rustc_hir_analysis/hir_ty_lowering/
mod.rs

1//! HIR ty lowering: Lowers type-system entities[^1] from the [HIR][hir] to
2//! the [`rustc_middle::ty`] representation.
3//!
4//! Not to be confused with *AST lowering* which lowers AST constructs to HIR ones
5//! or with *THIR* / *MIR* *lowering* / *building* which lowers HIR *bodies*
6//! (i.e., “executable code”) to THIR / MIR.
7//!
8//! Most lowering routines are defined on [`dyn HirTyLowerer`](HirTyLowerer) directly,
9//! like the main routine of this module, `lower_ty`.
10//!
11//! This module used to be called `astconv`.
12//!
13//! [^1]: This includes types, lifetimes / regions, constants in type positions,
14//! trait references and bounds.
15
16mod bounds;
17mod cmse;
18mod dyn_compatibility;
19pub mod errors;
20pub mod generics;
21mod lint;
22
23use std::assert_matches::assert_matches;
24use std::slice;
25
26use rustc_ast::TraitObjectSyntax;
27use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
28use rustc_errors::codes::*;
29use rustc_errors::{
30    Applicability, Diag, DiagCtxtHandle, ErrorGuaranteed, FatalError, struct_span_code_err,
31};
32use rustc_hir::def::{CtorKind, CtorOf, DefKind, Res};
33use rustc_hir::def_id::{DefId, LocalDefId};
34use rustc_hir::{self as hir, AnonConst, GenericArg, GenericArgs, HirId};
35use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
36use rustc_infer::traits::DynCompatibilityViolation;
37use rustc_macros::{TypeFoldable, TypeVisitable};
38use rustc_middle::middle::stability::AllowUnstable;
39use rustc_middle::mir::interpret::LitToConstInput;
40use rustc_middle::ty::print::PrintPolyTraitRefExt as _;
41use rustc_middle::ty::{
42    self, Const, GenericArgKind, GenericArgsRef, GenericParamDefKind, Ty, TyCtxt, TypeVisitableExt,
43    TypingMode, Upcast, fold_regions,
44};
45use rustc_middle::{bug, span_bug};
46use rustc_session::lint::builtin::AMBIGUOUS_ASSOCIATED_ITEMS;
47use rustc_session::parse::feature_err;
48use rustc_span::{DUMMY_SP, Ident, Span, kw, sym};
49use rustc_trait_selection::infer::InferCtxtExt;
50use rustc_trait_selection::traits::wf::object_region_bounds;
51use rustc_trait_selection::traits::{self, FulfillmentError};
52use tracing::{debug, instrument};
53
54use crate::check::check_abi;
55use crate::errors::{AmbiguousLifetimeBound, BadReturnTypeNotation};
56use crate::hir_ty_lowering::errors::{GenericsArgsErrExtend, prohibit_assoc_item_constraint};
57use crate::hir_ty_lowering::generics::{check_generic_arg_count, lower_generic_args};
58use crate::middle::resolve_bound_vars as rbv;
59use crate::require_c_abi_if_c_variadic;
60
61/// A path segment that is semantically allowed to have generic arguments.
62#[derive(Debug)]
63pub struct GenericPathSegment(pub DefId, pub usize);
64
65#[derive(Copy, Clone, Debug)]
66pub enum PredicateFilter {
67    /// All predicates may be implied by the trait.
68    All,
69
70    /// Only traits that reference `Self: ..` are implied by the trait.
71    SelfOnly,
72
73    /// Only traits that reference `Self: ..` and define an associated type
74    /// with the given ident are implied by the trait. This mode exists to
75    /// side-step query cycles when lowering associated types.
76    SelfTraitThatDefines(Ident),
77
78    /// Only traits that reference `Self: ..` and their associated type bounds.
79    /// For example, given `Self: Tr<A: B>`, this would expand to `Self: Tr`
80    /// and `<Self as Tr>::A: B`.
81    SelfAndAssociatedTypeBounds,
82
83    /// Filter only the `[const]` bounds, which are lowered into `HostEffect` clauses.
84    ConstIfConst,
85
86    /// Filter only the `[const]` bounds which are *also* in the supertrait position.
87    SelfConstIfConst,
88}
89
90#[derive(Debug)]
91pub enum RegionInferReason<'a> {
92    /// Lifetime on a trait object that is spelled explicitly, e.g. `+ 'a` or `+ '_`.
93    ExplicitObjectLifetime,
94    /// A trait object's lifetime when it is elided, e.g. `dyn Any`.
95    ObjectLifetimeDefault,
96    /// Generic lifetime parameter
97    Param(&'a ty::GenericParamDef),
98    RegionPredicate,
99    Reference,
100    OutlivesBound,
101}
102
103#[derive(Copy, Clone, TypeFoldable, TypeVisitable, Debug)]
104pub struct InherentAssocCandidate {
105    pub impl_: DefId,
106    pub assoc_item: DefId,
107    pub scope: DefId,
108}
109
110/// A context which can lower type-system entities from the [HIR][hir] to
111/// the [`rustc_middle::ty`] representation.
112///
113/// This trait used to be called `AstConv`.
114pub trait HirTyLowerer<'tcx> {
115    fn tcx(&self) -> TyCtxt<'tcx>;
116
117    fn dcx(&self) -> DiagCtxtHandle<'_>;
118
119    /// Returns the [`LocalDefId`] of the overarching item whose constituents get lowered.
120    fn item_def_id(&self) -> LocalDefId;
121
122    /// Returns the region to use when a lifetime is omitted (and not elided).
123    fn re_infer(&self, span: Span, reason: RegionInferReason<'_>) -> ty::Region<'tcx>;
124
125    /// Returns the type to use when a type is omitted.
126    fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>;
127
128    /// Returns the const to use when a const is omitted.
129    fn ct_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Const<'tcx>;
130
131    fn register_trait_ascription_bounds(
132        &self,
133        bounds: Vec<(ty::Clause<'tcx>, Span)>,
134        hir_id: HirId,
135        span: Span,
136    );
137
138    /// Probe bounds in scope where the bounded type coincides with the given type parameter.
139    ///
140    /// Rephrased, this returns bounds of the form `T: Trait`, where `T` is a type parameter
141    /// with the given `def_id`. This is a subset of the full set of bounds.
142    ///
143    /// This method may use the given `assoc_name` to disregard bounds whose trait reference
144    /// doesn't define an associated item with the provided name.
145    ///
146    /// This is used for one specific purpose: Resolving “short-hand” associated type references
147    /// like `T::Item` where `T` is a type parameter. In principle, we would do that by first
148    /// getting the full set of predicates in scope and then filtering down to find those that
149    /// apply to `T`, but this can lead to cycle errors. The problem is that we have to do this
150    /// resolution *in order to create the predicates in the first place*.
151    /// Hence, we have this “special pass”.
152    fn probe_ty_param_bounds(
153        &self,
154        span: Span,
155        def_id: LocalDefId,
156        assoc_ident: Ident,
157    ) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]>;
158
159    fn select_inherent_assoc_candidates(
160        &self,
161        span: Span,
162        self_ty: Ty<'tcx>,
163        candidates: Vec<InherentAssocCandidate>,
164    ) -> (Vec<InherentAssocCandidate>, Vec<FulfillmentError<'tcx>>);
165
166    /// Lower a path to an associated item (of a trait) to a projection.
167    ///
168    /// This method has to be defined by the concrete lowering context because
169    /// dealing with higher-ranked trait references depends on its capabilities:
170    ///
171    /// If the context can make use of type inference, it can simply instantiate
172    /// any late-bound vars bound by the trait reference with inference variables.
173    /// If it doesn't support type inference, there is nothing reasonable it can
174    /// do except reject the associated type.
175    ///
176    /// The canonical example of this is associated type `T::P` where `T` is a type
177    /// param constrained by `T: for<'a> Trait<'a>` and where `Trait` defines `P`.
178    fn lower_assoc_item_path(
179        &self,
180        span: Span,
181        item_def_id: DefId,
182        item_segment: &hir::PathSegment<'tcx>,
183        poly_trait_ref: ty::PolyTraitRef<'tcx>,
184    ) -> Result<(DefId, GenericArgsRef<'tcx>), ErrorGuaranteed>;
185
186    fn lower_fn_sig(
187        &self,
188        decl: &hir::FnDecl<'tcx>,
189        generics: Option<&hir::Generics<'_>>,
190        hir_id: HirId,
191        hir_ty: Option<&hir::Ty<'_>>,
192    ) -> (Vec<Ty<'tcx>>, Ty<'tcx>);
193
194    /// Returns `AdtDef` if `ty` is an ADT.
195    ///
196    /// Note that `ty` might be a alias type that needs normalization.
197    /// This used to get the enum variants in scope of the type.
198    /// For example, `Self::A` could refer to an associated type
199    /// or to an enum variant depending on the result of this function.
200    fn probe_adt(&self, span: Span, ty: Ty<'tcx>) -> Option<ty::AdtDef<'tcx>>;
201
202    /// Record the lowered type of a HIR node in this context.
203    fn record_ty(&self, hir_id: HirId, ty: Ty<'tcx>, span: Span);
204
205    /// The inference context of the lowering context if applicable.
206    fn infcx(&self) -> Option<&InferCtxt<'tcx>>;
207
208    /// Convenience method for coercing the lowering context into a trait object type.
209    ///
210    /// Most lowering routines are defined on the trait object type directly
211    /// necessitating a coercion step from the concrete lowering context.
212    fn lowerer(&self) -> &dyn HirTyLowerer<'tcx>
213    where
214        Self: Sized,
215    {
216        self
217    }
218
219    /// Performs minimalistic dyn compat checks outside of bodies, but full within bodies.
220    /// Outside of bodies we could end up in cycles, so we delay most checks to later phases.
221    fn dyn_compatibility_violations(&self, trait_def_id: DefId) -> Vec<DynCompatibilityViolation>;
222}
223
224/// The "qualified self" of an associated item path.
225///
226/// For diagnostic purposes only.
227enum AssocItemQSelf {
228    Trait(DefId),
229    TyParam(LocalDefId, Span),
230    SelfTyAlias,
231}
232
233impl AssocItemQSelf {
234    fn to_string(&self, tcx: TyCtxt<'_>) -> String {
235        match *self {
236            Self::Trait(def_id) => tcx.def_path_str(def_id),
237            Self::TyParam(def_id, _) => tcx.hir_ty_param_name(def_id).to_string(),
238            Self::SelfTyAlias => kw::SelfUpper.to_string(),
239        }
240    }
241}
242
243/// In some cases, [`hir::ConstArg`]s that are being used in the type system
244/// through const generics need to have their type "fed" to them
245/// using the query system.
246///
247/// Use this enum with `<dyn HirTyLowerer>::lower_const_arg` to instruct it with the
248/// desired behavior.
249#[derive(Debug, Clone, Copy)]
250pub enum FeedConstTy<'a, 'tcx> {
251    /// Feed the type.
252    ///
253    /// The `DefId` belongs to the const param that we are supplying
254    /// this (anon) const arg to.
255    ///
256    /// The list of generic args is used to instantiate the parameters
257    /// used by the type of the const param specified by `DefId`.
258    Param(DefId, &'a [ty::GenericArg<'tcx>]),
259    /// Don't feed the type.
260    No,
261}
262
263#[derive(Debug, Clone, Copy)]
264enum LowerTypeRelativePathMode {
265    Type(PermitVariants),
266    Const,
267}
268
269impl LowerTypeRelativePathMode {
270    fn assoc_tag(self) -> ty::AssocTag {
271        match self {
272            Self::Type(_) => ty::AssocTag::Type,
273            Self::Const => ty::AssocTag::Const,
274        }
275    }
276
277    fn def_kind(self) -> DefKind {
278        match self {
279            Self::Type(_) => DefKind::AssocTy,
280            Self::Const => DefKind::AssocConst,
281        }
282    }
283
284    fn permit_variants(self) -> PermitVariants {
285        match self {
286            Self::Type(permit_variants) => permit_variants,
287            // FIXME(mgca): Support paths like `Option::<T>::None` or `Option::<T>::Some` which
288            // resolve to const ctors/fn items respectively.
289            Self::Const => PermitVariants::No,
290        }
291    }
292}
293
294/// Whether to permit a path to resolve to an enum variant.
295#[derive(Debug, Clone, Copy)]
296pub enum PermitVariants {
297    Yes,
298    No,
299}
300
301#[derive(Debug, Clone, Copy)]
302enum TypeRelativePath<'tcx> {
303    AssocItem(DefId, GenericArgsRef<'tcx>),
304    Variant { adt: Ty<'tcx>, variant_did: DefId },
305}
306
307/// New-typed boolean indicating whether explicit late-bound lifetimes
308/// are present in a set of generic arguments.
309///
310/// For example if we have some method `fn f<'a>(&'a self)` implemented
311/// for some type `T`, although `f` is generic in the lifetime `'a`, `'a`
312/// is late-bound so should not be provided explicitly. Thus, if `f` is
313/// instantiated with some generic arguments providing `'a` explicitly,
314/// we taint those arguments with `ExplicitLateBound::Yes` so that we
315/// can provide an appropriate diagnostic later.
316#[derive(Copy, Clone, PartialEq, Debug)]
317pub enum ExplicitLateBound {
318    Yes,
319    No,
320}
321
322#[derive(Copy, Clone, PartialEq)]
323pub enum IsMethodCall {
324    Yes,
325    No,
326}
327
328/// Denotes the "position" of a generic argument, indicating if it is a generic type,
329/// generic function or generic method call.
330#[derive(Copy, Clone, PartialEq)]
331pub(crate) enum GenericArgPosition {
332    Type,
333    Value, // e.g., functions
334    MethodCall,
335}
336
337/// A marker denoting that the generic arguments that were
338/// provided did not match the respective generic parameters.
339#[derive(Clone, Debug)]
340pub struct GenericArgCountMismatch {
341    pub reported: ErrorGuaranteed,
342    /// A list of indices of arguments provided that were not valid.
343    pub invalid_args: Vec<usize>,
344}
345
346/// Decorates the result of a generic argument count mismatch
347/// check with whether explicit late bounds were provided.
348#[derive(Clone, Debug)]
349pub struct GenericArgCountResult {
350    pub explicit_late_bound: ExplicitLateBound,
351    pub correct: Result<(), GenericArgCountMismatch>,
352}
353
354/// A context which can lower HIR's [`GenericArg`] to `rustc_middle`'s [`ty::GenericArg`].
355///
356/// Its only consumer is [`generics::lower_generic_args`].
357/// Read its documentation to learn more.
