1use rustc_abi::FieldIdx;
2use rustc_ast::InlineAsmTemplatePiece;
3use rustc_data_structures::fx::FxIndexSet;
4use rustc_hir::def_id::DefId;
5use rustc_hir::{self as hir, LangItem};
6use rustc_middle::bug;
7use rustc_middle::ty::{self, Article, FloatTy, IntTy, Ty, TyCtxt, TypeVisitableExt, UintTy};
8use rustc_session::lint;
9use rustc_span::def_id::LocalDefId;
10use rustc_span::{Span, Symbol, sym};
11use rustc_target::asm::{
12 InlineAsmReg, InlineAsmRegClass, InlineAsmRegOrRegClass, InlineAsmType, ModifierInfo,
13};
14use rustc_trait_selection::infer::InferCtxtExt;
15
16use crate::FnCtxt;
17use crate::errors::RegisterTypeUnstable;
18
19pub(crate) struct InlineAsmCtxt<'a, 'tcx> {
20 target_features: &'tcx FxIndexSet<Symbol>,
21 fcx: &'a FnCtxt<'a, 'tcx>,
22}
23
24enum NonAsmTypeReason<'tcx> {
25 UnevaluatedSIMDArrayLength(DefId, ty::Const<'tcx>),
26 Invalid(Ty<'tcx>),
27 InvalidElement(DefId, Ty<'tcx>),
28 NotSizedPtr(Ty<'tcx>),
29 EmptySIMDArray(Ty<'tcx>),
30}
31
32impl<'a, 'tcx> InlineAsmCtxt<'a, 'tcx> {
33 pub(crate) fn new(fcx: &'a FnCtxt<'a, 'tcx>, def_id: LocalDefId) -> Self {
34 InlineAsmCtxt { target_features: fcx.tcx.asm_target_features(def_id), fcx }
35 }
36
37 fn tcx(&self) -> TyCtxt<'tcx> {
38 self.fcx.tcx
39 }
40
41 fn expr_ty(&self, expr: &hir::Expr<'tcx>) -> Ty<'tcx> {
42 let ty = self.fcx.typeck_results.borrow().expr_ty_adjusted(expr);
43 let ty = self.fcx.try_structurally_resolve_type(expr.span, ty);
44 if ty.has_non_region_infer() {
45 Ty::new_misc_error(self.tcx())
46 } else {
47 self.tcx().erase_regions(ty)
48 }
49 }
50
51 fn is_thin_ptr_ty(&self, span: Span, ty: Ty<'tcx>) -> bool {
53 if self.fcx.type_is_sized_modulo_regions(self.fcx.param_env, ty) {
56 return true;
57 }
58 if let ty::Foreign(..) = self.fcx.try_structurally_resolve_type(span, ty).kind() {
59 return true;
60 }
61 false
62 }
63
64 fn get_asm_ty(
65 &self,
66 span: Span,
67 ty: Ty<'tcx>,
68 ) -> Result<InlineAsmType, NonAsmTypeReason<'tcx>> {
69 let asm_ty_isize = match self.tcx().sess.target.pointer_width {
70 16 => InlineAsmType::I16,
71 32 => InlineAsmType::I32,
72 64 => InlineAsmType::I64,
73 width => bug!("unsupported pointer width: {width}"),
74 };
75
76 match *ty.kind() {
77 ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Ok(InlineAsmType::I8),
78 ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Ok(InlineAsmType::I16),
79 ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Ok(InlineAsmType::I32),
80 ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Ok(InlineAsmType::I64),
81 ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => Ok(InlineAsmType::I128),
82 ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => Ok(asm_ty_isize),
83 ty::Float(FloatTy::F16) => Ok(InlineAsmType::F16),
84 ty::Float(FloatTy::F32) => Ok(InlineAsmType::F32),
85 ty::Float(FloatTy::F64) => Ok(InlineAsmType::F64),
86 ty::Float(FloatTy::F128) => Ok(InlineAsmType::F128),
87 ty::FnPtr(..) => Ok(asm_ty_isize),
88 ty::RawPtr(elem_ty, _) => {
89 if self.is_thin_ptr_ty(span, elem_ty) {
90 Ok(asm_ty_isize)
91 } else {
92 Err(NonAsmTypeReason::NotSizedPtr(ty))
93 }
94 }
95 ty::Adt(adt, args) if adt.repr().simd() => {
