // for the `else` block, so that even the temporaries receiving
114 // extended lifetime will be dropped inside this block.
115 // We are visiting the `else` block in this order so that
116 // the sequence of visits agree with the order in the default
117 // `hir::intravisit` visitor.
118 mem::swap(&mut prev_cx, &mut visitor.cx);
119 resolve_block(visitor, els, true);
120 // From now on, we continue normally.
121 visitor.cx = prev_cx;
122 }
123 hir::StmtKind::Let(..) => {
124 // Each declaration introduces a subscope for bindings
125 // introduced by the declaration; this subscope covers a
126 // suffix of the block. Each subscope in a block has the
127 // previous subscope in the block as a parent, except for
128 // the first such subscope, which has the block itself as a
129 // parent.
130 visitor.enter_scope(Scope {
131 local_id: blk.hir_id.local_id,
132 data: ScopeData::Remainder(FirstStatementIndex::new(i)),
133 });
134 visitor.cx.var_parent = visitor.cx.parent;
135 visitor.visit_stmt(statement)
136 }
137 hir::StmtKind::Item(..) => {
138 // Don't create scopes for items, since they won't be
139 // lowered to THIR and MIR.
140 }
141 hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => visitor.visit_stmt(statement),
142 }
143 }
144 if let Some(tail_expr) = blk.expr {
145 let local_id = tail_expr.hir_id.local_id;
146 let edition = blk.span.edition();
147 let terminating = edition.at_least_rust_2024();
148 if !terminating
149 && !visitor
150 .tcx
151 .lints_that_dont_need_to_run(())
152 .contains(&lint::LintId::of(lint::builtin::TAIL_EXPR_DROP_ORDER))
153 {
154 // If this temporary scope will be changing once the codebase adopts Rust 2024,
155 // and we are linting about possible semantic changes that would result,
156 // then record this node-id in the field `backwards_incompatible_scope`
157 // for future reference.
158 visitor
159 .scope_tree
160 .backwards_incompatible_scope
161 .insert(local_id, Scope { local_id, data: ScopeData::Node });
162 }
163 resolve_expr(visitor, tail_expr, terminating);
164 }
165 }
166
167 visitor.cx = prev_cx;
168}
169
170/// Resolve a condition from an `if` expression or match guard so that it is a terminating scope
171/// if it doesn't contain `let` expressions.
172fn resolve_cond<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, cond: &'tcx hir::Expr<'tcx>) {
173 let terminate = match cond.kind {
174 // Temporaries for `let` expressions must live into the success branch.
175 hir::ExprKind::Let(_) => false,
176 // Logical operator chains are handled in `resolve_expr`. Since logical operator chains in
177 // conditions are lowered to control-flow rather than boolean temporaries, there's no
178 // temporary to drop for logical operators themselves. `resolve_expr` will also recursively
179 // wrap any operands in terminating scopes, other than `let` expressions (which we shouldn't
180 // terminate) and other logical operators (which don't need a terminating scope, since their
181 // operands will be terminated). Any temporaries that would need to be dropped will be
182 // dropped before we leave this operator's scope; terminating them here would be redundant.
183 hir::ExprKind::Binary(
184 source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
185 _,
186 _,
187 ) => false,
188 // Otherwise, conditions should always drop their temporaries.
189 _ => true,
190 };
191 resolve_expr(visitor, cond, terminate);
192}
193
194fn resolve_arm<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, arm: &'tcx hir::Arm<'tcx>) {
195 let prev_cx = visitor.cx;
196
197 visitor.enter_node_scope_with_dtor(arm.hir_id.local_id, true);
198 visitor.cx.var_parent = visitor.cx.parent;
199
200 resolve_pat(visitor, arm.pat);
201 if let Some(guard) = arm.guard {
202 resolve_cond(visitor, guard);
203 }
204 resolve_expr(visitor, arm.body, false);
205
206 visitor.cx = prev_cx;
207}
208
209#[tracing::instrument(level = "debug", skip(visitor))]
210fn resolve_pat<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, pat: &'tcx hir::Pat<'tcx>) {
211 // If this is a binding then record the lifetime of that binding.