358pub trait GenericArgsLowerer<'a, 'tcx> {
359    fn args_for_def_id(&mut self, def_id: DefId) -> (Option<&'a GenericArgs<'tcx>>, bool);
360
361    fn provided_kind(
362        &mut self,
363        preceding_args: &[ty::GenericArg<'tcx>],
364        param: &ty::GenericParamDef,
365        arg: &GenericArg<'tcx>,
366    ) -> ty::GenericArg<'tcx>;
367
368    fn inferred_kind(
369        &mut self,
370        preceding_args: &[ty::GenericArg<'tcx>],
371        param: &ty::GenericParamDef,
372        infer_args: bool,
373    ) -> ty::GenericArg<'tcx>;
374}
375
376impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
377    /// Lower a lifetime from the HIR to our internal notion of a lifetime called a *region*.
378    #[instrument(level = "debug", skip(self), ret)]
379    pub fn lower_lifetime(
380        &self,
381        lifetime: &hir::Lifetime,
382        reason: RegionInferReason<'_>,
383    ) -> ty::Region<'tcx> {
384        if let Some(resolved) = self.tcx().named_bound_var(lifetime.hir_id) {
385            self.lower_resolved_lifetime(resolved)
386        } else {
387            self.re_infer(lifetime.ident.span, reason)
388        }
389    }
390
391    /// Lower a lifetime from the HIR to our internal notion of a lifetime called a *region*.
392    #[instrument(level = "debug", skip(self), ret)]
393    pub fn lower_resolved_lifetime(&self, resolved: rbv::ResolvedArg) -> ty::Region<'tcx> {
394        let tcx = self.tcx();
395
396        match resolved {
397            rbv::ResolvedArg::StaticLifetime => tcx.lifetimes.re_static,
398
399            rbv::ResolvedArg::LateBound(debruijn, index, def_id) => {
400                let br = ty::BoundRegion {
401                    var: ty::BoundVar::from_u32(index),
402                    kind: ty::BoundRegionKind::Named(def_id.to_def_id()),
403                };
404                ty::Region::new_bound(tcx, debruijn, br)
405            }
406
407            rbv::ResolvedArg::EarlyBound(def_id) => {
408                let name = tcx.hir_ty_param_name(def_id);
409                let item_def_id = tcx.hir_ty_param_owner(def_id);
410                let generics = tcx.generics_of(item_def_id);
411                let index = generics.param_def_id_to_index[&def_id.to_def_id()];
412                ty::Region::new_early_param(tcx, ty::EarlyParamRegion { index, name })
413            }
414
415            rbv::ResolvedArg::Free(scope, id) => {
416                ty::Region::new_late_param(
417                    tcx,
418                    scope.to_def_id(),
419                    ty::LateParamRegionKind::Named(id.to_def_id()),
420                )
421
422                // (*) -- not late-bound, won't change
423            }
424
425            rbv::ResolvedArg::Error(guar) => ty::Region::new_error(tcx, guar),
426        }
427    }
428
429    pub fn lower_generic_args_of_path_segment(
430        &self,
431        span: Span,
432        def_id: DefId,
433        item_segment: &hir::PathSegment<'tcx>,
434    ) -> GenericArgsRef<'tcx> {
435        let (args, _) = self.lower_generic_args_of_path(span, def_id, &[], item_segment, None);
436        if let Some(c) = item_segment.args().constraints.first() {
437            prohibit_assoc_item_constraint(self, c, Some((def_id, item_segment, span)));
438        }
439        args
440    }
441
442    /// Lower the generic arguments provided to some path.
443    ///
444    /// If this is a trait reference, you also need to pass the self type `self_ty`.
445    /// The lowering process may involve applying defaulted type parameters.
446    ///
447    /// Associated item constraints are not handled here! They are either lowered via
448    /// `lower_assoc_item_constraint` or rejected via `prohibit_assoc_item_constraint`.
449    ///
450    /// ### Example
451    ///
452    /// ```ignore (illustrative)
453    ///    T: std::ops::Index<usize, Output = u32>
454    /// // ^1 ^^^^^^^^^^^^^^2 ^^^^3  ^^^^^^^^^^^4
455    /// ```
456    ///
457    /// 1. The `self_ty` here would refer to the type `T`.
458    /// 2. The path in question is the path to the trait `std::ops::Index`,
459    ///    which will have been resolved to a `def_id`
460    /// 3. The `generic_args` contains info on the `<...>` contents. The `usize` type
461    ///    parameters are returned in the `GenericArgsRef`
462    /// 4. Associated item constraints like `Output = u32` are contained in `generic_args.constraints`.
463    ///
464    /// Note that the type listing given here is *exactly* what the user provided.
465    ///
466    /// For (generic) associated types
467    ///
468    /// ```ignore (illustrative)
469    /// <Vec<u8> as Iterable<u8>>::Iter::<'a>
470    /// ```
471    ///
472    /// We have the parent args are the args for the parent trait:
473    /// `[Vec<u8>, u8]` and `generic_args` are the arguments for the associated
474    /// type itself: `['a]`. The returned `GenericArgsRef` concatenates these two
475    /// lists: `[Vec<u8>, u8, 'a]`.
476    #[instrument(level = "debug", skip(self, span), ret)]
477    fn lower_generic_args_of_path(
478        &self,
479        span: Span,
480        def_id: DefId,
481        parent_args: &[ty::GenericArg<'tcx>],
482        segment: &hir::PathSegment<'tcx>,
483        self_ty: Option<Ty<'tcx>>,
484    ) -> (GenericArgsRef<'tcx>, GenericArgCountResult) {
485        // If the type is parameterized by this region, then replace this
486        // region with the current anon region binding (in other words,
487        // whatever & would get replaced with).
488
489        let tcx = self.tcx();
490        let generics = tcx.generics_of(def_id);
491        debug!(?generics);
492
493        if generics.has_self {
494            if generics.parent.is_some() {
495                // The parent is a trait so it should have at least one
496                // generic parameter for the `Self` type.
497                assert!(!parent_args.is_empty())
498            } else {
499                // This item (presumably a trait) needs a self-type.
500                assert!(self_ty.is_some());
501            }
502        } else {
503            assert!(self_ty.is_none());
504        }
505
506        let arg_count = check_generic_arg_count(
507            self,
508            def_id,
509            segment,
510            generics,
511            GenericArgPosition::Type,
512            self_ty.is_some(),
513        );
514
515        // Skip processing if type has no generic parameters.
516        // Traits always have `Self` as a generic parameter, which means they will not return early
517        // here and so associated item constraints will be handled regardless of whether there are
518        // any non-`Self` generic parameters.
519        if generics.is_own_empty() {
520            return (tcx.mk_args(parent_args), arg_count);
521        }
522
523        struct GenericArgsCtxt<'a, 'tcx> {
524            lowerer: &'a dyn HirTyLowerer<'tcx>,
525            def_id: DefId,
526            generic_args: &'a GenericArgs<'tcx>,
527            span: Span,
528            infer_args: bool,
529            incorrect_args: &'a Result<(), GenericArgCountMismatch>,
530        }
531
532        impl<'a, 'tcx> GenericArgsLowerer<'a, 'tcx> for GenericArgsCtxt<'a, 'tcx> {
533            fn args_for_def_id(&mut self, did: DefId) -> (Option<&'a GenericArgs<'tcx>>, bool) {
534                if did == self.def_id {
535                    (Some(self.generic_args), self.infer_args)
536                } else {
537                    // The last component of this tuple is unimportant.
538                    (None, false)
539                }
540            }
541
542            fn provided_kind(
543                &mut self,
544                preceding_args: &[ty::GenericArg<'tcx>],
545                param: &ty::GenericParamDef,
546                arg: &GenericArg<'tcx>,
547            ) -> ty::GenericArg<'tcx> {
548                let tcx = self.lowerer.tcx();
549
550                if let Err(incorrect) = self.incorrect_args {
551                    if incorrect.invalid_args.contains(&(param.index as usize)) {
552                        return param.to_error(tcx);
553                    }
554                }
555
556                let handle_ty_args = |has_default, ty: &hir::Ty<'tcx>| {
557                    if has_default {
558                        tcx.check_optional_stability(
559                            param.def_id,
560                            Some(arg.hir_id()),
561                            arg.span(),
562                            None,
563                            AllowUnstable::No,
564                            |_, _| {
565                                // Default generic parameters may not be marked
566                                // with stability attributes, i.e. when the
567                                // default parameter was defined at the same time
568                                // as the rest of the type. As such, we ignore missing
569                                // stability attributes.
570                            },
571                        );
572                    }
573                    self.lowerer.lower_ty(ty).into()
574                };
575
576                match (&param.kind, arg) {
577                    (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
578                        self.lowerer.lower_lifetime(lt, RegionInferReason::Param(param)).into()
579                    }
580                    (&GenericParamDefKind::Type { has_default, .. }, GenericArg::Type(ty)) => {
581                        // We handle the other parts of `Ty` in the match arm below
582                        handle_ty_args(has_default, ty.as_unambig_ty())
583                    }
584                    (&GenericParamDefKind::Type { has_default, .. }, GenericArg::Infer(inf)) => {
585                        handle_ty_args(has_default, &inf.to_ty())
586                    }
587                    (GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => self
588                        .lowerer
589                        // Ambig portions of `ConstArg` are handled in the match arm below
590                        .lower_const_arg(
591                            ct.as_unambig_ct(),
592                            FeedConstTy::Param(param.def_id, preceding_args),
593                        )
594                        .into(),
595                    (&GenericParamDefKind::Const { .. }, GenericArg::Infer(inf)) => {
596                        self.lowerer.ct_infer(Some(param), inf.span).into()
597                    }
598                    (kind, arg) => span_bug!(
599                        self.span,
600                        "mismatched path argument for kind {kind:?}: found arg {arg:?}"
601                    ),
602                }
603            }
604
605            fn inferred_kind(
606                &mut self,
607                preceding_args: &[ty::GenericArg<'tcx>],
608                param: &ty::GenericParamDef,
609                infer_args: bool,
610            ) -> ty::GenericArg<'tcx> {
611                let tcx = self.lowerer.tcx();
612
613                if let Err(incorrect) = self.incorrect_args {
614                    if incorrect.invalid_args.contains(&(param.index as usize)) {
615                        return param.to_error(tcx);
616                    }
617                }
618                match param.kind {
619                    GenericParamDefKind::Lifetime => {
620                        self.lowerer.re_infer(self.span, RegionInferReason::Param(param)).into()
621                    }
622                    GenericParamDefKind::Type { has_default, .. } => {
623                        if !infer_args && has_default {
624                            // No type parameter provided, but a default exists.
625                            if let Some(prev) =
626                                preceding_args.iter().find_map(|arg| match arg.kind() {
627                                    GenericArgKind::Type(ty) => ty.error_reported().err(),
628                                    _ => None,
629                                })
630                            {
631                                // Avoid ICE #86756 when type error recovery goes awry.
632                                return Ty::new_error(tcx, prev).into();
633                            }
634                            tcx.at(self.span)
635                                .type_of(param.def_id)
636                                .instantiate(tcx, preceding_args)
637                                .into()
638                        } else if infer_args {
639                            self.lowerer.ty_infer(Some(param), self.span).into()
640                        } else {
641                            // We've already errored above about the mismatch.
642                            Ty::new_misc_error(tcx).into()
643                        }
644                    }
645                    GenericParamDefKind::Const { has_default, .. } => {
646                        let ty = tcx
647                            .at(self.span)
648                            .type_of(param.def_id)
649                            .instantiate(tcx, preceding_args);
650                        if let Err(guar) = ty.error_reported() {
651                            return ty::Const::new_error(tcx, guar).into();
652                        }
653                        if !infer_args && has_default {
654                            tcx.const_param_default(param.def_id)
655                                .instantiate(tcx, preceding_args)
656                                .into()
657                        } else if infer_args {
658                            self.lowerer.ct_infer(Some(param), self.span).into()
659                        } else {
660                            // We've already errored above about the mismatch.
661                            ty::Const::new_misc_error(tcx).into()
662                        }
663                    }
664                }
665            }
666        }
667
668        let mut args_ctx = GenericArgsCtxt {
669            lowerer: self,
670            def_id,
671            span,
672            generic_args: segment.args(),
673            infer_args: segment.infer_args,
674            incorrect_args: &arg_count.correct,
675        };
676        let args = lower_generic_args(
677            self,
678            def_id,
679            parent_args,
680            self_ty.is_some(),
681            self_ty,
682            &arg_count,
683            &mut args_ctx,
684        );
685
686        (args, arg_count)
687    }
688
689    #[instrument(level = "debug", skip(self))]
690    pub fn lower_generic_args_of_assoc_item(
691        &self,
692        span: Span,
693        item_def_id: DefId,
694        item_segment: &hir::PathSegment<'tcx>,
695        parent_args: GenericArgsRef<'tcx>,
696    ) -> GenericArgsRef<'tcx> {
697        let (args, _) =
698            self.lower_generic_args_of_path(span, item_def_id, parent_args, item_segment, None);
699        if let Some(c) = item_segment.args().constraints.first() {
700            prohibit_assoc_item_constraint(self, c, Some((item_def_id, item_segment, span)));
701        }
702        args
703    }
704
705    /// Lower a trait reference as found in an impl header as the implementee.
706    ///
707    /// The self type `self_ty` is the implementer of the trait.
708    pub fn lower_impl_trait_ref(
709        &self,
710        trait_ref: &hir::TraitRef<'tcx>,
711        self_ty: Ty<'tcx>,
712    ) -> ty::TraitRef<'tcx> {
713        let _ = self.prohibit_generic_args(
714            trait_ref.path.segments.split_last().unwrap().1.iter(),
715            GenericsArgsErrExtend::None,
716        );
717
718        self.lower_mono_trait_ref(
719            trait_ref.path.span,
720            trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
721            self_ty,
722            trait_ref.path.segments.last().unwrap(),
723            true,
724        )
725    }
726
727    /// Lower a polymorphic trait reference given a self type into `bounds`.
728    ///
729    /// *Polymorphic* in the sense that it may bind late-bound vars.
730    ///
731    /// This may generate auxiliary bounds iff the trait reference contains associated item constraints.
732    ///
733    /// ### Example
734    ///
735    /// Given the trait ref `Iterator<Item = u32>` and the self type `Ty`, this will add the
736    ///
737    /// 1. *trait predicate* `<Ty as Iterator>` (known as `Ty: Iterator` in the surface syntax) and the
738    /// 2. *projection predicate* `<Ty as Iterator>::Item = u32`
739    ///
740    /// to `bounds`.
741    ///
742    /// ### A Note on Binders
743    ///
744    /// Against our usual convention, there is an implied binder around the `self_ty` and the
745    /// `trait_ref` here. So they may reference late-bound vars.
746    ///
747    /// If for example you had `for<'a> Foo<'a>: Bar<'a>`, then the `self_ty` would be `Foo<'a>`
748    /// where `'a` is a bound region at depth 0. Similarly, the `trait_ref` would be `Bar<'a>`.