96 let fields = &adt.non_enum_variant().fields;
97 if fields.is_empty() {
98 return Err(NonAsmTypeReason::EmptySIMDArray(ty));
99 }
100 let field = &fields[FieldIdx::ZERO];
101 let elem_ty = field.ty(self.tcx(), args);
102
103 let (size, ty) = match *elem_ty.kind() {
104 ty::Array(ty, len) => {
105 let len = if self.fcx.next_trait_solver() {
108 self.fcx.try_structurally_resolve_const(span, len)
109 } else {
110 self.fcx.tcx.normalize_erasing_regions(
111 self.fcx.typing_env(self.fcx.param_env),
112 len,
113 )
114 };
115 if let Some(len) = len.try_to_target_usize(self.tcx()) {
116 (len, ty)
117 } else {
118 return Err(NonAsmTypeReason::UnevaluatedSIMDArrayLength(
119 field.did, len,
120 ));
121 }
122 }
123 _ => (fields.len() as u64, elem_ty),
124 };
125
126 match ty.kind() {
127 ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Ok(InlineAsmType::VecI8(size)),
128 ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Ok(InlineAsmType::VecI16(size)),
129 ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Ok(InlineAsmType::VecI32(size)),
130 ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Ok(InlineAsmType::VecI64(size)),
131 ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => {
132 Ok(InlineAsmType::VecI128(size))
133 }
134 ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => {
135 Ok(match self.tcx().sess.target.pointer_width {
136 16 => InlineAsmType::VecI16(size),
137 32 => InlineAsmType::VecI32(size),
138 64 => InlineAsmType::VecI64(size),
139 width => bug!("unsupported pointer width: {width}"),
140 })
141 }
142 ty::Float(FloatTy::F16) => Ok(InlineAsmType::VecF16(size)),
143 ty::Float(FloatTy::F32) => Ok(InlineAsmType::VecF32(size)),
144 ty::Float(FloatTy::F64) => Ok(InlineAsmType::VecF64(size)),
145 ty::Float(FloatTy::F128) => Ok(InlineAsmType::VecF128(size)),
146 _ => Err(NonAsmTypeReason::InvalidElement(field.did, ty)),
147 }
148 }
149 ty::Infer(_) => bug!("unexpected infer ty in asm operand"),
150 _ => Err(NonAsmTypeReason::Invalid(ty)),
151 }
152 }
153
154 fn check_asm_operand_type(
155 &self,
156 idx: usize,
157 reg: InlineAsmRegOrRegClass,
158 expr: &'tcx hir::Expr<'tcx>,
159 template: &[InlineAsmTemplatePiece],
160 is_input: bool,
161 tied_input: Option<(&'tcx hir::Expr<'tcx>, Option<InlineAsmType>)>,
162 ) -> Option<InlineAsmType> {
163 let ty = self.expr_ty(expr);
164 if ty.has_non_region_infer() {
165 bug!("inference variable in asm operand ty: {:?} {:?}", expr, ty);
166 }
167
168 let asm_ty = match *ty.kind() {
169 ty::Never if is_input => return None,
171 _ if ty.references_error() => return None,
172 ty::Adt(adt, args) if self.tcx().is_lang_item(adt.did(), LangItem::MaybeUninit) => {
173 let fields = &adt.non_enum_variant().fields;
174 let ty = fields[FieldIdx::from_u32(1)].ty(self.tcx(), args);
175 let ty::Adt(ty, args) = ty.kind() else {
178 unreachable!("expected first field of `MaybeUninit` to be an ADT")
179 };
180 assert!(
181 ty.is_manually_drop(),
182 "expected first field of `MaybeUninit` to be `ManuallyDrop`"
183 );
184 let fields = &ty.non_enum_variant().fields;
185 let ty = fields[FieldIdx::ZERO].ty(self.tcx(), args);
186 self.get_asm_ty(expr.span, ty)