212 if let PatKind::Binding(..) = pat.kind {
213 record_var_lifetime(visitor, pat.hir_id.local_id);
214 }
215
216 intravisit::walk_pat(visitor, pat);
217}
218
219fn resolve_stmt<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, stmt: &'tcx hir::Stmt<'tcx>) {
220 let stmt_id = stmt.hir_id.local_id;
221 debug!("resolve_stmt(stmt.id={:?})", stmt_id);
222
223 if let hir::StmtKind::Let(LetStmt { super_: Some(_), .. }) = stmt.kind {
224 // `super let` statement does not start a new scope, such that
225 //
226 // { super let x = identity(&temp()); &x }.method();
227 //
228 // behaves exactly as
229 //
230 // (&identity(&temp()).method();
231 intravisit::walk_stmt(visitor, stmt);
232 } else {
233 // Every statement will clean up the temporaries created during
234 // execution of that statement. Therefore each statement has an
235 // associated destruction scope that represents the scope of the
236 // statement plus its destructors, and thus the scope for which
237 // regions referenced by the destructors need to survive.
238
239 let prev_parent = visitor.cx.parent;
240 visitor.enter_node_scope_with_dtor(stmt_id, true);
241
242 intravisit::walk_stmt(visitor, stmt);
243
244 visitor.cx.parent = prev_parent;
245 }
246}
247
248#[tracing::instrument(level = "debug", skip(visitor))]
249fn resolve_expr<'tcx>(
250 visitor: &mut ScopeResolutionVisitor<'tcx>,
251 expr: &'tcx hir::Expr<'tcx>,
252 terminating: bool,
253) {
254 let prev_cx = visitor.cx;
255 visitor.enter_node_scope_with_dtor(expr.hir_id.local_id, terminating);
256
257 match expr.kind {
258 // Conditional or repeating scopes are always terminating
259 // scopes, meaning that temporaries cannot outlive them.
260 // This ensures fixed size stacks.
261 hir::ExprKind::Binary(
262 source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
263 left,
264 right,
265 ) => {
266 // expr is a short circuiting operator (|| or &&). As its
267 // functionality can't be overridden by traits, it always
268 // processes bool sub-expressions. bools are Copy and thus we
269 // can drop any temporaries in evaluation (read) order
270 // (with the exception of potentially failing let expressions).
271 // We achieve this by enclosing the operands in a terminating
272 // scope, both the LHS and the RHS.
273
274 // We optimize this a little in the presence of chains.
275 // Chains like a && b && c get lowered to AND(AND(a, b), c).
276 // In here, b and c are RHS, while a is the only LHS operand in
277 // that chain. This holds true for longer chains as well: the
278 // leading operand is always the only LHS operand that is not a
279 // binop itself. Putting a binop like AND(a, b) into a
280 // terminating scope is not useful, thus we only put the LHS
281 // into a terminating scope if it is not a binop.
282
283 let terminate_lhs = match left.kind {
284 // let expressions can create temporaries that live on
285 hir::ExprKind::Let(_) => false,
286 // binops already drop their temporaries, so there is no
287 // need to put them into a terminating scope.
288 // This is purely an optimization to reduce the number of
289 // terminating scopes.
290 hir::ExprKind::Binary(
291 source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
292 ..,
293 ) => false,
294 // otherwise: mark it as terminating
295 _ => true,
296 };
297
298 // `Let` expressions (in a let-chain) shouldn't be terminating, as their temporaries
299 // should live beyond the immediate expression
300 let terminate_rhs = !matches!(right.kind, hir::ExprKind::Let(_));
301
302 resolve_expr(visitor, left, terminate_lhs);
303 resolve_expr(visitor, right, terminate_rhs);
304 }
305 // Manually recurse over closures, because they are nested bodies
306 // that share the parent environment. We handle const blocks in
307 // `visit_inline_const`.