749    /// The lowered poly-trait-ref will track this binder explicitly, however.
750    #[instrument(level = "debug", skip(self, bounds))]
751    pub(crate) fn lower_poly_trait_ref(
752        &self,
753        poly_trait_ref: &hir::PolyTraitRef<'tcx>,
754        self_ty: Ty<'tcx>,
755        bounds: &mut Vec<(ty::Clause<'tcx>, Span)>,
756        predicate_filter: PredicateFilter,
757    ) -> GenericArgCountResult {
758        let tcx = self.tcx();
759
760        // We use the *resolved* bound vars later instead of the HIR ones since the former
761        // also include the bound vars of the overarching predicate if applicable.
762        let hir::PolyTraitRef { bound_generic_params: _, modifiers, ref trait_ref, span } =
763            *poly_trait_ref;
764        let hir::TraitBoundModifiers { constness, polarity } = modifiers;
765
766        let trait_def_id = trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise());
767
768        // Relaxed bounds `?Trait` and `PointeeSized` bounds aren't represented in the `middle::ty` IR
769        // as they denote the *absence* of a default bound. However, we can't bail out early here since
770        // we still need to perform several validation steps (see below). Instead, simply "pour" all
771        // resulting bounds "down the drain", i.e., into a new `Vec` that just gets dropped at the end.
772        let (polarity, bounds) = match polarity {
773            rustc_ast::BoundPolarity::Positive
774                if tcx.is_lang_item(trait_def_id, hir::LangItem::PointeeSized) =>
775            {
776                // To elaborate on the comment directly above, regarding `PointeeSized` specifically,
777                // we don't "reify" such bounds to avoid trait system limitations -- namely,
778                // non-global where-clauses being preferred over item bounds (where `PointeeSized`
779                // bounds would be proven) -- which can result in errors when a `PointeeSized`
780                // supertrait / bound / predicate is added to some items.
781                (ty::PredicatePolarity::Positive, &mut Vec::new())
782            }
783            rustc_ast::BoundPolarity::Positive => (ty::PredicatePolarity::Positive, bounds),
784            rustc_ast::BoundPolarity::Negative(_) => (ty::PredicatePolarity::Negative, bounds),
785            rustc_ast::BoundPolarity::Maybe(_) => {
786                (ty::PredicatePolarity::Positive, &mut Vec::new())
787            }
788        };
789
790        let trait_segment = trait_ref.path.segments.last().unwrap();
791
792        let _ = self.prohibit_generic_args(
793            trait_ref.path.segments.split_last().unwrap().1.iter(),
794            GenericsArgsErrExtend::None,
795        );
796        self.report_internal_fn_trait(span, trait_def_id, trait_segment, false);
797
798        let (generic_args, arg_count) = self.lower_generic_args_of_path(
799            trait_ref.path.span,
800            trait_def_id,
801            &[],
802            trait_segment,
803            Some(self_ty),
804        );
805
806        let bound_vars = tcx.late_bound_vars(trait_ref.hir_ref_id);
807        debug!(?bound_vars);
808
809        let poly_trait_ref = ty::Binder::bind_with_vars(
810            ty::TraitRef::new_from_args(tcx, trait_def_id, generic_args),
811            bound_vars,
812        );
813
814        debug!(?poly_trait_ref);
815
816        // We deal with const conditions later.
817        match predicate_filter {
818            PredicateFilter::All
819            | PredicateFilter::SelfOnly
820            | PredicateFilter::SelfTraitThatDefines(..)
821            | PredicateFilter::SelfAndAssociatedTypeBounds => {
822                let bound = poly_trait_ref.map_bound(|trait_ref| {
823                    ty::ClauseKind::Trait(ty::TraitPredicate { trait_ref, polarity })
824                });
825                let bound = (bound.upcast(tcx), span);
826                // FIXME(-Znext-solver): We can likely remove this hack once the
827                // new trait solver lands. This fixed an overflow in the old solver.
828                // This may have performance implications, so please check perf when
829                // removing it.
830                // This was added in <https://github.com/rust-lang/rust/pull/123302>.
831                if tcx.is_lang_item(trait_def_id, rustc_hir::LangItem::Sized) {
832                    bounds.insert(0, bound);
833                } else {
834                    bounds.push(bound);
835                }
836            }
837            PredicateFilter::ConstIfConst | PredicateFilter::SelfConstIfConst => {}
838        }
839
840        if let hir::BoundConstness::Always(span) | hir::BoundConstness::Maybe(span) = constness
841            && !self.tcx().is_const_trait(trait_def_id)
842        {
843            let (def_span, suggestion, suggestion_pre) =
844                match (trait_def_id.is_local(), self.tcx().sess.is_nightly_build()) {
845                    (true, true) => (
846                        None,
847                        Some(tcx.def_span(trait_def_id).shrink_to_lo()),
848                        if self.tcx().features().const_trait_impl() {
849                            ""
850                        } else {
851                            "enable `#![feature(const_trait_impl)]` in your crate and "
852                        },
853                    ),
854                    (false, _) | (_, false) => (Some(tcx.def_span(trait_def_id)), None, ""),
855                };
856            self.dcx().emit_err(crate::errors::ConstBoundForNonConstTrait {
857                span,
858                modifier: constness.as_str(),
859                def_span,
860                trait_name: self.tcx().def_path_str(trait_def_id),
861                suggestion_pre,
862                suggestion,
863            });
864        } else {
865            match predicate_filter {
866                // This is only concerned with trait predicates.
867                PredicateFilter::SelfTraitThatDefines(..) => {}
868                PredicateFilter::All
869                | PredicateFilter::SelfOnly
870                | PredicateFilter::SelfAndAssociatedTypeBounds => {
871                    match constness {
872                        hir::BoundConstness::Always(_) => {
873                            if polarity == ty::PredicatePolarity::Positive {
874                                bounds.push((
875                                    poly_trait_ref
876                                        .to_host_effect_clause(tcx, ty::BoundConstness::Const),
877                                    span,
878                                ));
879                            }
880                        }
881                        hir::BoundConstness::Maybe(_) => {
882                            // We don't emit a const bound here, since that would mean that we
883                            // unconditionally need to prove a `HostEffect` predicate, even when
884                            // the predicates are being instantiated in a non-const context. This
885                            // is instead handled in the `const_conditions` query.
886                        }
887                        hir::BoundConstness::Never => {}
888                    }
889                }
890                // On the flip side, when filtering `ConstIfConst` bounds, we only need to convert
891                // `[const]` bounds. All other predicates are handled in their respective queries.
892                //
893                // Note that like `PredicateFilter::SelfOnly`, we don't need to do any filtering
894                // here because we only call this on self bounds, and deal with the recursive case
895                // in `lower_assoc_item_constraint`.
896                PredicateFilter::ConstIfConst | PredicateFilter::SelfConstIfConst => {
897                    match constness {
898                        hir::BoundConstness::Maybe(_) => {
899                            if polarity == ty::PredicatePolarity::Positive {
900                                bounds.push((
901                                    poly_trait_ref
902                                        .to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
903                                    span,
904                                ));
905                            }
906                        }
907                        hir::BoundConstness::Always(_) | hir::BoundConstness::Never => {}
908                    }
909                }
910            }
911        }
912
913        let mut dup_constraints = FxIndexMap::default();
914        for constraint in trait_segment.args().constraints {
915            // Don't register any associated item constraints for negative bounds,
916            // since we should have emitted an error for them earlier, and they
917            // would not be well-formed!
918            if polarity == ty::PredicatePolarity::Negative {
919                self.dcx().span_delayed_bug(
920                    constraint.span,
921                    "negative trait bounds should not have assoc item constraints",
922                );
923                break;
924            }
925
926            // Specify type to assert that error was already reported in `Err` case.
927            let _: Result<_, ErrorGuaranteed> = self.lower_assoc_item_constraint(
928                trait_ref.hir_ref_id,
929                poly_trait_ref,
930                constraint,
931                bounds,
932                &mut dup_constraints,
933                constraint.span,
934                predicate_filter,
935            );
936            // Okay to ignore `Err` because of `ErrorGuaranteed` (see above).
937        }
938
939        arg_count
940    }
941
942    /// Lower a monomorphic trait reference given a self type while prohibiting associated item bindings.
943    ///
944    /// *Monomorphic* in the sense that it doesn't bind any late-bound vars.
945    fn lower_mono_trait_ref(
946        &self,
947        span: Span,
948        trait_def_id: DefId,
949        self_ty: Ty<'tcx>,
950        trait_segment: &hir::PathSegment<'tcx>,
951        is_impl: bool,
952    ) -> ty::TraitRef<'tcx> {
953        self.report_internal_fn_trait(span, trait_def_id, trait_segment, is_impl);
954
955        let (generic_args, _) =
956            self.lower_generic_args_of_path(span, trait_def_id, &[], trait_segment, Some(self_ty));
957        if let Some(c) = trait_segment.args().constraints.first() {
958            prohibit_assoc_item_constraint(self, c, Some((trait_def_id, trait_segment, span)));
959        }
960        ty::TraitRef::new_from_args(self.tcx(), trait_def_id, generic_args)
961    }
962
963    fn probe_trait_that_defines_assoc_item(
964        &self,
965        trait_def_id: DefId,
966        assoc_tag: ty::AssocTag,
967        assoc_ident: Ident,
968    ) -> bool {
969        self.tcx()
970            .associated_items(trait_def_id)
971            .find_by_ident_and_kind(self.tcx(), assoc_ident, assoc_tag, trait_def_id)
972            .is_some()
973    }
974
975    fn lower_path_segment(
976        &self,
977        span: Span,
978        did: DefId,
979        item_segment: &hir::PathSegment<'tcx>,
980    ) -> Ty<'tcx> {
981        let tcx = self.tcx();
982        let args = self.lower_generic_args_of_path_segment(span, did, item_segment);
983
984        if let DefKind::TyAlias = tcx.def_kind(did)
985            && tcx.type_alias_is_lazy(did)
986        {
987            // Type aliases defined in crates that have the
988            // feature `lazy_type_alias` enabled get encoded as a type alias that normalization will
989            // then actually instantiate the where bounds of.
990            let alias_ty = ty::AliasTy::new_from_args(tcx, did, args);
991            Ty::new_alias(tcx, ty::Free, alias_ty)
992        } else {
993            tcx.at(span).type_of(did).instantiate(tcx, args)
994        }
995    }
996
997    /// Search for a trait bound on a type parameter whose trait defines the associated item
998    /// given by `assoc_ident` and `kind`.
999    ///
1000    /// This fails if there is no such bound in the list of candidates or if there are multiple
1001    /// candidates in which case it reports ambiguity.
1002    ///
1003    /// `ty_param_def_id` is the `LocalDefId` of the type parameter.
1004    #[instrument(level = "debug", skip_all, ret)]
1005    fn probe_single_ty_param_bound_for_assoc_item(
1006        &self,
1007        ty_param_def_id: LocalDefId,
1008        ty_param_span: Span,
1009        assoc_tag: ty::AssocTag,
1010        assoc_ident: Ident,
1011        span: Span,
1012    ) -> Result<ty::PolyTraitRef<'tcx>, ErrorGuaranteed> {
1013        debug!(?ty_param_def_id, ?assoc_ident, ?span);
1014        let tcx = self.tcx();
1015
1016        let predicates = &self.probe_ty_param_bounds(span, ty_param_def_id, assoc_ident);
1017        debug!("predicates={:#?}", predicates);
1018
1019        self.probe_single_bound_for_assoc_item(
1020            || {
1021                let trait_refs = predicates
1022                    .iter_identity_copied()
1023                    .filter_map(|(p, _)| Some(p.as_trait_clause()?.map_bound(|t| t.trait_ref)));
1024                traits::transitive_bounds_that_define_assoc_item(tcx, trait_refs, assoc_ident)
1025            },
1026            AssocItemQSelf::TyParam(ty_param_def_id, ty_param_span),
1027            assoc_tag,
1028            assoc_ident,
1029            span,
1030            None,
1031        )
1032    }
1033
1034    /// Search for a single trait bound whose trait defines the associated item given by
1035    /// `assoc_ident`.
1036    ///
1037    /// This fails if there is no such bound in the list of candidates or if there are multiple
1038    /// candidates in which case it reports ambiguity.
1039    #[instrument(level = "debug", skip(self, all_candidates, qself, constraint), ret)]
1040    fn probe_single_bound_for_assoc_item<I>(
1041        &self,
1042        all_candidates: impl Fn() -> I,
1043        qself: AssocItemQSelf,
1044        assoc_tag: ty::AssocTag,
1045        assoc_ident: Ident,
1046        span: Span,
1047        constraint: Option<&hir::AssocItemConstraint<'tcx>>,
1048    ) -> Result<ty::PolyTraitRef<'tcx>, ErrorGuaranteed>
1049    where
1050        I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
1051    {
1052        let tcx = self.tcx();
1053
1054        let mut matching_candidates = all_candidates().filter(|r| {
1055            self.probe_trait_that_defines_assoc_item(r.def_id(), assoc_tag, assoc_ident)
1056        });
1057
1058        let Some(bound) = matching_candidates.next() else {
1059            return Err(self.report_unresolved_assoc_item(
1060                all_candidates,
1061                qself,
1062                assoc_tag,
1063                assoc_ident,
1064                span,
1065                constraint,
1066            ));
1067        };
1068        debug!(?bound);
1069
1070        if let Some(bound2) = matching_candidates.next() {
1071            debug!(?bound2);
1072
1073            let assoc_kind_str = errors::assoc_tag_str(assoc_tag);
1074            let qself_str = qself.to_string(tcx);
1075            let mut err = self.dcx().create_err(crate::errors::AmbiguousAssocItem {
1076                span,
1077                assoc_kind: assoc_kind_str,
1078                assoc_ident,
1079                qself: &qself_str,
1080            });
1081            // Provide a more specific error code index entry for equality bindings.
1082            err.code(
1083                if let Some(constraint) = constraint
1084                    && let hir::AssocItemConstraintKind::Equality { .. } = constraint.kind
1085                {
1086                    E0222
1087                } else {
1088                    E0221
1089                },
1090            );
1091
1092            // FIXME(#97583): Print associated item bindings properly (i.e., not as equality
1093            // predicates!).
1094            // FIXME: Turn this into a structured, translatable & more actionable suggestion.