187 }
188 _ => self.get_asm_ty(expr.span, ty),
189 };
190 let asm_ty = match asm_ty {
191 Ok(asm_ty) => asm_ty,
192 Err(reason) => {
193 match reason {
194 NonAsmTypeReason::UnevaluatedSIMDArrayLength(did, len) => {
195 let msg = format!("cannot evaluate SIMD vector length `{len}`");
196 self.fcx
197 .dcx()
198 .struct_span_err(self.tcx().def_span(did), msg)
199 .with_span_note(
200 expr.span,
201 "SIMD vector length needs to be known statically for use in `asm!`",
202 )
203 .emit();
204 }
205 NonAsmTypeReason::Invalid(ty) => {
206 let msg = format!("cannot use value of type `{ty}` for inline assembly");
207 self.fcx.dcx().struct_span_err(expr.span, msg).with_note(
208 "only integers, floats, SIMD vectors, pointers and function pointers \
209 can be used as arguments for inline assembly",
210 ).emit();
211 }
212 NonAsmTypeReason::NotSizedPtr(ty) => {
213 let msg = format!(
214 "cannot use value of unsized pointer type `{ty}` for inline assembly"
215 );
216 self.fcx
217 .dcx()
218 .struct_span_err(expr.span, msg)
219 .with_note("only sized pointers can be used in inline assembly")
220 .emit();
221 }
222 NonAsmTypeReason::InvalidElement(did, ty) => {
223 let msg = format!(
224 "cannot use SIMD vector with element type `{ty}` for inline assembly"
225 );
226 self.fcx.dcx()
227 .struct_span_err(self.tcx().def_span(did), msg).with_span_note(
228 expr.span,
229 "only integers, floats, SIMD vectors, pointers and function pointers \
230 can be used as arguments for inline assembly",
231 ).emit();
232 }
233 NonAsmTypeReason::EmptySIMDArray(ty) => {
234 let msg = format!("use of empty SIMD vector `{ty}`");
235 self.fcx.dcx().struct_span_err(expr.span, msg).emit();
236 }
237 }
238 return None;
239 }
240 };
241
242 if !self.fcx.type_is_copy_modulo_regions(self.fcx.param_env, ty) {
245 let msg = "arguments for inline assembly must be copyable";
246 self.fcx
247 .dcx()
248 .struct_span_err(expr.span, msg)
249 .with_note(format!("`{ty}` does not implement the Copy trait"))
250 .emit();
251 }
252
253 if let Some((in_expr, Some(in_asm_ty))) = tied_input {
263 if in_asm_ty != asm_ty {
264 let msg = "incompatible types for asm inout argument";
265 let in_expr_ty = self.expr_ty(in_expr);
266 self.fcx
267 .dcx()
268 .struct_span_err(vec![in_expr.span, expr.span], msg)
269 .with_span_label(in_expr.span, format!("type `{in_expr_ty}`"))
270 .with_span_label(expr.span, format!("type `{ty}`"))
271 .with_note(
272 "asm inout arguments must have the same type, \
273 unless they are both pointers or integers of the same size",
274 )
275 .emit();
276 }
277
278 return Some(asm_ty);
281 }
282
283 let asm_arch = self.tcx().sess.asm_arch.unwrap();
286 let allow_experimental_reg = self.tcx().features().asm_experimental_reg();
287 let reg_class = reg.reg_class();
288 let supported_tys = reg_class.supported_types(asm_arch, allow_experimental_reg);
289 let Some((_, feature)) = supported_tys.iter().find(|&&(t, _)| t == asm_ty) else {
290 let mut err = if !allow_experimental_reg
291 && reg_class.supported_types(asm_arch, true).iter().any(|&(t, _)| t == asm_ty)
292 {
293 self.tcx().sess.create_feature_err(