308 hir::ExprKind::Closure(&hir::Closure { body, .. }) => {
309 let body = visitor.tcx.hir_body(body);
310 visitor.visit_body(body);
311 }
312 // Ordinarily, we can rely on the visit order of HIR intravisit
313 // to correspond to the actual execution order of statements.
314 // However, there's a weird corner case with compound assignment
315 // operators (e.g. `a += b`). The evaluation order depends on whether
316 // or not the operator is overloaded (e.g. whether or not a trait
317 // like AddAssign is implemented).
318 //
319 // For primitive types (which, despite having a trait impl, don't actually
320 // end up calling it), the evaluation order is right-to-left. For example,
321 // the following code snippet:
322 //
323 // let y = &mut 0;
324 // *{println!("LHS!"); y} += {println!("RHS!"); 1};
325 //
326 // will print:
327 //
328 // RHS!
329 // LHS!
330 //
331 // However, if the operator is used on a non-primitive type,
332 // the evaluation order will be left-to-right, since the operator
333 // actually get desugared to a method call. For example, this
334 // nearly identical code snippet:
335 //
336 // let y = &mut String::new();
337 // *{println!("LHS String"); y} += {println!("RHS String"); "hi"};
338 //
339 // will print:
340 // LHS String
341 // RHS String
342 //
343 // To determine the actual execution order, we need to perform
344 // trait resolution. Fortunately, we don't need to know the actual execution order.
345 hir::ExprKind::AssignOp(_, left_expr, right_expr) => {
346 visitor.visit_expr(right_expr);
347 visitor.visit_expr(left_expr);
348 }
349
350 hir::ExprKind::If(cond, then, Some(otherwise)) => {
351 let expr_cx = visitor.cx;
352 let data = if expr.span.at_least_rust_2024() {
353 ScopeData::IfThenRescope
354 } else {
355 ScopeData::IfThen
356 };
357 visitor.enter_scope(Scope { local_id: then.hir_id.local_id, data });
358 visitor.cx.var_parent = visitor.cx.parent;
359 resolve_cond(visitor, cond);
360 resolve_expr(visitor, then, true);
361 visitor.cx = expr_cx;
362 resolve_expr(visitor, otherwise, true);
363 }
364
365 hir::ExprKind::If(cond, then, None) => {
366 let expr_cx = visitor.cx;
367 let data = if expr.span.at_least_rust_2024() {
368 ScopeData::IfThenRescope
369 } else {
370 ScopeData::IfThen
371 };
372 visitor.enter_scope(Scope { local_id: then.hir_id.local_id, data });
373 visitor.cx.var_parent = visitor.cx.parent;
374 resolve_cond(visitor, cond);
375 resolve_expr(visitor, then, true);
376 visitor.cx = expr_cx;
377 }
378
379 hir::ExprKind::Loop(body, _, _, _) => {
380 resolve_block(visitor, body, true);
381 }
382
383 hir::ExprKind::DropTemps(expr) => {
384 // `DropTemps(expr)` does not denote a conditional scope.
385 // Rather, we want to achieve the same behavior as `{ let _t = expr; _t }`.
386 resolve_expr(visitor, expr, true);
387 }
388
389 _ => intravisit::walk_expr(visitor, expr),
390 }
391
392 visitor.cx = prev_cx;
393}
394
395#[derive(Copy, Clone, PartialEq, Eq, Debug)]
396enum LetKind {
397 Regular,
398 Super,
399}
400
401fn resolve_local<'tcx>(
402 visitor: &mut ScopeResolutionVisitor<'tcx>,
403 pat: Option<&'tcx hir::Pat<'tcx>>,
404 init: Option<&'tcx hir::Expr<'tcx>>,
405 let_kind: LetKind,
406) {
407 debug!("resolve_local(pat={:?}, init={:?}, let_kind={:?})", pat, init, let_kind);
408
409 // As an exception to the normal rules governing temporary
410 // lifetimes, initializers in a let have a temporary lifetime
411 // of the enclosing block. This means that e.g., a program
412 // like the following is legal:
413 //
414 // let ref x = HashMap::new();
415 //
416 // Because the hash map will be freed in the enclosing block.