1095            let mut where_bounds = vec![];
1096            for bound in [bound, bound2].into_iter().chain(matching_candidates) {
1097                let bound_id = bound.def_id();
1098                let bound_span = tcx
1099                    .associated_items(bound_id)
1100                    .find_by_ident_and_kind(tcx, assoc_ident, assoc_tag, bound_id)
1101                    .and_then(|item| tcx.hir_span_if_local(item.def_id));
1102
1103                if let Some(bound_span) = bound_span {
1104                    err.span_label(
1105                        bound_span,
1106                        format!("ambiguous `{assoc_ident}` from `{}`", bound.print_trait_sugared(),),
1107                    );
1108                    if let Some(constraint) = constraint {
1109                        match constraint.kind {
1110                            hir::AssocItemConstraintKind::Equality { term } => {
1111                                let term: ty::Term<'_> = match term {
1112                                    hir::Term::Ty(ty) => self.lower_ty(ty).into(),
1113                                    hir::Term::Const(ct) => {
1114                                        self.lower_const_arg(ct, FeedConstTy::No).into()
1115                                    }
1116                                };
1117                                if term.references_error() {
1118                                    continue;
1119                                }
1120                                // FIXME(#97583): This isn't syntactically well-formed!
1121                                where_bounds.push(format!(
1122                                    "        T: {trait}::{assoc_ident} = {term}",
1123                                    trait = bound.print_only_trait_path(),
1124                                ));
1125                            }
1126                            // FIXME: Provide a suggestion.
1127                            hir::AssocItemConstraintKind::Bound { bounds: _ } => {}
1128                        }
1129                    } else {
1130                        err.span_suggestion_verbose(
1131                            span.with_hi(assoc_ident.span.lo()),
1132                            "use fully-qualified syntax to disambiguate",
1133                            format!("<{qself_str} as {}>::", bound.print_only_trait_path()),
1134                            Applicability::MaybeIncorrect,
1135                        );
1136                    }
1137                } else {
1138                    err.note(format!(
1139                        "associated {assoc_kind_str} `{assoc_ident}` could derive from `{}`",
1140                        bound.print_only_trait_path(),
1141                    ));
1142                }
1143            }
1144            if !where_bounds.is_empty() {
1145                err.help(format!(
1146                    "consider introducing a new type parameter `T` and adding `where` constraints:\
1147                     \n    where\n        T: {qself_str},\n{}",
1148                    where_bounds.join(",\n"),
1149                ));
1150                let reported = err.emit();
1151                return Err(reported);
1152            }
1153            err.emit();
1154        }
1155
1156        Ok(bound)
1157    }
1158
1159    /// Lower a [type-relative](hir::QPath::TypeRelative) path in type position to a type.
1160    ///
1161    /// If the path refers to an enum variant and `permit_variants` holds,
1162    /// the returned type is simply the provided self type `qself_ty`.
1163    ///
1164    /// A path like `A::B::C::D` is understood as `<A::B::C>::D`. I.e.,
1165    /// `qself_ty` / `qself` is `A::B::C` and `assoc_segment` is `D`.
1166    /// We return the lowered type and the `DefId` for the whole path.
1167    ///
1168    /// We only support associated type paths whose self type is a type parameter or a `Self`
1169    /// type alias (in a trait impl) like `T::Ty` (where `T` is a ty param) or `Self::Ty`.
1170    /// We **don't** support paths whose self type is an arbitrary type like `Struct::Ty` where
1171    /// struct `Struct` impls an in-scope trait that defines an associated type called `Ty`.
1172    /// For the latter case, we report ambiguity.
1173    /// While desirable to support, the implementation would be non-trivial. Tracked in [#22519].
1174    ///
1175    /// At the time of writing, *inherent associated types* are also resolved here. This however
1176    /// is [problematic][iat]. A proper implementation would be as non-trivial as the one
1177    /// described in the previous paragraph and their modeling of projections would likely be
1178    /// very similar in nature.
1179    ///
1180    /// [#22519]: https://github.com/rust-lang/rust/issues/22519
1181    /// [iat]: https://github.com/rust-lang/rust/issues/8995#issuecomment-1569208403
1182    //
1183    // NOTE: When this function starts resolving `Trait::AssocTy` successfully
1184    // it should also start reporting the `BARE_TRAIT_OBJECTS` lint.
1185    #[instrument(level = "debug", skip_all, ret)]
1186    pub fn lower_type_relative_ty_path(
1187        &self,
1188        self_ty: Ty<'tcx>,
1189        hir_self_ty: &'tcx hir::Ty<'tcx>,
1190        segment: &'tcx hir::PathSegment<'tcx>,
1191        qpath_hir_id: HirId,
1192        span: Span,
1193        permit_variants: PermitVariants,
1194    ) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorGuaranteed> {
1195        let tcx = self.tcx();
1196        match self.lower_type_relative_path(
1197            self_ty,
1198            hir_self_ty,
1199            segment,
1200            qpath_hir_id,
1201            span,
1202            LowerTypeRelativePathMode::Type(permit_variants),
1203        )? {
1204            TypeRelativePath::AssocItem(def_id, args) => {
1205                let alias_ty = ty::AliasTy::new_from_args(tcx, def_id, args);
1206                let ty = Ty::new_alias(tcx, alias_ty.kind(tcx), alias_ty);
1207                Ok((ty, tcx.def_kind(def_id), def_id))
1208            }
1209            TypeRelativePath::Variant { adt, variant_did } => {
1210                Ok((adt, DefKind::Variant, variant_did))
1211            }
1212        }
1213    }
1214
1215    /// Lower a [type-relative][hir::QPath::TypeRelative] path to a (type-level) constant.
1216    #[instrument(level = "debug", skip_all, ret)]
1217    fn lower_type_relative_const_path(
1218        &self,
1219        self_ty: Ty<'tcx>,
1220        hir_self_ty: &'tcx hir::Ty<'tcx>,
1221        segment: &'tcx hir::PathSegment<'tcx>,
1222        qpath_hir_id: HirId,
1223        span: Span,
1224    ) -> Result<Const<'tcx>, ErrorGuaranteed> {
1225        let tcx = self.tcx();
1226        let (def_id, args) = match self.lower_type_relative_path(
1227            self_ty,
1228            hir_self_ty,
1229            segment,
1230            qpath_hir_id,
1231            span,
1232            LowerTypeRelativePathMode::Const,
1233        )? {
1234            TypeRelativePath::AssocItem(def_id, args) => {
1235                if !tcx.associated_item(def_id).is_type_const_capable(tcx) {
1236                    let mut err = self.dcx().struct_span_err(
1237                        span,
1238                        "use of trait associated const without `#[type_const]`",
1239                    );
1240                    err.note("the declaration in the trait must be marked with `#[type_const]`");
1241                    return Err(err.emit());
1242                }
1243                (def_id, args)
1244            }
1245            // FIXME(mgca): implement support for this once ready to support all adt ctor expressions,
1246            // not just const ctors
1247            TypeRelativePath::Variant { .. } => {
1248                span_bug!(span, "unexpected variant res for type associated const path")
1249            }
1250        };
1251        Ok(Const::new_unevaluated(tcx, ty::UnevaluatedConst::new(def_id, args)))
1252    }
1253
1254    /// Lower a [type-relative][hir::QPath::TypeRelative] (and type-level) path.
1255    #[instrument(level = "debug", skip_all, ret)]
1256    fn lower_type_relative_path(
1257        &self,
1258        self_ty: Ty<'tcx>,
1259        hir_self_ty: &'tcx hir::Ty<'tcx>,
1260        segment: &'tcx hir::PathSegment<'tcx>,
1261        qpath_hir_id: HirId,
1262        span: Span,
1263        mode: LowerTypeRelativePathMode,
1264    ) -> Result<TypeRelativePath<'tcx>, ErrorGuaranteed> {
1265        debug!(%self_ty, ?segment.ident);
1266        let tcx = self.tcx();
1267
1268        // Check if we have an enum variant or an inherent associated type.
1269        let mut variant_def_id = None;
1270        if let Some(adt_def) = self.probe_adt(span, self_ty) {
1271            if adt_def.is_enum() {
1272                let variant_def = adt_def
1273                    .variants()
1274                    .iter()
1275                    .find(|vd| tcx.hygienic_eq(segment.ident, vd.ident(tcx), adt_def.did()));
1276                if let Some(variant_def) = variant_def {
1277                    if let PermitVariants::Yes = mode.permit_variants() {
1278                        tcx.check_stability(variant_def.def_id, Some(qpath_hir_id), span, None);
1279                        let _ = self.prohibit_generic_args(
1280                            slice::from_ref(segment).iter(),
1281                            GenericsArgsErrExtend::EnumVariant {
1282                                qself: hir_self_ty,
1283                                assoc_segment: segment,
1284                                adt_def,
1285                            },
1286                        );
1287                        return Ok(TypeRelativePath::Variant {
1288                            adt: self_ty,
1289                            variant_did: variant_def.def_id,
1290                        });
1291                    } else {
1292                        variant_def_id = Some(variant_def.def_id);
1293                    }
1294                }
1295            }
1296
1297            // FIXME(inherent_associated_types, #106719): Support self types other than ADTs.
1298            if let Some((did, args)) = self.probe_inherent_assoc_item(
1299                segment,
1300                adt_def.did(),
1301                self_ty,
1302                qpath_hir_id,
1303                span,
1304                mode.assoc_tag(),
1305            )? {
1306                return Ok(TypeRelativePath::AssocItem(did, args));
1307            }
1308        }
1309
1310        let (item_def_id, bound) = self.resolve_type_relative_path(
1311            self_ty,
1312            hir_self_ty,
1313            mode.assoc_tag(),
1314            segment,
1315            qpath_hir_id,
1316            span,
1317            variant_def_id,
1318        )?;
1319
1320        let (item_def_id, args) = self.lower_assoc_item_path(span, item_def_id, segment, bound)?;
1321
1322        if let Some(variant_def_id) = variant_def_id {
1323            tcx.node_span_lint(AMBIGUOUS_ASSOCIATED_ITEMS, qpath_hir_id, span, |lint| {
1324                lint.primary_message("ambiguous associated item");
1325                let mut could_refer_to = |kind: DefKind, def_id, also| {
1326                    let note_msg = format!(
1327                        "`{}` could{} refer to the {} defined here",
1328                        segment.ident,
1329                        also,
1330                        tcx.def_kind_descr(kind, def_id)
1331                    );
1332                    lint.span_note(tcx.def_span(def_id), note_msg);
1333                };
1334
1335                could_refer_to(DefKind::Variant, variant_def_id, "");
1336                could_refer_to(mode.def_kind(), item_def_id, " also");
1337
1338                lint.span_suggestion(
1339                    span,
1340                    "use fully-qualified syntax",
1341                    format!(
1342                        "<{} as {}>::{}",
1343                        self_ty,
1344                        tcx.item_name(bound.def_id()),
1345                        segment.ident
1346                    ),
1347                    Applicability::MachineApplicable,
1348                );
1349            });
1350        }
1351
1352        Ok(TypeRelativePath::AssocItem(item_def_id, args))
1353    }
1354
1355    /// Resolve a [type-relative](hir::QPath::TypeRelative) (and type-level) path.
1356    fn resolve_type_relative_path(
1357        &self,
1358        self_ty: Ty<'tcx>,
1359        hir_self_ty: &'tcx hir::Ty<'tcx>,
1360        assoc_tag: ty::AssocTag,
1361        segment: &'tcx hir::PathSegment<'tcx>,
1362        qpath_hir_id: HirId,
1363        span: Span,
1364        variant_def_id: Option<DefId>,
1365    ) -> Result<(DefId, ty::PolyTraitRef<'tcx>), ErrorGuaranteed> {
1366        let tcx = self.tcx();
1367
1368        let self_ty_res = match hir_self_ty.kind {
1369            hir::TyKind::Path(hir::QPath::Resolved(_, path)) => path.res,
1370            _ => Res::Err,
1371        };
1372
1373        // Find the type of the assoc item, and the trait where the associated item is declared.
1374        let bound = match (self_ty.kind(), self_ty_res) {
1375            (_, Res::SelfTyAlias { alias_to: impl_def_id, is_trait_impl: true, .. }) => {
1376                // `Self` in an impl of a trait -- we have a concrete self type and a
1377                // trait reference.
1378                let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) else {
1379                    // A cycle error occurred, most likely.
1380                    self.dcx().span_bug(span, "expected cycle error");
1381                };
1382
1383                self.probe_single_bound_for_assoc_item(
1384                    || {
1385                        let trait_ref = ty::Binder::dummy(trait_ref.instantiate_identity());
1386                        traits::supertraits(tcx, trait_ref)
1387                    },
1388                    AssocItemQSelf::SelfTyAlias,
1389                    assoc_tag,
1390                    segment.ident,
1391                    span,
1392                    None,
1393                )?
1394            }
1395            (
1396                &ty::Param(_),
1397                Res::SelfTyParam { trait_: param_did } | Res::Def(DefKind::TyParam, param_did),
1398            ) => self.probe_single_ty_param_bound_for_assoc_item(
1399                param_did.expect_local(),
1400                hir_self_ty.span,
1401                assoc_tag,
1402                segment.ident,
1403                span,
1404            )?,
1405            _ => {
1406                return Err(self.report_unresolved_type_relative_path(
1407                    self_ty,
1408                    hir_self_ty,
1409                    assoc_tag,
1410                    segment.ident,
1411                    qpath_hir_id,
1412                    span,
1413                    variant_def_id,
1414                ));
1415            }
1416        };
1417
1418        let assoc_item = self
1419            .probe_assoc_item(segment.ident, assoc_tag, qpath_hir_id, span, bound.def_id())
1420            .expect("failed to find associated item");
1421
1422        Ok((assoc_item.def_id, bound))
1423    }
1424
1425    /// Search for inherent associated items for use at the type level.
1426    fn probe_inherent_assoc_item(
1427        &self,
1428        segment: &hir::PathSegment<'tcx>,
1429        adt_did: DefId,
1430        self_ty: Ty<'tcx>,
1431        block: HirId,
1432        span: Span,
1433        assoc_tag: ty::AssocTag,
1434    ) -> Result<Option<(DefId, GenericArgsRef<'tcx>)>, ErrorGuaranteed> {
1435        let tcx = self.tcx();
1436
1437        if !tcx.features().inherent_associated_types() {
1438            match assoc_tag {
1439                // Don't attempt to look up inherent associated types when the feature is not
1440                // enabled. Theoretically it'd be fine to do so since we feature-gate their
1441                // definition site. However, due to current limitations of the implementation
1442                // (caused by us performing selection during HIR ty lowering instead of in the
1443                // trait solver), IATs can lead to cycle errors (#108491) which mask the
1444                // feature-gate error, needlessly confusing users who use IATs by accident
1445                // (#113265).
1446                ty::AssocTag::Type => return Ok(None),
1447                ty::AssocTag::Const => {
1448                    // We also gate the mgca codepath for type-level uses of inherent consts
1449                    // with the inherent_associated_types feature gate since it relies on the
1450                    // same machinery and has similar rough edges.