294 RegisterTypeUnstable { span: expr.span, ty },
295 sym::asm_experimental_reg,
296 )
297 } else {
298 let msg = format!("type `{ty}` cannot be used with this register class");
299 let mut err = self.fcx.dcx().struct_span_err(expr.span, msg);
300 let supported_tys: Vec<_> =
301 supported_tys.iter().map(|(t, _)| t.to_string()).collect();
302 err.note(format!(
303 "register class `{}` supports these types: {}",
304 reg_class.name(),
305 supported_tys.join(", "),
306 ));
307 err
308 };
309 if let Some(suggest) = reg_class.suggest_class(asm_arch, asm_ty) {
310 err.help(format!("consider using the `{}` register class instead", suggest.name()));
311 }
312 err.emit();
313 return Some(asm_ty);
314 };
315
316 if let Some(feature) = feature {
327 if !self.target_features.contains(feature) {
328 let msg = format!("`{feature}` target feature is not enabled");
329 self.fcx
330 .dcx()
331 .struct_span_err(expr.span, msg)
332 .with_note(format!(
333 "this is required to use type `{}` with register class `{}`",
334 ty,
335 reg_class.name(),
336 ))
337 .emit();
338 return Some(asm_ty);
339 }
340 }
341
342 if let Some(ModifierInfo {
344 modifier: suggested_modifier,
345 result: suggested_result,
346 size: suggested_size,
347 }) = reg_class.suggest_modifier(asm_arch, asm_ty)
348 {
349 let mut spans = vec![];
352 for piece in template {
353 if let &InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span } = piece
354 {
355 if operand_idx == idx && modifier.is_none() {
356 spans.push(span);
357 }
358 }
359 }
360 if !spans.is_empty() {
361 let ModifierInfo {
362 modifier: default_modifier,
363 result: default_result,
364 size: default_size,
365 } = reg_class.default_modifier(asm_arch).unwrap();
366 self.tcx().node_span_lint(
367 lint::builtin::ASM_SUB_REGISTER,
368 expr.hir_id,
369 spans,
370 |lint| {
371 lint.primary_message("formatting may not be suitable for sub-register argument");
372 lint.span_label(expr.span, "for this argument");
373 lint.help(format!(
374 "use `{{{idx}:{suggested_modifier}}}` to have the register formatted as `{suggested_result}` (for {suggested_size}-bit values)",
375 ));
376 lint.help(format!(
377 "or use `{{{idx}:{default_modifier}}}` to keep the default formatting of `{default_result}` (for {default_size}-bit values)",
378 ));
379 },
380 );
381 }
382 }
383
384 Some(asm_ty)
385 }
386
387 pub(crate) fn check_asm(&self, asm: &hir::InlineAsm<'tcx>) {
388 let Some(asm_arch) = self.tcx().sess.asm_arch else {
389 self.fcx.dcx().delayed_bug("target architecture does not support asm");
390 return;
391 };
392 let allow_experimental_reg = self.tcx().features().asm_experimental_reg();
393 for (idx, &(op, op_sp)) in asm.operands.iter().enumerate() {
394 if let Some(reg) = op.reg() {
405 if let InlineAsmRegOrRegClass::Reg(reg) = reg {
408 if let InlineAsmReg::Err = reg {
409 continue;
412 }
413 if let Err(msg) = reg.validate(
414 asm_arch,
415 self.tcx().sess.relocation_model(),
416 self.target_features,
417 &self.tcx().sess.target,
418 op.is_clobber(),
419 ) {
420 let msg = format!("cannot use register `{}`: {}", reg.name(), msg);
421 self.fcx.dcx().span_err(op_sp, msg);
422 continue;
423 }
424 }
425