417 //
418 // We express the rules more formally based on 3 grammars (defined
419 // fully in the helpers below that implement them):
420 //
421 // 1. `E&`, which matches expressions like `&<rvalue>` that
422 // own a pointer into the stack.
423 //
424 // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref
425 // y)` that produce ref bindings into the value they are
426 // matched against or something (at least partially) owned by
427 // the value they are matched against. (By partially owned,
428 // I mean that creating a binding into a ref-counted or managed value
429 // would still count.)
430 //
431 // 3. `ET`, which matches both rvalues like `foo()` as well as places
432 // based on rvalues like `foo().x[2].y`.
433 //
434 // A subexpression `<rvalue>` that appears in a let initializer
435 // `let pat [: ty] = expr` has an extended temporary lifetime if
436 // any of the following conditions are met:
437 //
438 // A. `pat` matches `P&` and `expr` matches `ET`
439 // (covers cases where `pat` creates ref bindings into an rvalue
440 // produced by `expr`)
441 // B. `ty` is a borrowed pointer and `expr` matches `ET`
442 // (covers cases where coercion creates a borrow)
443 // C. `expr` matches `E&`
444 // (covers cases `expr` borrows an rvalue that is then assigned
445 // to memory (at least partially) owned by the binding)
446 //
447 // Here are some examples hopefully giving an intuition where each
448 // rule comes into play and why:
449 //
450 // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)`
451 // would have an extended lifetime, but not `foo()`.
452 //
453 // Rule B. `let x = &foo().x`. The rvalue `foo()` would have extended
454 // lifetime.
455 //
456 // In some cases, multiple rules may apply (though not to the same
457 // rvalue). For example:
458 //
459 // let ref x = [&a(), &b()];
460 //
461 // Here, the expression `[...]` has an extended lifetime due to rule
462 // A, but the inner rvalues `a()` and `b()` have an extended lifetime
463 // due to rule C.
464
465 if let_kind == LetKind::Super {
466 if let Some(scope) = visitor.extended_super_lets.remove(&pat.unwrap().hir_id.local_id) {
467 // This expression was lifetime-extended by a parent let binding. E.g.
468 //
469 // let a = {
470 // super let b = temp();
471 // &b
472 // };
473 //
474 // (Which needs to behave exactly as: let a = &temp();)
475 //
476 // Processing of `let a` will have already decided to extend the lifetime of this
477 // `super let` to its own var_scope. We use that scope.
478 visitor.cx.var_parent = scope;
479 } else {
480 // This `super let` is not subject to lifetime extension from a parent let binding. E.g.
481 //
482 // identity({ super let x = temp(); &x }).method();
483 //
484 // (Which needs to behave exactly as: identity(&temp()).method();)
485 //
486 // Iterate up to the enclosing destruction scope to find the same scope that will also
487 // be used for the result of the block itself.
488 while let Some(s) = visitor.cx.var_parent {
489 let parent = visitor.scope_tree.parent_map.get(&s).cloned();
490 if let Some(Scope { data: ScopeData::Destruction, .. }) = parent {
491 break;
492 }
493 visitor.cx.var_parent = parent;
494 }
495 }
496 }
497
498 if let Some(expr) = init {
499 record_rvalue_scope_if_borrow_expr(visitor, expr, visitor.cx.var_parent);
500
501 if let Some(pat) = pat {
502 if is_binding_pat(pat) {
503 visitor.scope_tree.record_rvalue_candidate(
504 expr.hir_id,
505 RvalueCandidate {
506 target: expr.hir_id.local_id,
507 lifetime: visitor.cx.var_parent,
508 },
509 );
510 }
511 }
512 }
513
514 // Make sure we visit the initializer first.
515 // The correct order, as shared between drop_ranges and intravisitor,
516 // is to walk initializer, followed by pattern bindings, finally followed by the `else` block.
517 if let Some(expr) = init {
518 visitor.visit_expr(expr);
519 }
520
521 if let Some(pat) = pat {
522 visitor.visit_pat(pat);
523 }
524
525 /// Returns `true` if `pat` match the `P&` non-terminal.