1451                    return Err(feature_err(
1452                        &tcx.sess,
1453                        sym::inherent_associated_types,
1454                        span,
1455                        "inherent associated types are unstable",
1456                    )
1457                    .emit());
1458                }
1459                ty::AssocTag::Fn => unreachable!(),
1460            }
1461        }
1462
1463        let name = segment.ident;
1464        let candidates: Vec<_> = tcx
1465            .inherent_impls(adt_did)
1466            .iter()
1467            .filter_map(|&impl_| {
1468                let (item, scope) =
1469                    self.probe_assoc_item_unchecked(name, assoc_tag, block, impl_)?;
1470                Some(InherentAssocCandidate { impl_, assoc_item: item.def_id, scope })
1471            })
1472            .collect();
1473
1474        let (applicable_candidates, fulfillment_errors) =
1475            self.select_inherent_assoc_candidates(span, self_ty, candidates.clone());
1476
1477        let InherentAssocCandidate { impl_, assoc_item, scope: def_scope } =
1478            match &applicable_candidates[..] {
1479                &[] => Err(self.report_unresolved_inherent_assoc_item(
1480                    name,
1481                    self_ty,
1482                    candidates,
1483                    fulfillment_errors,
1484                    span,
1485                    assoc_tag,
1486                )),
1487
1488                &[applicable_candidate] => Ok(applicable_candidate),
1489
1490                &[_, ..] => Err(self.report_ambiguous_inherent_assoc_item(
1491                    name,
1492                    candidates.into_iter().map(|cand| cand.assoc_item).collect(),
1493                    span,
1494                )),
1495            }?;
1496
1497        self.check_assoc_item(assoc_item, name, def_scope, block, span);
1498
1499        // FIXME(fmease): Currently creating throwaway `parent_args` to please
1500        // `lower_generic_args_of_assoc_item`. Modify the latter instead (or sth. similar) to
1501        // not require the parent args logic.
1502        let parent_args = ty::GenericArgs::identity_for_item(tcx, impl_);
1503        let args = self.lower_generic_args_of_assoc_item(span, assoc_item, segment, parent_args);
1504        let args = tcx.mk_args_from_iter(
1505            std::iter::once(ty::GenericArg::from(self_ty))
1506                .chain(args.into_iter().skip(parent_args.len())),
1507        );
1508
1509        Ok(Some((assoc_item, args)))
1510    }
1511
1512    /// Given name and kind search for the assoc item in the provided scope and check if it's accessible[^1].
1513    ///
1514    /// [^1]: I.e., accessible in the provided scope wrt. visibility and stability.
1515    fn probe_assoc_item(
1516        &self,
1517        ident: Ident,
1518        assoc_tag: ty::AssocTag,
1519        block: HirId,
1520        span: Span,
1521        scope: DefId,
1522    ) -> Option<ty::AssocItem> {
1523        let (item, scope) = self.probe_assoc_item_unchecked(ident, assoc_tag, block, scope)?;
1524        self.check_assoc_item(item.def_id, ident, scope, block, span);
1525        Some(item)
1526    }
1527
1528    /// Given name and kind search for the assoc item in the provided scope
1529    /// *without* checking if it's accessible[^1].
1530    ///
1531    /// [^1]: I.e., accessible in the provided scope wrt. visibility and stability.
1532    fn probe_assoc_item_unchecked(
1533        &self,
1534        ident: Ident,
1535        assoc_tag: ty::AssocTag,
1536        block: HirId,
1537        scope: DefId,
1538    ) -> Option<(ty::AssocItem, /*scope*/ DefId)> {
1539        let tcx = self.tcx();
1540
1541        let (ident, def_scope) = tcx.adjust_ident_and_get_scope(ident, scope, block);
1542        // We have already adjusted the item name above, so compare with `.normalize_to_macros_2_0()`
1543        // instead of calling `filter_by_name_and_kind` which would needlessly normalize the
1544        // `ident` again and again.
1545        let item = tcx
1546            .associated_items(scope)
1547            .filter_by_name_unhygienic(ident.name)
1548            .find(|i| i.as_tag() == assoc_tag && i.ident(tcx).normalize_to_macros_2_0() == ident)?;
1549
1550        Some((*item, def_scope))
1551    }
1552
1553    /// Check if the given assoc item is accessible in the provided scope wrt. visibility and stability.
1554    fn check_assoc_item(
1555        &self,
1556        item_def_id: DefId,
1557        ident: Ident,
1558        scope: DefId,
1559        block: HirId,
1560        span: Span,
1561    ) {
1562        let tcx = self.tcx();
1563
1564        if !tcx.visibility(item_def_id).is_accessible_from(scope, tcx) {
1565            self.dcx().emit_err(crate::errors::AssocItemIsPrivate {
1566                span,
1567                kind: tcx.def_descr(item_def_id),
1568                name: ident,
1569                defined_here_label: tcx.def_span(item_def_id),
1570            });
1571        }
1572
1573        tcx.check_stability(item_def_id, Some(block), span, None);
1574    }
1575
1576    fn probe_traits_that_match_assoc_ty(
1577        &self,
1578        qself_ty: Ty<'tcx>,
1579        assoc_ident: Ident,
1580    ) -> Vec<String> {
1581        let tcx = self.tcx();
1582
1583        // In contexts that have no inference context, just make a new one.
1584        // We do need a local variable to store it, though.
1585        let infcx_;
1586        let infcx = if let Some(infcx) = self.infcx() {
1587            infcx
1588        } else {
1589            assert!(!qself_ty.has_infer());
1590            infcx_ = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
1591            &infcx_
1592        };
1593
1594        tcx.all_traits_including_private()
1595            .filter(|trait_def_id| {
1596                // Consider only traits with the associated type
1597                tcx.associated_items(*trait_def_id)
1598                        .in_definition_order()
1599                        .any(|i| {
1600                            i.is_type()
1601                                && !i.is_impl_trait_in_trait()
1602                                && i.ident(tcx).normalize_to_macros_2_0() == assoc_ident
1603                        })
1604                    // Consider only accessible traits
1605                    && tcx.visibility(*trait_def_id)
1606                        .is_accessible_from(self.item_def_id(), tcx)
1607                    && tcx.all_impls(*trait_def_id)
1608                        .any(|impl_def_id| {
1609                            let header = tcx.impl_trait_header(impl_def_id).unwrap();
1610                            let trait_ref = header.trait_ref.instantiate(
1611                                tcx,
1612                                infcx.fresh_args_for_item(DUMMY_SP, impl_def_id),
1613                            );
1614
1615                            let value = fold_regions(tcx, qself_ty, |_, _| tcx.lifetimes.re_erased);
1616                            // FIXME: Don't bother dealing with non-lifetime binders here...
1617                            if value.has_escaping_bound_vars() {
1618                                return false;
1619                            }
1620                            infcx
1621                                .can_eq(
1622                                    ty::ParamEnv::empty(),
1623                                    trait_ref.self_ty(),
1624                                    value,
1625                                ) && header.polarity != ty::ImplPolarity::Negative
1626                        })
1627            })
1628            .map(|trait_def_id| tcx.def_path_str(trait_def_id))
1629            .collect()
1630    }
1631
1632    /// Lower a [resolved][hir::QPath::Resolved] associated type path to a projection.
1633    #[instrument(level = "debug", skip_all)]
1634    fn lower_resolved_assoc_ty_path(
1635        &self,
1636        span: Span,
1637        opt_self_ty: Option<Ty<'tcx>>,
1638        item_def_id: DefId,
1639        trait_segment: Option<&hir::PathSegment<'tcx>>,
1640        item_segment: &hir::PathSegment<'tcx>,
1641    ) -> Ty<'tcx> {
1642        match self.lower_resolved_assoc_item_path(
1643            span,
1644            opt_self_ty,
1645            item_def_id,
1646            trait_segment,
1647            item_segment,
1648            ty::AssocTag::Type,
1649        ) {
1650            Ok((item_def_id, item_args)) => {
1651                Ty::new_projection_from_args(self.tcx(), item_def_id, item_args)
1652            }
1653            Err(guar) => Ty::new_error(self.tcx(), guar),
1654        }
1655    }
1656
1657    /// Lower a [resolved][hir::QPath::Resolved] associated const path to a (type-level) constant.
1658    #[instrument(level = "debug", skip_all)]
1659    fn lower_resolved_assoc_const_path(
1660        &self,
1661        span: Span,
1662        opt_self_ty: Option<Ty<'tcx>>,
1663        item_def_id: DefId,
1664        trait_segment: Option<&hir::PathSegment<'tcx>>,
1665        item_segment: &hir::PathSegment<'tcx>,
1666    ) -> Const<'tcx> {
1667        match self.lower_resolved_assoc_item_path(
1668            span,
1669            opt_self_ty,
1670            item_def_id,
1671            trait_segment,
1672            item_segment,
1673            ty::AssocTag::Const,
1674        ) {
1675            Ok((item_def_id, item_args)) => {
1676                let uv = ty::UnevaluatedConst::new(item_def_id, item_args);
1677                Const::new_unevaluated(self.tcx(), uv)
1678            }
1679            Err(guar) => Const::new_error(self.tcx(), guar),
1680        }
1681    }
1682
1683    /// Lower a [resolved][hir::QPath::Resolved] (type-level) associated item path.
1684    #[instrument(level = "debug", skip_all)]
1685    fn lower_resolved_assoc_item_path(
1686        &self,
1687        span: Span,
1688        opt_self_ty: Option<Ty<'tcx>>,
1689        item_def_id: DefId,
1690        trait_segment: Option<&hir::PathSegment<'tcx>>,
1691        item_segment: &hir::PathSegment<'tcx>,
1692        assoc_tag: ty::AssocTag,
1693    ) -> Result<(DefId, GenericArgsRef<'tcx>), ErrorGuaranteed> {
1694        let tcx = self.tcx();
1695
1696        let trait_def_id = tcx.parent(item_def_id);
1697        debug!(?trait_def_id);
1698
1699        let Some(self_ty) = opt_self_ty else {
1700            return Err(self.report_missing_self_ty_for_resolved_path(
1701                trait_def_id,
1702                span,
1703                item_segment,
1704                assoc_tag,
1705            ));
1706        };
1707        debug!(?self_ty);
1708
1709        let trait_ref =
1710            self.lower_mono_trait_ref(span, trait_def_id, self_ty, trait_segment.unwrap(), false);
1711        debug!(?trait_ref);
1712
1713        let item_args =
1714            self.lower_generic_args_of_assoc_item(span, item_def_id, item_segment, trait_ref.args);
1715
1716        Ok((item_def_id, item_args))
1717    }
1718
1719    pub fn prohibit_generic_args<'a>(
1720        &self,
1721        segments: impl Iterator<Item = &'a hir::PathSegment<'a>> + Clone,
1722        err_extend: GenericsArgsErrExtend<'a>,
1723    ) -> Result<(), ErrorGuaranteed> {
1724        let args_visitors = segments.clone().flat_map(|segment| segment.args().args);
1725        let mut result = Ok(());
1726        if let Some(_) = args_visitors.clone().next() {
1727            result = Err(self.report_prohibited_generic_args(
1728                segments.clone(),
1729                args_visitors,
1730                err_extend,
1731            ));
1732        }
1733
1734        for segment in segments {
1735            // Only emit the first error to avoid overloading the user with error messages.
1736            if let Some(c) = segment.args().constraints.first() {
1737                return Err(prohibit_assoc_item_constraint(self, c, None));
1738            }
1739        }
1740
1741        result
1742    }
1743
1744    /// Probe path segments that are semantically allowed to have generic arguments.
1745    ///
1746    /// ### Example
1747    ///
1748    /// ```ignore (illustrative)
1749    ///    Option::None::<()>
1750    /// //         ^^^^ permitted to have generic args
1751    ///
1752    /// // ==> [GenericPathSegment(Option_def_id, 1)]
1753    ///
1754    ///    Option::<()>::None
1755    /// // ^^^^^^        ^^^^ *not* permitted to have generic args
1756    /// // permitted to have generic args
1757    ///
1758    /// // ==> [GenericPathSegment(Option_def_id, 0)]
1759    /// ```
1760    // FIXME(eddyb, varkor) handle type paths here too, not just value ones.
1761    pub fn probe_generic_path_segments(
1762        &self,
1763        segments: &[hir::PathSegment<'_>],
1764        self_ty: Option<Ty<'tcx>>,
1765        kind: DefKind,
1766        def_id: DefId,
1767        span: Span,
1768    ) -> Vec<GenericPathSegment> {
1769        // We need to extract the generic arguments supplied by the user in
1770        // the path `path`. Due to the current setup, this is a bit of a
1771        // tricky process; the problem is that resolve only tells us the
1772        // end-point of the path resolution, and not the intermediate steps.
1773        // Luckily, we can (at least for now) deduce the intermediate steps
1774        // just from the end-point.
1775        //
1776        // There are basically five cases to consider:
1777        //
1778        // 1. Reference to a constructor of a struct:
1779        //
1780        //        struct Foo<T>(...)
1781        //
1782        //    In this case, the generic arguments are declared in the type space.
1783        //
1784        // 2. Reference to a constructor of an enum variant:
1785        //
1786        //        enum E<T> { Foo(...) }
1787        //
1788        //    In this case, the generic arguments are defined in the type space,
1789        //    but may be specified either on the type or the variant.
1790        //
1791        // 3. Reference to a free function or constant:
1792        //
1793        //        fn foo<T>() {}
1794        //
1795        //    In this case, the path will again always have the form
1796        //    `a::b::foo::<T>` where only the final segment should have generic
1797        //    arguments. However, in this case, those arguments are declared on
1798        //    a value, and hence are in the value space.
1799        //
1800        // 4. Reference to an associated function or constant:
1801        //
1802        //        impl<A> SomeStruct<A> {
1803        //            fn foo<B>(...) {}
1804        //        }
1805        //
1806        //    Here we can have a path like `a::b::SomeStruct::<A>::foo::<B>`,
1807        //    in which case generic arguments may appear in two places. The
1808        //    penultimate segment, `SomeStruct::<A>`, contains generic arguments
1809        //    in the type space, and the final segment, `foo::<B>` contains
1810        //    generic arguments in value space.
1811        //
1812        // The first step then is to categorize the segments appropriately.
1813
1814        let tcx = self.tcx();
1815
1816        assert!(!segments.is_empty());
1817        let last = segments.len() - 1;
1818
1819        let mut generic_segments = vec![];
1820
1821        match kind {
1822            // Case 1. Reference to a struct constructor.
1823            DefKind::Ctor(CtorOf::Struct, ..) => {
1824                // Everything but the final segment should have no
1825                // parameters at all.
1826                let generics = tcx.generics_of(def_id);
1827                // Variant and struct constructors use the
1828                // generics of their parent type definition.
1829                let generics_def_id = generics.parent.unwrap_or(def_id);
1830                generic_segments.push(GenericPathSegment(generics_def_id, last));
1831            }
1832
1833            // Case 2. Reference to a variant constructor.