426 if !op.is_clobber() {
427 let mut missing_required_features = vec![];
428 let reg_class = reg.reg_class();
429 if let InlineAsmRegClass::Err = reg_class {
430 continue;
431 }
432 for &(_, feature) in reg_class.supported_types(asm_arch, allow_experimental_reg)
433 {
434 match feature {
435 Some(feature) => {
436 if self.target_features.contains(&feature) {
437 missing_required_features.clear();
438 break;
439 } else {
440 missing_required_features.push(feature);
441 }
442 }
443 None => {
444 missing_required_features.clear();
445 break;
446 }
447 }
448 }
449
450 missing_required_features.sort_unstable();
452 missing_required_features.dedup();
453 match &missing_required_features[..] {
454 [] => {}
455 [feature] => {
456 let msg = format!(
457 "register class `{}` requires the `{}` target feature",
458 reg_class.name(),
459 feature
460 );
461 self.fcx.dcx().span_err(op_sp, msg);
462 continue;
464 }
465 features => {
466 let msg = format!(
467 "register class `{}` requires at least one of the following target features: {}",
468 reg_class.name(),
469 features
470 .iter()
471 .map(|f| f.as_str())
472 .intersperse(", ")
473 .collect::<String>(),
474 );
475 self.fcx.dcx().span_err(op_sp, msg);
476 continue;
478 }
479 }
480 }
481 }
482
483 match op {
484 hir::InlineAsmOperand::In { reg, expr } => {
485 self.check_asm_operand_type(idx, reg, expr, asm.template, true, None);
486 }
487 hir::InlineAsmOperand::Out { reg, late: _, expr } => {
488 if let Some(expr) = expr {
489 self.check_asm_operand_type(idx, reg, expr, asm.template, false, None);
490 }
491 }
492 hir::InlineAsmOperand::InOut { reg, late: _, expr } => {
493 self.check_asm_operand_type(idx, reg, expr, asm.template, false, None);
494 }
495 hir::InlineAsmOperand::SplitInOut { reg, late: _, in_expr, out_expr } => {
496 let in_ty =
497 self.check_asm_operand_type(idx, reg, in_expr, asm.template, true, None);
498 if let Some(out_expr) = out_expr {
499 self.check_asm_operand_type(
500 idx,
501 reg,
502 out_expr,
503 asm.template,
504 false,
505 Some((in_expr, in_ty)),
506 );
507 }
508 }
509 hir::InlineAsmOperand::Const { anon_const } => {
510 let ty = self.expr_ty(self.tcx().hir_body(anon_const.body).value);
511 match ty.kind() {
512 ty::Error(_) => {}
513 _ if ty.is_integral() => {}
514 _ => {
515 self.fcx
516 .dcx()
517 .struct_span_err(op_sp, "invalid type for `const` operand")
518 .with_span_label(
519 self.tcx().def_span(anon_const.def_id),
520 format!("is {} `{}`", ty.kind().article(), ty),
521 )
522 .with_help("`const` operands must be of an integer type")
523 .emit();
524 }
525 }
526 }
527 hir::InlineAsmOperand::SymFn { expr } => {
529 let ty = self.expr_ty(expr);
530 match ty.kind() {
531 ty::FnDef(..) => {}
532 ty::Error(_) => {}
533 _ => {
534 self.fcx
535 .dcx()
536 .struct_span_err(op_sp, "invalid `sym` operand")
537 .with_span_label(
538 expr.span,
539 format!("is {} `{}`", ty.kind().article(), ty),
540 )
541 .with_help(
542 "`sym` operands must refer to either a function or a static",
543 )
544 .emit();
545 }
546 }
547 }
548 hir::InlineAsmOperand::SymStatic { .. } => {}
550 hir::InlineAsmOperand::Label { .. } => {}
552 }
553 }
554 }
555}