526 ///
527 /// ```text
528 /// P& = ref X
529 /// | StructName { ..., P&, ... }
530 /// | VariantName(..., P&, ...)
531 /// | [ ..., P&, ... ]
532 /// | ( ..., P&, ... )
533 /// | ... "|" P& "|" ...
534 /// | box P&
535 /// | P& if ...
536 /// ```
537 fn is_binding_pat(pat: &hir::Pat<'_>) -> bool {
538 // Note that the code below looks for *explicit* refs only, that is, it won't
539 // know about *implicit* refs as introduced in #42640.
540 //
541 // This is not a problem. For example, consider
542 //
543 // let (ref x, ref y) = (Foo { .. }, Bar { .. });
544 //
545 // Due to the explicit refs on the left hand side, the below code would signal
546 // that the temporary value on the right hand side should live until the end of
547 // the enclosing block (as opposed to being dropped after the let is complete).
548 //
549 // To create an implicit ref, however, you must have a borrowed value on the RHS
550 // already, as in this example (which won't compile before #42640):
551 //
552 // let Foo { x, .. } = &Foo { x: ..., ... };
553 //
554 // in place of
555 //
556 // let Foo { ref x, .. } = Foo { ... };
557 //
558 // In the former case (the implicit ref version), the temporary is created by the
559 // & expression, and its lifetime would be extended to the end of the block (due
560 // to a different rule, not the below code).
561 match pat.kind {
562 PatKind::Binding(hir::BindingMode(hir::ByRef::Yes(_), _), ..) => true,
563
564 PatKind::Struct(_, field_pats, _) => field_pats.iter().any(|fp| is_binding_pat(fp.pat)),
565
566 PatKind::Slice(pats1, pats2, pats3) => {
567 pats1.iter().any(|p| is_binding_pat(p))
568 || pats2.iter().any(|p| is_binding_pat(p))
569 || pats3.iter().any(|p| is_binding_pat(p))
570 }
571
572 PatKind::Or(subpats)
573 | PatKind::TupleStruct(_, subpats, _)
574 | PatKind::Tuple(subpats, _) => subpats.iter().any(|p| is_binding_pat(p)),
575
576 PatKind::Box(subpat) | PatKind::Deref(subpat) | PatKind::Guard(subpat, _) => {
577 is_binding_pat(subpat)
578 }
579
580 PatKind::Ref(_, _)
581 | PatKind::Binding(hir::BindingMode(hir::ByRef::No, _), ..)
582 | PatKind::Missing
583 | PatKind::Wild
584 | PatKind::Never
585 | PatKind::Expr(_)
586 | PatKind::Range(_, _, _)
587 | PatKind::Err(_) => false,
588 }
589 }
590
591 /// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate:
592 ///
593 /// ```text
594 /// E& = & ET
595 /// | StructName { ..., f: E&, ... }
596 /// | [ ..., E&, ... ]
597 /// | ( ..., E&, ... )
598 /// | {...; E&}
599 /// | { super let ... = E&; ... }
600 /// | if _ { ...; E& } else { ...; E& }
601 /// | match _ { ..., _ => E&, ... }
602 /// | box E&
603 /// | E& as ...