1834            DefKind::Ctor(CtorOf::Variant, ..) | DefKind::Variant => {
1835                let (generics_def_id, index) = if let Some(self_ty) = self_ty {
1836                    let adt_def = self.probe_adt(span, self_ty).unwrap();
1837                    debug_assert!(adt_def.is_enum());
1838                    (adt_def.did(), last)
1839                } else if last >= 1 && segments[last - 1].args.is_some() {
1840                    // Everything but the penultimate segment should have no
1841                    // parameters at all.
1842                    let mut def_id = def_id;
1843
1844                    // `DefKind::Ctor` -> `DefKind::Variant`
1845                    if let DefKind::Ctor(..) = kind {
1846                        def_id = tcx.parent(def_id);
1847                    }
1848
1849                    // `DefKind::Variant` -> `DefKind::Enum`
1850                    let enum_def_id = tcx.parent(def_id);
1851                    (enum_def_id, last - 1)
1852                } else {
1853                    // FIXME: lint here recommending `Enum::<...>::Variant` form
1854                    // instead of `Enum::Variant::<...>` form.
1855
1856                    // Everything but the final segment should have no
1857                    // parameters at all.
1858                    let generics = tcx.generics_of(def_id);
1859                    // Variant and struct constructors use the
1860                    // generics of their parent type definition.
1861                    (generics.parent.unwrap_or(def_id), last)
1862                };
1863                generic_segments.push(GenericPathSegment(generics_def_id, index));
1864            }
1865
1866            // Case 3. Reference to a top-level value.
1867            DefKind::Fn | DefKind::Const | DefKind::ConstParam | DefKind::Static { .. } => {
1868                generic_segments.push(GenericPathSegment(def_id, last));
1869            }
1870
1871            // Case 4. Reference to a method or associated const.
1872            DefKind::AssocFn | DefKind::AssocConst => {
1873                if segments.len() >= 2 {
1874                    let generics = tcx.generics_of(def_id);
1875                    generic_segments.push(GenericPathSegment(generics.parent.unwrap(), last - 1));
1876                }
1877                generic_segments.push(GenericPathSegment(def_id, last));
1878            }
1879
1880            kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
1881        }
1882
1883        debug!(?generic_segments);
1884
1885        generic_segments
1886    }
1887
1888    /// Lower a [resolved][hir::QPath::Resolved] path to a type.
1889    #[instrument(level = "debug", skip_all)]
1890    pub fn lower_resolved_ty_path(
1891        &self,
1892        opt_self_ty: Option<Ty<'tcx>>,
1893        path: &hir::Path<'tcx>,
1894        hir_id: HirId,
1895        permit_variants: PermitVariants,
1896    ) -> Ty<'tcx> {
1897        debug!(?path.res, ?opt_self_ty, ?path.segments);
1898        let tcx = self.tcx();
1899
1900        let span = path.span;
1901        match path.res {
1902            Res::Def(DefKind::OpaqueTy, did) => {
1903                // Check for desugared `impl Trait`.
1904                assert_matches!(tcx.opaque_ty_origin(did), hir::OpaqueTyOrigin::TyAlias { .. });
1905                let item_segment = path.segments.split_last().unwrap();
1906                let _ = self
1907                    .prohibit_generic_args(item_segment.1.iter(), GenericsArgsErrExtend::OpaqueTy);
1908                let args = self.lower_generic_args_of_path_segment(span, did, item_segment.0);
1909                Ty::new_opaque(tcx, did, args)
1910            }
1911            Res::Def(
1912                DefKind::Enum
1913                | DefKind::TyAlias
1914                | DefKind::Struct
1915                | DefKind::Union
1916                | DefKind::ForeignTy,
1917                did,
1918            ) => {
1919                assert_eq!(opt_self_ty, None);
1920                let _ = self.prohibit_generic_args(
1921                    path.segments.split_last().unwrap().1.iter(),
1922                    GenericsArgsErrExtend::None,
1923                );
1924                self.lower_path_segment(span, did, path.segments.last().unwrap())
1925            }
1926            Res::Def(kind @ DefKind::Variant, def_id)
1927                if let PermitVariants::Yes = permit_variants =>
1928            {
1929                // Lower "variant type" as if it were a real type.
1930                // The resulting `Ty` is type of the variant's enum for now.
1931                assert_eq!(opt_self_ty, None);
1932
1933                let generic_segments =
1934                    self.probe_generic_path_segments(path.segments, None, kind, def_id, span);
1935                let indices: FxHashSet<_> =
1936                    generic_segments.iter().map(|GenericPathSegment(_, index)| index).collect();
1937                let _ = self.prohibit_generic_args(
1938                    path.segments.iter().enumerate().filter_map(|(index, seg)| {
1939                        if !indices.contains(&index) { Some(seg) } else { None }
1940                    }),
1941                    GenericsArgsErrExtend::DefVariant(&path.segments),
1942                );
1943
1944                let GenericPathSegment(def_id, index) = generic_segments.last().unwrap();
1945                self.lower_path_segment(span, *def_id, &path.segments[*index])
1946            }
1947            Res::Def(DefKind::TyParam, def_id) => {
1948                assert_eq!(opt_self_ty, None);
1949                let _ = self.prohibit_generic_args(
1950                    path.segments.iter(),
1951                    GenericsArgsErrExtend::Param(def_id),
1952                );
1953                self.lower_ty_param(hir_id)
1954            }
1955            Res::SelfTyParam { .. } => {
1956                // `Self` in trait or type alias.
1957                assert_eq!(opt_self_ty, None);
1958                let _ = self.prohibit_generic_args(
1959                    path.segments.iter(),
1960                    if let [hir::PathSegment { args: Some(args), ident, .. }] = &path.segments {
1961                        GenericsArgsErrExtend::SelfTyParam(
1962                            ident.span.shrink_to_hi().to(args.span_ext),
1963                        )
1964                    } else {
1965                        GenericsArgsErrExtend::None
1966                    },
1967                );
1968                tcx.types.self_param
1969            }
1970            Res::SelfTyAlias { alias_to: def_id, forbid_generic, .. } => {
1971                // `Self` in impl (we know the concrete type).
1972                assert_eq!(opt_self_ty, None);
1973                // Try to evaluate any array length constants.
1974                let ty = tcx.at(span).type_of(def_id).instantiate_identity();
1975                let _ = self.prohibit_generic_args(
1976                    path.segments.iter(),
1977                    GenericsArgsErrExtend::SelfTyAlias { def_id, span },
1978                );
1979                // HACK(min_const_generics): Forbid generic `Self` types
1980                // here as we can't easily do that during nameres.
1981                //
1982                // We do this before normalization as we otherwise allow
1983                // ```rust
1984                // trait AlwaysApplicable { type Assoc; }
1985                // impl<T: ?Sized> AlwaysApplicable for T { type Assoc = usize; }
1986                //
1987                // trait BindsParam<T> {
1988                //     type ArrayTy;
1989                // }
1990                // impl<T> BindsParam<T> for <T as AlwaysApplicable>::Assoc {
1991                //    type ArrayTy = [u8; Self::MAX];
1992                // }
1993                // ```
1994                // Note that the normalization happens in the param env of
1995                // the anon const, which is empty. This is why the
1996                // `AlwaysApplicable` impl needs a `T: ?Sized` bound for
1997                // this to compile if we were to normalize here.
1998                if forbid_generic && ty.has_param() {
1999                    let mut err = self.dcx().struct_span_err(
2000                        path.span,
2001                        "generic `Self` types are currently not permitted in anonymous constants",
2002                    );
2003                    if let Some(hir::Node::Item(&hir::Item {
2004                        kind: hir::ItemKind::Impl(impl_),
2005                        ..
2006                    })) = tcx.hir_get_if_local(def_id)
2007                    {
2008                        err.span_note(impl_.self_ty.span, "not a concrete type");
2009                    }
2010                    let reported = err.emit();
2011                    Ty::new_error(tcx, reported)
2012                } else {
2013                    ty
2014                }
2015            }
2016            Res::Def(DefKind::AssocTy, def_id) => {
2017                let trait_segment = if let [modules @ .., trait_, _item] = path.segments {
2018                    let _ = self.prohibit_generic_args(modules.iter(), GenericsArgsErrExtend::None);
2019                    Some(trait_)
2020                } else {
2021                    None
2022                };
2023                self.lower_resolved_assoc_ty_path(
2024                    span,
2025                    opt_self_ty,
2026                    def_id,
2027                    trait_segment,
2028                    path.segments.last().unwrap(),
2029                )
2030            }
2031            Res::PrimTy(prim_ty) => {
2032                assert_eq!(opt_self_ty, None);
2033                let _ = self.prohibit_generic_args(
2034                    path.segments.iter(),
2035                    GenericsArgsErrExtend::PrimTy(prim_ty),
2036                );
2037                match prim_ty {
2038                    hir::PrimTy::Bool => tcx.types.bool,
2039                    hir::PrimTy::Char => tcx.types.char,
2040                    hir::PrimTy::Int(it) => Ty::new_int(tcx, ty::int_ty(it)),
2041                    hir::PrimTy::Uint(uit) => Ty::new_uint(tcx, ty::uint_ty(uit)),
2042                    hir::PrimTy::Float(ft) => Ty::new_float(tcx, ty::float_ty(ft)),
2043                    hir::PrimTy::Str => tcx.types.str_,
2044                }
2045            }
2046            Res::Err => {
2047                let e = self
2048                    .tcx()
2049                    .dcx()
2050                    .span_delayed_bug(path.span, "path with `Res::Err` but no error emitted");
2051                Ty::new_error(tcx, e)
2052            }
2053            Res::Def(..) => {
2054                assert_eq!(
2055                    path.segments.get(0).map(|seg| seg.ident.name),
2056                    Some(kw::SelfUpper),
2057                    "only expected incorrect resolution for `Self`"
2058                );
2059                Ty::new_error(
2060                    self.tcx(),
2061                    self.dcx().span_delayed_bug(span, "incorrect resolution for `Self`"),
2062                )
2063            }
2064            _ => span_bug!(span, "unexpected resolution: {:?}", path.res),
2065        }
2066    }
2067
2068    /// Lower a type parameter from the HIR to our internal notion of a type.
2069    ///
2070    /// Early-bound type parameters get lowered to [`ty::Param`]
2071    /// and late-bound ones to [`ty::Bound`].
2072    pub(crate) fn lower_ty_param(&self, hir_id: HirId) -> Ty<'tcx> {
2073        let tcx = self.tcx();
2074        match tcx.named_bound_var(hir_id) {
2075            Some(rbv::ResolvedArg::LateBound(debruijn, index, def_id)) => {
2076                let br = ty::BoundTy {
2077                    var: ty::BoundVar::from_u32(index),
2078                    kind: ty::BoundTyKind::Param(def_id.to_def_id()),
2079                };
2080                Ty::new_bound(tcx, debruijn, br)
2081            }
2082            Some(rbv::ResolvedArg::EarlyBound(def_id)) => {
2083                let item_def_id = tcx.hir_ty_param_owner(def_id);
2084                let generics = tcx.generics_of(item_def_id);
2085                let index = generics.param_def_id_to_index[&def_id.to_def_id()];
2086                Ty::new_param(tcx, index, tcx.hir_ty_param_name(def_id))
2087            }
2088            Some(rbv::ResolvedArg::Error(guar)) => Ty::new_error(tcx, guar),
2089            arg => bug!("unexpected bound var resolution for {hir_id:?}: {arg:?}"),
2090        }
2091    }
2092
2093    /// Lower a const parameter from the HIR to our internal notion of a constant.
2094    ///
2095    /// Early-bound const parameters get lowered to [`ty::ConstKind::Param`]
2096    /// and late-bound ones to [`ty::ConstKind::Bound`].
2097    pub(crate) fn lower_const_param(&self, param_def_id: DefId, path_hir_id: HirId) -> Const<'tcx> {
2098        let tcx = self.tcx();
2099
2100        match tcx.named_bound_var(path_hir_id) {
2101            Some(rbv::ResolvedArg::EarlyBound(_)) => {
2102                // Find the name and index of the const parameter by indexing the generics of
2103                // the parent item and construct a `ParamConst`.
2104                let item_def_id = tcx.parent(param_def_id);
2105                let generics = tcx.generics_of(item_def_id);
2106                let index = generics.param_def_id_to_index[&param_def_id];
2107                let name = tcx.item_name(param_def_id);
2108                ty::Const::new_param(tcx, ty::ParamConst::new(index, name))
2109            }
2110            Some(rbv::ResolvedArg::LateBound(debruijn, index, _)) => {
2111                ty::Const::new_bound(tcx, debruijn, ty::BoundVar::from_u32(index))
2112            }
2113            Some(rbv::ResolvedArg::Error(guar)) => ty::Const::new_error(tcx, guar),
2114            arg => bug!("unexpected bound var resolution for {:?}: {arg:?}", path_hir_id),
2115        }
2116    }
2117
2118    /// Lower a [`hir::ConstArg`] to a (type-level) [`ty::Const`](Const).
2119    #[instrument(skip(self), level = "debug")]
2120    pub fn lower_const_arg(
2121        &self,
2122        const_arg: &hir::ConstArg<'tcx>,
2123        feed: FeedConstTy<'_, 'tcx>,
2124    ) -> Const<'tcx> {
2125        let tcx = self.tcx();
2126
2127        if let FeedConstTy::Param(param_def_id, args) = feed
2128            && let hir::ConstArgKind::Anon(anon) = &const_arg.kind
2129        {
2130            let anon_const_type = tcx.type_of(param_def_id).instantiate(tcx, args);
2131
2132            // FIXME(generic_const_parameter_types): Ideally we remove these errors below when
2133            // we have the ability to intermix typeck of anon const const args with the parent
2134            // bodies typeck.
2135
2136            // We also error if the type contains any regions as effectively any region will wind
2137            // up as a region variable in mir borrowck. It would also be somewhat concerning if
2138            // hir typeck was using equality but mir borrowck wound up using subtyping as that could
2139            // result in a non-infer in hir typeck but a region variable in borrowck.
2140            if tcx.features().generic_const_parameter_types()
2141                && (anon_const_type.has_free_regions() || anon_const_type.has_erased_regions())
2142            {
2143                let e = self.dcx().span_err(
2144                    const_arg.span(),
2145                    "anonymous constants with lifetimes in their type are not yet supported",
2146                );
2147                tcx.feed_anon_const_type(anon.def_id, ty::EarlyBinder::bind(Ty::new_error(tcx, e)));
2148                return ty::Const::new_error(tcx, e);
2149            }
2150            // We must error if the instantiated type has any inference variables as we will
2151            // use this type to feed the `type_of` and query results must not contain inference
2152            // variables otherwise we will ICE.
