rustc_infer/infer/canonical/query_response.rs
1//! This module contains the code to instantiate a "query result", and
2//! in particular to extract out the resulting region obligations and
3//! encode them therein.
4//!
5//! For an overview of what canonicalization is and how it fits into
6//! rustc, check out the [chapter in the rustc dev guide][c].
7//!
8//! [c]: https://rust-lang.github.io/chalk/book/canonical_queries/canonicalization.html
9
10use std::fmt::Debug;
11use std::iter;
12
13use rustc_index::{Idx, IndexVec};
14use rustc_middle::arena::ArenaAllocatable;
15use rustc_middle::bug;
16use rustc_middle::ty::{self, BoundVar, GenericArg, GenericArgKind, Ty, TyCtxt, TypeFoldable};
17use tracing::{debug, instrument};
18
19use crate::infer::canonical::instantiate::{CanonicalExt, instantiate_value};
20use crate::infer::canonical::{
21 Canonical, CanonicalQueryResponse, CanonicalVarValues, Certainty, OriginalQueryValues,
22 QueryRegionConstraints, QueryResponse,
23};
24use crate::infer::region_constraints::{Constraint, RegionConstraintData};
25use crate::infer::{
26 DefineOpaqueTypes, InferCtxt, InferOk, InferResult, SubregionOrigin, TypeOutlivesConstraint,
27};
28use crate::traits::query::NoSolution;
29use crate::traits::{ObligationCause, PredicateObligations, ScrubbedTraitError, TraitEngine};
30
31impl<'tcx> InferCtxt<'tcx> {
32 /// This method is meant to be invoked as the final step of a canonical query
33 /// implementation. It is given:
34 ///
35 /// - the instantiated variables `inference_vars` created from the query key
36 /// - the result `answer` of the query
37 /// - a fulfillment context `fulfill_cx` that may contain various obligations which
38 /// have yet to be proven.
39 ///
40 /// Given this, the function will process the obligations pending
41 /// in `fulfill_cx`:
42 ///
43 /// - If all the obligations can be proven successfully, it will
44 /// package up any resulting region obligations (extracted from
45 /// `infcx`) along with the fully resolved value `answer` into a
46 /// query result (which is then itself canonicalized).
47 /// - If some obligations can be neither proven nor disproven, then
48 /// the same thing happens, but the resulting query is marked as ambiguous.
49 /// - Finally, if any of the obligations result in a hard error,
50 /// then `Err(NoSolution)` is returned.
51 #[instrument(skip(self, inference_vars, answer, fulfill_cx), level = "trace")]
52 pub fn make_canonicalized_query_response<T>(
53 &self,
54 inference_vars: CanonicalVarValues<'tcx>,
55 answer: T,
56 fulfill_cx: &mut dyn TraitEngine<'tcx, ScrubbedTraitError<'tcx>>,
57 ) -> Result<CanonicalQueryResponse<'tcx, T>, NoSolution>
58 where
59 T: Debug + TypeFoldable<TyCtxt<'tcx>>,
60 Canonical<'tcx, QueryResponse<'tcx, T>>: ArenaAllocatable<'tcx>,
61 {
62 let query_response = self.make_query_response(inference_vars, answer, fulfill_cx)?;
63 debug!("query_response = {:#?}", query_response);
64 let canonical_result = self.canonicalize_response(query_response);
65 debug!("canonical_result = {:#?}", canonical_result);
66
67 Ok(self.tcx.arena.alloc(canonical_result))
68 }
69
70 /// A version of `make_canonicalized_query_response` that does
71 /// not pack in obligations, for contexts that want to drop
72 /// pending obligations instead of treating them as an ambiguity (e.g.
73 /// typeck "probing" contexts).
74 ///
75 /// If you DO want to keep track of pending obligations (which
76 /// include all region obligations, so this includes all cases
77 /// that care about regions) with this function, you have to
78 /// do it yourself, by e.g., having them be a part of the answer.