604 /// | ( E& )
605 /// ```
606 fn record_rvalue_scope_if_borrow_expr<'tcx>(
607 visitor: &mut ScopeResolutionVisitor<'tcx>,
608 expr: &hir::Expr<'_>,
609 blk_id: Option<Scope>,
610 ) {
611 match expr.kind {
612 hir::ExprKind::AddrOf(_, _, subexpr) => {
613 record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id);
614 visitor.scope_tree.record_rvalue_candidate(
615 subexpr.hir_id,
616 RvalueCandidate { target: subexpr.hir_id.local_id, lifetime: blk_id },
617 );
618 }
619 hir::ExprKind::Struct(_, fields, _) => {
620 for field in fields {
621 record_rvalue_scope_if_borrow_expr(visitor, field.expr, blk_id);
622 }
623 }
624 hir::ExprKind::Array(subexprs) | hir::ExprKind::Tup(subexprs) => {
625 for subexpr in subexprs {
626 record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id);
627 }
628 }
629 hir::ExprKind::Cast(subexpr, _) => {
630 record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id)
631 }
632 hir::ExprKind::Block(block, _) => {
633 if let Some(subexpr) = block.expr {
634 record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id);
635 }
636 for stmt in block.stmts {
637 if let hir::StmtKind::Let(local) = stmt.kind
638 && let Some(_) = local.super_
639 {
640 visitor.extended_super_lets.insert(local.pat.hir_id.local_id, blk_id);
641 }
642 }
643 }
644 hir::ExprKind::If(_, then_block, else_block) => {
645 record_rvalue_scope_if_borrow_expr(visitor, then_block, blk_id);
646 if let Some(else_block) = else_block {
647 record_rvalue_scope_if_borrow_expr(visitor, else_block, blk_id);
648 }
649 }
650 hir::ExprKind::Match(_, arms, _) => {
651 for arm in arms {
652 record_rvalue_scope_if_borrow_expr(visitor, arm.body, blk_id);
653 }
654 }
655 hir::ExprKind::Call(func, args) => {
656 // Recurse into tuple constructors, such as `Some(&temp())`.
657 //
658 // That way, there is no difference between `Some(..)` and `Some { 0: .. }`,
659 // even though the former is syntactically a function call.
660 if let hir::ExprKind::Path(path) = &func.kind
661 && let hir::QPath::Resolved(None, path) = path
662 && let Res::SelfCtor(_) | Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) = path.res
663 {
664 for arg in args {
665 record_rvalue_scope_if_borrow_expr(visitor, arg, blk_id);
666 }
667 }
668 }
669 _ => {}
670 }
671 }
672}
673
674impl<'tcx> ScopeResolutionVisitor<'tcx> {
675 /// Records the current parent (if any) as the parent of `child_scope`.
676 fn record_child_scope(&mut self, child_scope: Scope) {
677 let parent = self.cx.parent;
678 self.scope_tree.record_scope_parent(child_scope, parent);
679 }
680
681 /// Records the current parent (if any) as the parent of `child_scope`,
682 /// and sets `child_scope` as the new current parent.
683 fn enter_scope(&mut self, child_scope: Scope) {
684 self.record_child_scope(child_scope);
685 self.cx.parent = Some(child_scope);
686 }
687
688 fn enter_node_scope_with_dtor(&mut self, id: hir::ItemLocalId, terminating: bool) {
689 // If node was previously marked as a terminating scope during the
690 // recursive visit of its parent node in the HIR, then we need to
691 // account for the destruction scope representing the scope of
692 // the destructors that run immediately after it completes.
693 if terminating {
694 self.enter_scope(Scope { local_id: id, data: ScopeData::Destruction });
695 }
696 self.enter_scope(Scope { local_id: id, data: ScopeData::Node });
697 }
698
699 fn enter_body(&mut self, hir_id: hir::HirId, f: impl FnOnce(&mut Self)) {
700 let outer_cx = self.cx;
701
702 self.enter_scope(Scope { local_id: hir_id.local_id, data: ScopeData::CallSite });
703 self.enter_scope(Scope { local_id: hir_id.local_id, data: ScopeData::Arguments });
704
705 f(self);
706
707 // Restore context we had at the start.
708 self.cx = outer_cx;
709 }
710}
711
712impl<'tcx> Visitor<'tcx> for ScopeResolutionVisitor<'tcx> {
713 fn visit_block(&mut self, b: &'tcx Block<'tcx>) {
714 resolve_block(self, b, false);
715 }
716
717 fn visit_body(&mut self, body: &hir::Body<'tcx>) {
718 let body_id = body.id();
719 let owner_id = self.tcx.hir_body_owner_def_id(body_id);
720
721 debug!(
722 "visit_body(id={:?}, span={:?}, body.id={:?}, cx.parent={:?})",
723 owner_id,
724 self.tcx.sess.source_map().span_to_diagnostic_string(body.value.span),
725 body_id,
726 self.cx.parent
727 );
728
729 self.enter_body(body.value.hir_id, |this| {
730 if this.tcx.hir_body_owner_kind(owner_id).is_fn_or_closure() {
731 // The arguments and `self` are parented to the fn.