2153            if anon_const_type.has_non_region_infer() {
2154                let e = self.dcx().span_err(
2155                    const_arg.span(),
2156                    "anonymous constants with inferred types are not yet supported",
2157                );
2158                tcx.feed_anon_const_type(anon.def_id, ty::EarlyBinder::bind(Ty::new_error(tcx, e)));
2159                return ty::Const::new_error(tcx, e);
2160            }
2161            // We error when the type contains unsubstituted generics since we do not currently
2162            // give the anon const any of the generics from the parent.
2163            if anon_const_type.has_non_region_param() {
2164                let e = self.dcx().span_err(
2165                    const_arg.span(),
2166                    "anonymous constants referencing generics are not yet supported",
2167                );
2168                tcx.feed_anon_const_type(anon.def_id, ty::EarlyBinder::bind(Ty::new_error(tcx, e)));
2169                return ty::Const::new_error(tcx, e);
2170            }
2171
2172            tcx.feed_anon_const_type(
2173                anon.def_id,
2174                ty::EarlyBinder::bind(tcx.type_of(param_def_id).instantiate(tcx, args)),
2175            );
2176        }
2177
2178        let hir_id = const_arg.hir_id;
2179        match const_arg.kind {
2180            hir::ConstArgKind::Path(hir::QPath::Resolved(maybe_qself, path)) => {
2181                debug!(?maybe_qself, ?path);
2182                let opt_self_ty = maybe_qself.as_ref().map(|qself| self.lower_ty(qself));
2183                self.lower_resolved_const_path(opt_self_ty, path, hir_id)
2184            }
2185            hir::ConstArgKind::Path(hir::QPath::TypeRelative(hir_self_ty, segment)) => {
2186                debug!(?hir_self_ty, ?segment);
2187                let self_ty = self.lower_ty(hir_self_ty);
2188                self.lower_type_relative_const_path(
2189                    self_ty,
2190                    hir_self_ty,
2191                    segment,
2192                    hir_id,
2193                    const_arg.span(),
2194                )
2195                .unwrap_or_else(|guar| Const::new_error(tcx, guar))
2196            }
2197            hir::ConstArgKind::Path(qpath @ hir::QPath::LangItem(..)) => {
2198                ty::Const::new_error_with_message(
2199                    tcx,
2200                    qpath.span(),
2201                    format!("Const::lower_const_arg: invalid qpath {qpath:?}"),
2202                )
2203            }
2204            hir::ConstArgKind::Anon(anon) => self.lower_anon_const(anon),
2205            hir::ConstArgKind::Infer(span, ()) => self.ct_infer(None, span),
2206        }
2207    }
2208
2209    /// Lower a [resolved][hir::QPath::Resolved] path to a (type-level) constant.
2210    fn lower_resolved_const_path(
2211        &self,
2212        opt_self_ty: Option<Ty<'tcx>>,
2213        path: &hir::Path<'tcx>,
2214        hir_id: HirId,
2215    ) -> Const<'tcx> {
2216        let tcx = self.tcx();
2217        let span = path.span;
2218        match path.res {
2219            Res::Def(DefKind::ConstParam, def_id) => {
2220                assert_eq!(opt_self_ty, None);
2221                let _ = self.prohibit_generic_args(
2222                    path.segments.iter(),
2223                    GenericsArgsErrExtend::Param(def_id),
2224                );
2225                self.lower_const_param(def_id, hir_id)
2226            }
2227            Res::Def(DefKind::Const | DefKind::Ctor(_, CtorKind::Const), did) => {
2228                assert_eq!(opt_self_ty, None);
2229                let _ = self.prohibit_generic_args(
2230                    path.segments.split_last().unwrap().1.iter(),
2231                    GenericsArgsErrExtend::None,
2232                );
2233                let args = self.lower_generic_args_of_path_segment(
2234                    span,
2235                    did,
2236                    path.segments.last().unwrap(),
2237                );
2238                ty::Const::new_unevaluated(tcx, ty::UnevaluatedConst::new(did, args))
2239            }
2240            Res::Def(DefKind::AssocConst, did) => {
2241                let trait_segment = if let [modules @ .., trait_, _item] = path.segments {
2242                    let _ = self.prohibit_generic_args(modules.iter(), GenericsArgsErrExtend::None);
2243                    Some(trait_)
2244                } else {
2245                    None
2246                };
2247                self.lower_resolved_assoc_const_path(
2248                    span,
2249                    opt_self_ty,
2250                    did,
2251                    trait_segment,
2252                    path.segments.last().unwrap(),
2253                )
2254            }
2255            Res::Def(DefKind::Static { .. }, _) => {
2256                span_bug!(span, "use of bare `static` ConstArgKind::Path's not yet supported")
2257            }
2258            // FIXME(const_generics): create real const to allow fn items as const paths
2259            Res::Def(DefKind::Fn | DefKind::AssocFn, did) => {
2260                self.dcx().span_delayed_bug(span, "function items cannot be used as const args");
2261                let args = self.lower_generic_args_of_path_segment(
2262                    span,
2263                    did,
2264                    path.segments.last().unwrap(),
2265                );
2266                ty::Const::zero_sized(tcx, Ty::new_fn_def(tcx, did, args))
2267            }
2268
2269            // Exhaustive match to be clear about what exactly we're considering to be
2270            // an invalid Res for a const path.
2271            res @ (Res::Def(
2272                DefKind::Mod
2273                | DefKind::Enum
2274                | DefKind::Variant
2275                | DefKind::Ctor(CtorOf::Variant, CtorKind::Fn)
2276                | DefKind::Struct
2277                | DefKind::Ctor(CtorOf::Struct, CtorKind::Fn)
2278                | DefKind::OpaqueTy
2279                | DefKind::TyAlias
2280                | DefKind::TraitAlias
2281                | DefKind::AssocTy
2282                | DefKind::Union
2283                | DefKind::Trait
2284                | DefKind::ForeignTy
2285                | DefKind::TyParam
2286                | DefKind::Macro(_)
2287                | DefKind::LifetimeParam
2288                | DefKind::Use
2289                | DefKind::ForeignMod
2290                | DefKind::AnonConst
2291                | DefKind::InlineConst
2292                | DefKind::Field
2293                | DefKind::Impl { .. }
2294                | DefKind::Closure
2295                | DefKind::ExternCrate
2296                | DefKind::GlobalAsm
2297                | DefKind::SyntheticCoroutineBody,
2298                _,
2299            )
2300            | Res::PrimTy(_)
2301            | Res::SelfTyParam { .. }
2302            | Res::SelfTyAlias { .. }
2303            | Res::SelfCtor(_)
2304            | Res::Local(_)
2305            | Res::ToolMod
2306            | Res::NonMacroAttr(_)
2307            | Res::Err) => Const::new_error_with_message(
2308                tcx,
2309                span,
2310                format!("invalid Res {res:?} for const path"),
2311            ),
2312        }
2313    }
2314
2315    /// Literals are eagerly converted to a constant, everything else becomes `Unevaluated`.
2316    #[instrument(skip(self), level = "debug")]
2317    fn lower_anon_const(&self, anon: &AnonConst) -> Const<'tcx> {
2318        let tcx = self.tcx();
2319
2320        let expr = &tcx.hir_body(anon.body).value;
2321        debug!(?expr);
2322
2323        // FIXME(generic_const_parameter_types): We should use the proper generic args
2324        // here. It's only used as a hint for literals so doesn't matter too much to use the right
2325        // generic arguments, just weaker type inference.
2326        let ty = tcx.type_of(anon.def_id).instantiate_identity();
2327
2328        match self.try_lower_anon_const_lit(ty, expr) {
2329            Some(v) => v,
2330            None => ty::Const::new_unevaluated(
2331                tcx,
2332                ty::UnevaluatedConst {
2333                    def: anon.def_id.to_def_id(),
2334                    args: ty::GenericArgs::identity_for_item(tcx, anon.def_id.to_def_id()),
2335                },
2336            ),
2337        }
2338    }
2339
2340    #[instrument(skip(self), level = "debug")]
2341    fn try_lower_anon_const_lit(
2342        &self,
2343        ty: Ty<'tcx>,
2344        expr: &'tcx hir::Expr<'tcx>,
2345    ) -> Option<Const<'tcx>> {
2346        let tcx = self.tcx();
2347
2348        // Unwrap a block, so that e.g. `{ P }` is recognised as a parameter. Const arguments
2349        // currently have to be wrapped in curly brackets, so it's necessary to special-case.
2350        let expr = match &expr.kind {
2351            hir::ExprKind::Block(block, _) if block.stmts.is_empty() && block.expr.is_some() => {
2352                block.expr.as_ref().unwrap()
2353            }
2354            _ => expr,
2355        };
2356
2357        if let hir::ExprKind::Path(hir::QPath::Resolved(
2358            _,
2359            &hir::Path { res: Res::Def(DefKind::ConstParam, _), .. },
2360        )) = expr.kind
2361        {
2362            span_bug!(
2363                expr.span,
2364                "try_lower_anon_const_lit: received const param which shouldn't be possible"
2365            );
2366        };
2367
2368        let lit_input = match expr.kind {
2369            hir::ExprKind::Lit(lit) => Some(LitToConstInput { lit: lit.node, ty, neg: false }),
2370            hir::ExprKind::Unary(hir::UnOp::Neg, expr) => match expr.kind {
2371                hir::ExprKind::Lit(lit) => Some(LitToConstInput { lit: lit.node, ty, neg: true }),
2372                _ => None,
2373            },
2374            _ => None,
2375        };
2376
2377        lit_input
2378            // Allow the `ty` to be an alias type, though we cannot handle it here, we just go through
2379            // the more expensive anon const code path.
2380            .filter(|l| !l.ty.has_aliases())
2381            .map(|l| tcx.at(expr.span).lit_to_const(l))
2382    }
2383
2384    fn lower_delegation_ty(&self, idx: hir::InferDelegationKind) -> Ty<'tcx> {
2385        let delegation_sig = self.tcx().inherit_sig_for_delegation_item(self.item_def_id());
2386        match idx {
2387            hir::InferDelegationKind::Input(idx) => delegation_sig[idx],
2388            hir::InferDelegationKind::Output => *delegation_sig.last().unwrap(),
2389        }
2390    }
2391
2392    /// Lower a type from the HIR to our internal notion of a type.
2393    #[instrument(level = "debug", skip(self), ret)]
2394    pub fn lower_ty(&self, hir_ty: &hir::Ty<'tcx>) -> Ty<'tcx> {
2395        let tcx = self.tcx();
2396
2397        let result_ty = match &hir_ty.kind {
2398            hir::TyKind::InferDelegation(_, idx) => self.lower_delegation_ty(*idx),
2399            hir::TyKind::Slice(ty) => Ty::new_slice(tcx, self.lower_ty(ty)),
2400            hir::TyKind::Ptr(mt) => Ty::new_ptr(tcx, self.lower_ty(mt.ty), mt.mutbl),
2401            hir::TyKind::Ref(region, mt) => {
2402                let r = self.lower_lifetime(region, RegionInferReason::Reference);
2403                debug!(?r);
2404                let t = self.lower_ty(mt.ty);
2405                Ty::new_ref(tcx, r, t, mt.mutbl)
2406            }
2407            hir::TyKind::Never => tcx.types.never,
2408            hir::TyKind::Tup(fields) => {
2409                Ty::new_tup_from_iter(tcx, fields.iter().map(|t| self.lower_ty(t)))
2410            }
2411            hir::TyKind::FnPtr(bf) => {
2412                require_c_abi_if_c_variadic(tcx, bf.decl, bf.abi, hir_ty.span);
2413
2414                Ty::new_fn_ptr(
2415                    tcx,
2416                    self.lower_fn_ty(hir_ty.hir_id, bf.safety, bf.abi, bf.decl, None, Some(hir_ty)),
2417                )
2418            }
2419            hir::TyKind::UnsafeBinder(binder) => Ty::new_unsafe_binder(
2420                tcx,
2421                ty::Binder::bind_with_vars(
2422                    self.lower_ty(binder.inner_ty),
2423                    tcx.late_bound_vars(hir_ty.hir_id),
2424                ),
2425            ),
2426            hir::TyKind::TraitObject(bounds, tagged_ptr) => {
2427                let lifetime = tagged_ptr.pointer();
2428                let repr = tagged_ptr.tag();
2429
2430                if let Some(guar) = self.prohibit_or_lint_bare_trait_object_ty(hir_ty) {
2431                    // Don't continue with type analysis if the `dyn` keyword is missing
2432                    // It generates confusing errors, especially if the user meant to use another
2433                    // keyword like `impl`
2434                    Ty::new_error(tcx, guar)
2435                } else {
2436                    let repr = match repr {
2437                        TraitObjectSyntax::Dyn | TraitObjectSyntax::None => ty::Dyn,
2438                    };
2439                    self.lower_trait_object_ty(hir_ty.span, hir_ty.hir_id, bounds, lifetime, repr)
2440                }
2441            }
2442            // If we encounter a fully qualified path with RTN generics, then it must have
2443            // *not* gone through `lower_ty_maybe_return_type_notation`, and therefore
2444            // it's certainly in an illegal position.
2445            hir::TyKind::Path(hir::QPath::Resolved(_, path))
2446                if path.segments.last().and_then(|segment| segment.args).is_some_and(|args| {
2447                    matches!(args.parenthesized, hir::GenericArgsParentheses::ReturnTypeNotation)
2448                }) =>
2449            {
2450                let guar = self.dcx().emit_err(BadReturnTypeNotation { span: hir_ty.span });
2451                Ty::new_error(tcx, guar)
2452            }
2453            hir::TyKind::Path(hir::QPath::Resolved(maybe_qself, path)) => {
2454                debug!(?maybe_qself, ?path);
2455                let opt_self_ty = maybe_qself.as_ref().map(|qself| self.lower_ty(qself));
2456                self.lower_resolved_ty_path(opt_self_ty, path, hir_ty.hir_id, PermitVariants::No)
2457            }
2458            &hir::TyKind::OpaqueDef(opaque_ty) => {
2459                // If this is an RPITIT and we are using the new RPITIT lowering scheme, we
2460                // generate the def_id of an associated type for the trait and return as
2461                // type a projection.
2462                let in_trait = match opaque_ty.origin {
2463                    hir::OpaqueTyOrigin::FnReturn {
2464                        parent,
2465                        in_trait_or_impl: Some(hir::RpitContext::Trait),
2466                        ..
2467                    }
2468                    | hir::OpaqueTyOrigin::AsyncFn {
2469                        parent,
2470                        in_trait_or_impl: Some(hir::RpitContext::Trait),
2471                        ..
2472                    } => Some(parent),
2473                    hir::OpaqueTyOrigin::FnReturn {
2474                        in_trait_or_impl: None | Some(hir::RpitContext::TraitImpl),
2475                        ..