79 pub fn make_query_response_ignoring_pending_obligations<T>(
80 &self,
81 inference_vars: CanonicalVarValues<'tcx>,
82 answer: T,
83 ) -> Canonical<'tcx, QueryResponse<'tcx, T>>
84 where
85 T: Debug + TypeFoldable<TyCtxt<'tcx>>,
86 {
87 self.canonicalize_response(QueryResponse {
88 var_values: inference_vars,
89 region_constraints: QueryRegionConstraints::default(),
90 certainty: Certainty::Proven, // Ambiguities are OK!
91 opaque_types: vec![],
92 value: answer,
93 })
94 }
95
96 /// Helper for `make_canonicalized_query_response` that does
97 /// everything up until the final canonicalization.
98 #[instrument(skip(self, fulfill_cx), level = "debug")]
99 fn make_query_response<T>(
100 &self,
101 inference_vars: CanonicalVarValues<'tcx>,
102 answer: T,
103 fulfill_cx: &mut dyn TraitEngine<'tcx, ScrubbedTraitError<'tcx>>,
104 ) -> Result<QueryResponse<'tcx, T>, NoSolution>
105 where
106 T: Debug + TypeFoldable<TyCtxt<'tcx>>,
107 {
108 let tcx = self.tcx;
109
110 // Select everything, returning errors.
111 let errors = fulfill_cx.select_all_or_error(self);
112
113 // True error!
114 if errors.iter().any(|e| e.is_true_error()) {
115 return Err(NoSolution);
116 }
117
118 let region_obligations = self.take_registered_region_obligations();
119 let region_assumptions = self.take_registered_region_assumptions();
120 debug!(?region_obligations);
121 let region_constraints = self.with_region_constraints(|region_constraints| {
122 make_query_region_constraints(
123 tcx,
124 region_obligations,
125 region_constraints,
126 region_assumptions,
127 )
128 });
129 debug!(?region_constraints);
130
131 let certainty = if errors.is_empty() { Certainty::Proven } else { Certainty::Ambiguous };
132
133 let opaque_types = self
134 .inner
135 .borrow_mut()
136 .opaque_type_storage
137 .take_opaque_types()
138 .map(|(k, v)| (k, v.ty))
139 .collect();
140
141 Ok(QueryResponse {
142 var_values: inference_vars,
143 region_constraints,
144 certainty,
145 value: answer,
146 opaque_types,
147 })
148 }
149
150 /// Given the (canonicalized) result to a canonical query,
151 /// instantiates the result so it can be used, plugging in the
152 /// values from the canonical query. (Note that the result may
153 /// have been ambiguous; you should check the certainty level of
154 /// the query before applying this function.)
155 ///
156 /// To get a good understanding of what is happening here, check
157 /// out the [chapter in the rustc dev guide][c].
158 ///
159 /// [c]: https://rust-lang.github.io/chalk/book/canonical_queries/canonicalization.html#processing-the-canonicalized-query-result
160 pub fn instantiate_query_response_and_region_obligations<R>(
161 &self,
162 cause: &ObligationCause<'tcx>,
163 param_env: ty::ParamEnv<'tcx>,
164 original_values: &OriginalQueryValues<'tcx>,
165 query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
166 ) -> InferResult<'tcx, R>
167 where
168 R: Debug + TypeFoldable<TyCtxt<'tcx>>,
169 {
170 let InferOk { value: result_args, obligations } =
171 self.query_response_instantiation(cause, param_env, original_values, query_response)?;
172
173 for (predicate, _category) in &query_response.value.region_constraints.outlives {
174 let predicate = instantiate_value(self.tcx, &result_args, *predicate);
175 self.register_outlives_constraint(predicate, cause);
176 }
177
178 for assumption in &query_response.value.region_constraints.assumptions {
179 let assumption = instantiate_value(self.tcx, &result_args, *assumption);
180 self.register_region_assumption(assumption);
181 }
182
183 let user_result: R =
184 query_response.instantiate_projected(self.tcx, &result_args, |q_r| q_r.value.clone());
185
186 Ok(InferOk { value: user_result, obligations })
187 }
188
189 /// An alternative to
190 /// `instantiate_query_response_and_region_obligations` that is more
191 /// efficient for NLL. NLL is a bit more advanced in the
192 /// "transition to chalk" than the rest of the compiler. During
193 /// the NLL type check, all of the "processing" of types and
194 /// things happens in queries -- the NLL checker itself is only
195 /// interested in the region obligations (`'a: 'b` or `T: 'b`)
196 /// that come out of these queries, which it wants to convert into
197 /// MIR-based constraints and solve. Therefore, it is most
198 /// convenient for the NLL Type Checker to **directly consume**
199 /// the `QueryOutlivesConstraint` values that arise from doing a
200 /// query. This is contrast to other parts of the compiler, which
201 /// would prefer for those `QueryOutlivesConstraint` to be converted
202 /// into the older infcx-style constraints (e.g., calls to
203 /// `sub_regions` or `register_region_obligation`).