732 this.cx.var_parent = this.cx.parent;
733 for param in body.params {
734 this.visit_pat(param.pat);
735 }
736
737 // The body of the every fn is a root scope.
738 resolve_expr(this, body.value, true);
739 } else {
740 // Only functions have an outer terminating (drop) scope, while
741 // temporaries in constant initializers may be 'static, but only
742 // according to rvalue lifetime semantics, using the same
743 // syntactical rules used for let initializers.
744 //
745 // e.g., in `let x = &f();`, the temporary holding the result from
746 // the `f()` call lives for the entirety of the surrounding block.
747 //
748 // Similarly, `const X: ... = &f();` would have the result of `f()`
749 // live for `'static`, implying (if Drop restrictions on constants
750 // ever get lifted) that the value *could* have a destructor, but
751 // it'd get leaked instead of the destructor running during the
752 // evaluation of `X` (if at all allowed by CTFE).
753 //
754 // However, `const Y: ... = g(&f());`, like `let y = g(&f());`,
755 // would *not* let the `f()` temporary escape into an outer scope
756 // (i.e., `'static`), which means that after `g` returns, it drops,
757 // and all the associated destruction scope rules apply.
758 this.cx.var_parent = None;
759 this.enter_scope(Scope {
760 local_id: body.value.hir_id.local_id,
761 data: ScopeData::Destruction,
762 });
763 resolve_local(this, None, Some(body.value), LetKind::Regular);
764 }
765 })
766 }
767
768 fn visit_arm(&mut self, a: &'tcx Arm<'tcx>) {
769 resolve_arm(self, a);
770 }
771 fn visit_pat(&mut self, p: &'tcx Pat<'tcx>) {
772 resolve_pat(self, p);
773 }
774 fn visit_stmt(&mut self, s: &'tcx Stmt<'tcx>) {
775 resolve_stmt(self, s);
776 }
777 fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
778 resolve_expr(self, ex, false);
779 }
780 fn visit_local(&mut self, l: &'tcx LetStmt<'tcx>) {
781 let let_kind = match l.super_ {
782 Some(_) => LetKind::Super,
783 None => LetKind::Regular,
784 };
785 resolve_local(self, Some(l.pat), l.init, let_kind);
786 }
787 fn visit_inline_const(&mut self, c: &'tcx hir::ConstBlock) {
788 let body = self.tcx.hir_body(c.body);
789 self.visit_body(body);
790 }
791}
792
793/// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body;
794/// in the case of closures, this will be redirected to the enclosing function.
795///
796/// Performance: This is a query rather than a simple function to enable
797/// re-use in incremental scenarios. We may sometimes need to rerun the
798/// type checker even when the HIR hasn't changed, and in those cases
799/// we can avoid reconstructing the region scope tree.
800pub(crate) fn region_scope_tree(tcx: TyCtxt<'_>, def_id: DefId) -> &ScopeTree {
801 let typeck_root_def_id = tcx.typeck_root_def_id(def_id);
802 if typeck_root_def_id != def_id {
803 return tcx.region_scope_tree(typeck_root_def_id);
804 }
805
806 let scope_tree = if let Some(body) = tcx.hir_maybe_body_owned_by(def_id.expect_local()) {
807 let mut visitor = ScopeResolutionVisitor {
808 tcx,
809 scope_tree: ScopeTree::default(),
810 cx: Context { parent: None, var_parent: None },
811 extended_super_lets: Default::default(),
812 };
813
814 visitor.scope_tree.root_body = Some(body.value.hir_id);
815 visitor.visit_body(&body);
816 visitor.scope_tree
817 } else {
818 ScopeTree::default()
819 };
820
821 tcx.arena.alloc(scope_tree)
822}