2476                    }
2477                    | hir::OpaqueTyOrigin::AsyncFn {
2478                        in_trait_or_impl: None | Some(hir::RpitContext::TraitImpl),
2479                        ..
2480                    }
2481                    | hir::OpaqueTyOrigin::TyAlias { .. } => None,
2482                };
2483
2484                self.lower_opaque_ty(opaque_ty.def_id, in_trait)
2485            }
2486            hir::TyKind::TraitAscription(hir_bounds) => {
2487                // Impl trait in bindings lower as an infer var with additional
2488                // set of type bounds.
2489                let self_ty = self.ty_infer(None, hir_ty.span);
2490                let mut bounds = Vec::new();
2491                self.lower_bounds(
2492                    self_ty,
2493                    hir_bounds.iter(),
2494                    &mut bounds,
2495                    ty::List::empty(),
2496                    PredicateFilter::All,
2497                );
2498                self.register_trait_ascription_bounds(bounds, hir_ty.hir_id, hir_ty.span);
2499                self_ty
2500            }
2501            // If we encounter a type relative path with RTN generics, then it must have
2502            // *not* gone through `lower_ty_maybe_return_type_notation`, and therefore
2503            // it's certainly in an illegal position.
2504            hir::TyKind::Path(hir::QPath::TypeRelative(_, segment))
2505                if segment.args.is_some_and(|args| {
2506                    matches!(args.parenthesized, hir::GenericArgsParentheses::ReturnTypeNotation)
2507                }) =>
2508            {
2509                let guar = self.dcx().emit_err(BadReturnTypeNotation { span: hir_ty.span });
2510                Ty::new_error(tcx, guar)
2511            }
2512            hir::TyKind::Path(hir::QPath::TypeRelative(hir_self_ty, segment)) => {
2513                debug!(?hir_self_ty, ?segment);
2514                let self_ty = self.lower_ty(hir_self_ty);
2515                self.lower_type_relative_ty_path(
2516                    self_ty,
2517                    hir_self_ty,
2518                    segment,
2519                    hir_ty.hir_id,
2520                    hir_ty.span,
2521                    PermitVariants::No,
2522                )
2523                .map(|(ty, _, _)| ty)
2524                .unwrap_or_else(|guar| Ty::new_error(tcx, guar))
2525            }
2526            &hir::TyKind::Path(hir::QPath::LangItem(lang_item, span)) => {
2527                let def_id = tcx.require_lang_item(lang_item, span);
2528                let (args, _) = self.lower_generic_args_of_path(
2529                    span,
2530                    def_id,
2531                    &[],
2532                    &hir::PathSegment::invalid(),
2533                    None,
2534                );
2535                tcx.at(span).type_of(def_id).instantiate(tcx, args)
2536            }
2537            hir::TyKind::Array(ty, length) => {
2538                let length = self.lower_const_arg(length, FeedConstTy::No);
2539                Ty::new_array_with_const_len(tcx, self.lower_ty(ty), length)
2540            }
2541            hir::TyKind::Typeof(e) => tcx.type_of(e.def_id).instantiate_identity(),
2542            hir::TyKind::Infer(()) => {
2543                // Infer also appears as the type of arguments or return
2544                // values in an ExprKind::Closure, or as
2545                // the type of local variables. Both of these cases are
2546                // handled specially and will not descend into this routine.
2547                self.ty_infer(None, hir_ty.span)
2548            }
2549            hir::TyKind::Pat(ty, pat) => {
2550                let ty_span = ty.span;
2551                let ty = self.lower_ty(ty);
2552                let pat_ty = match self.lower_pat_ty_pat(ty, ty_span, pat) {
2553                    Ok(kind) => Ty::new_pat(tcx, ty, tcx.mk_pat(kind)),
2554                    Err(guar) => Ty::new_error(tcx, guar),
2555                };
2556                self.record_ty(pat.hir_id, ty, pat.span);
2557                pat_ty
2558            }
2559            hir::TyKind::Err(guar) => Ty::new_error(tcx, *guar),
2560        };
2561
2562        self.record_ty(hir_ty.hir_id, result_ty, hir_ty.span);
2563        result_ty
2564    }
2565
2566    fn lower_pat_ty_pat(
2567        &self,
2568        ty: Ty<'tcx>,
2569        ty_span: Span,
2570        pat: &hir::TyPat<'tcx>,
2571    ) -> Result<ty::PatternKind<'tcx>, ErrorGuaranteed> {
2572        let tcx = self.tcx();
2573        match pat.kind {
2574            hir::TyPatKind::Range(start, end) => {
2575                match ty.kind() {
2576                    // Keep this list of types in sync with the list of types that
2577                    // the `RangePattern` trait is implemented for.
2578                    ty::Int(_) | ty::Uint(_) | ty::Char => {
2579                        let start = self.lower_const_arg(start, FeedConstTy::No);
2580                        let end = self.lower_const_arg(end, FeedConstTy::No);
2581                        Ok(ty::PatternKind::Range { start, end })
2582                    }
2583                    _ => Err(self
2584                        .dcx()
2585                        .span_delayed_bug(ty_span, "invalid base type for range pattern")),
2586                }
2587            }
2588            hir::TyPatKind::Or(patterns) => {
2589                self.tcx()
2590                    .mk_patterns_from_iter(patterns.iter().map(|pat| {
2591                        self.lower_pat_ty_pat(ty, ty_span, pat).map(|pat| tcx.mk_pat(pat))
2592                    }))
2593                    .map(ty::PatternKind::Or)
2594            }
2595            hir::TyPatKind::Err(e) => Err(e),
2596        }
2597    }
2598
2599    /// Lower an opaque type (i.e., an existential impl-Trait type) from the HIR.
2600    #[instrument(level = "debug", skip(self), ret)]
2601    fn lower_opaque_ty(&self, def_id: LocalDefId, in_trait: Option<LocalDefId>) -> Ty<'tcx> {
2602        let tcx = self.tcx();
2603
2604        let lifetimes = tcx.opaque_captured_lifetimes(def_id);
2605        debug!(?lifetimes);
2606
2607        // If this is an RPITIT and we are using the new RPITIT lowering scheme,
2608        // do a linear search to map this to the synthetic associated type that
2609        // it will be lowered to.
2610        let def_id = if let Some(parent_def_id) = in_trait {
2611            *tcx.associated_types_for_impl_traits_in_associated_fn(parent_def_id.to_def_id())
2612                .iter()
2613                .find(|rpitit| match tcx.opt_rpitit_info(**rpitit) {
2614                    Some(ty::ImplTraitInTraitData::Trait { opaque_def_id, .. }) => {
2615                        opaque_def_id.expect_local() == def_id
2616                    }
2617                    _ => unreachable!(),
2618                })
2619                .unwrap()
2620        } else {
2621            def_id.to_def_id()
2622        };
2623
2624        let generics = tcx.generics_of(def_id);
2625        debug!(?generics);
2626
2627        // We use `generics.count() - lifetimes.len()` here instead of `generics.parent_count`
2628        // since return-position impl trait in trait squashes all of the generics from its source fn
2629        // into its own generics, so the opaque's "own" params isn't always just lifetimes.
2630        let offset = generics.count() - lifetimes.len();
2631
2632        let args = ty::GenericArgs::for_item(tcx, def_id, |param, _| {
2633            if let Some(i) = (param.index as usize).checked_sub(offset) {
2634                let (lifetime, _) = lifetimes[i];
2635                self.lower_resolved_lifetime(lifetime).into()
2636            } else {
2637                tcx.mk_param_from_def(param)
2638            }
2639        });
2640        debug!(?args);
2641
2642        if in_trait.is_some() {
2643            Ty::new_projection_from_args(tcx, def_id, args)
2644        } else {
2645            Ty::new_opaque(tcx, def_id, args)
2646        }
2647    }
2648
2649    /// Lower a function type from the HIR to our internal notion of a function signature.
2650    #[instrument(level = "debug", skip(self, hir_id, safety, abi, decl, generics, hir_ty), ret)]
2651    pub fn lower_fn_ty(
2652        &self,
2653        hir_id: HirId,
2654        safety: hir::Safety,
2655        abi: rustc_abi::ExternAbi,
2656        decl: &hir::FnDecl<'tcx>,
2657        generics: Option<&hir::Generics<'_>>,
2658        hir_ty: Option<&hir::Ty<'_>>,
2659    ) -> ty::PolyFnSig<'tcx> {
2660        let tcx = self.tcx();
2661        let bound_vars = tcx.late_bound_vars(hir_id);
2662        debug!(?bound_vars);
2663
2664        let (input_tys, output_ty) = self.lower_fn_sig(decl, generics, hir_id, hir_ty);
2665
2666        debug!(?output_ty);
2667
2668        let fn_ty = tcx.mk_fn_sig(input_tys, output_ty, decl.c_variadic, safety, abi);
2669        let fn_ptr_ty = ty::Binder::bind_with_vars(fn_ty, bound_vars);
2670
2671        if let hir::Node::Ty(hir::Ty { kind: hir::TyKind::FnPtr(fn_ptr_ty), span, .. }) =
2672            tcx.hir_node(hir_id)
2673        {
2674            check_abi(tcx, hir_id, *span, fn_ptr_ty.abi);
2675        }
2676
2677        // reject function types that violate cmse ABI requirements
2678        cmse::validate_cmse_abi(self.tcx(), self.dcx(), hir_id, abi, fn_ptr_ty);
2679
2680        if !fn_ptr_ty.references_error() {
2681            // Find any late-bound regions declared in return type that do
2682            // not appear in the arguments. These are not well-formed.
2683            //
2684            // Example:
2685            //     for<'a> fn() -> &'a str <-- 'a is bad
2686            //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
2687            let inputs = fn_ptr_ty.inputs();
2688            let late_bound_in_args =
2689                tcx.collect_constrained_late_bound_regions(inputs.map_bound(|i| i.to_owned()));
2690            let output = fn_ptr_ty.output();
2691            let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(output);
2692
2693            self.validate_late_bound_regions(late_bound_in_args, late_bound_in_ret, |br_name| {
2694                struct_span_code_err!(
2695                    self.dcx(),
2696                    decl.output.span(),
2697                    E0581,
2698                    "return type references {}, which is not constrained by the fn input types",
2699                    br_name
2700                )
2701            });
2702        }
2703
2704        fn_ptr_ty
2705    }
2706
2707    /// Given a fn_hir_id for a impl function, suggest the type that is found on the
2708    /// corresponding function in the trait that the impl implements, if it exists.
2709    /// If arg_idx is Some, then it corresponds to an input type index, otherwise it
2710    /// corresponds to the return type.
2711    pub(super) fn suggest_trait_fn_ty_for_impl_fn_infer(
2712        &self,
2713        fn_hir_id: HirId,
2714        arg_idx: Option<usize>,
2715    ) -> Option<Ty<'tcx>> {
2716        let tcx = self.tcx();
2717        let hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), ident, .. }) =
2718            tcx.hir_node(fn_hir_id)
2719        else {
2720            return None;
2721        };
2722        let i = tcx.parent_hir_node(fn_hir_id).expect_item().expect_impl();
2723
2724        let trait_ref = self.lower_impl_trait_ref(i.of_trait.as_ref()?, self.lower_ty(i.self_ty));
2725
2726        let assoc = tcx.associated_items(trait_ref.def_id).find_by_ident_and_kind(
2727            tcx,
2728            *ident,
2729            ty::AssocTag::Fn,
2730            trait_ref.def_id,
2731        )?;
2732
2733        let fn_sig = tcx.fn_sig(assoc.def_id).instantiate(
2734            tcx,
2735            trait_ref.args.extend_to(tcx, assoc.def_id, |param, _| tcx.mk_param_from_def(param)),
2736        );
2737        let fn_sig = tcx.liberate_late_bound_regions(fn_hir_id.expect_owner().to_def_id(), fn_sig);
2738
2739        Some(if let Some(arg_idx) = arg_idx {
2740            *fn_sig.inputs().get(arg_idx)?
2741        } else {
2742            fn_sig.output()
2743        })
2744    }
2745
2746    #[instrument(level = "trace", skip(self, generate_err))]
2747    fn validate_late_bound_regions<'cx>(
2748        &'cx self,
2749        constrained_regions: FxIndexSet<ty::BoundRegionKind>,
2750        referenced_regions: FxIndexSet<ty::BoundRegionKind>,
2751        generate_err: impl Fn(&str) -> Diag<'cx>,
2752    ) {
2753        for br in referenced_regions.difference(&constrained_regions) {
2754            let br_name = if let Some(name) = br.get_name(self.tcx()) {
2755                format!("lifetime `{name}`")
2756            } else {
2757                "an anonymous lifetime".to_string()
2758            };
2759
2760            let mut err = generate_err(&br_name);
2761
2762            if !br.is_named(self.tcx()) {
2763                // The only way for an anonymous lifetime to wind up
2764                // in the return type but **also** be unconstrained is
2765                // if it only appears in "associated types" in the
2766                // input. See #47511 and #62200 for examples. In this case,
2767                // though we can easily give a hint that ought to be
2768                // relevant.
2769                err.note(
2770                    "lifetimes appearing in an associated or opaque type are not considered constrained",
2771                );
2772                err.note("consider introducing a named lifetime parameter");
2773            }
2774
2775            err.emit();
2776        }
2777    }
2778
2779    /// Given the bounds on an object, determines what single region bound (if any) we can
2780    /// use to summarize this type.
2781    ///
2782    /// The basic idea is that we will use the bound the user
2783    /// provided, if they provided one, and otherwise search the supertypes of trait bounds
2784    /// for region bounds. It may be that we can derive no bound at all, in which case
2785    /// we return `None`.
2786    #[instrument(level = "debug", skip(self, span), ret)]
2787    fn compute_object_lifetime_bound(
2788        &self,
2789        span: Span,
2790        existential_predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
2791    ) -> Option<ty::Region<'tcx>> // if None, use the default
2792    {
2793        let tcx = self.tcx();
2794
2795        // No explicit region bound specified. Therefore, examine trait
2796        // bounds and see if we can derive region bounds from those.
2797        let derived_region_bounds = object_region_bounds(tcx, existential_predicates);
2798
2799        // If there are no derived region bounds, then report back that we
2800        // can find no region bound. The caller will use the default.
2801        if derived_region_bounds.is_empty() {
2802            return None;
2803        }
2804
2805        // If any of the derived region bounds are 'static, that is always
2806        // the best choice.
2807        if derived_region_bounds.iter().any(|r| r.is_static()) {
2808            return Some(tcx.lifetimes.re_static);
2809        }
2810
2811        // Determine whether there is exactly one unique region in the set
2812        // of derived region bounds. If so, use that. Otherwise, report an
2813        // error.
2814        let r = derived_region_bounds[0];
2815        if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
2816            self.dcx().emit_err(AmbiguousLifetimeBound { span });
2817        }
2818        Some(r)
2819    }
2820}