204 ///
205 /// Therefore, `instantiate_nll_query_response_and_region_obligations` performs the same
206 /// basic operations as `instantiate_query_response_and_region_obligations` but
207 /// it returns its result differently:
208 ///
209 /// - It creates an instantiation `S` that maps from the original
210 /// query variables to the values computed in the query
211 /// result. If any errors arise, they are propagated back as an
212 /// `Err` result.
213 /// - In the case of a successful instantiation, we will append
214 /// `QueryOutlivesConstraint` values onto the
215 /// `output_query_region_constraints` vector for the solver to
216 /// use (if an error arises, some values may also be pushed, but
217 /// they should be ignored).
218 /// - It **can happen** (though it rarely does currently) that
219 /// equating types and things will give rise to subobligations
220 /// that must be processed. In this case, those subobligations
221 /// are propagated back in the return value.
222 /// - Finally, the query result (of type `R`) is propagated back,
223 /// after applying the instantiation `S`.
224 pub fn instantiate_nll_query_response_and_region_obligations<R>(
225 &self,
226 cause: &ObligationCause<'tcx>,
227 param_env: ty::ParamEnv<'tcx>,
228 original_values: &OriginalQueryValues<'tcx>,
229 query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
230 output_query_region_constraints: &mut QueryRegionConstraints<'tcx>,
231 ) -> InferResult<'tcx, R>
232 where
233 R: Debug + TypeFoldable<TyCtxt<'tcx>>,
234 {
235 let InferOk { value: result_args, mut obligations } = self
236 .query_response_instantiation_guess(
237 cause,
238 param_env,
239 original_values,
240 query_response,
241 )?;
242
243 // Compute `QueryOutlivesConstraint` values that unify each of
244 // the original values `v_o` that was canonicalized into a
245 // variable...
246
247 let constraint_category = cause.to_constraint_category();
248
249 for (index, original_value) in original_values.var_values.iter().enumerate() {
250 // ...with the value `v_r` of that variable from the query.
251 let result_value = query_response.instantiate_projected(self.tcx, &result_args, |v| {
252 v.var_values[BoundVar::new(index)]
253 });
254 match (original_value.kind(), result_value.kind()) {
255 (GenericArgKind::Lifetime(re1), GenericArgKind::Lifetime(re2))
256 if re1.is_erased() && re2.is_erased() =>
257 {
258 // No action needed.
259 }
260
261 (GenericArgKind::Lifetime(v_o), GenericArgKind::Lifetime(v_r)) => {
262 // To make `v_o = v_r`, we emit `v_o: v_r` and `v_r: v_o`.
263 if v_o != v_r {
264 output_query_region_constraints
265 .outlives
266 .push((ty::OutlivesPredicate(v_o.into(), v_r), constraint_category));
267 output_query_region_constraints
268 .outlives
269 .push((ty::OutlivesPredicate(v_r.into(), v_o), constraint_category));
270 }
271 }
272
273 (GenericArgKind::Type(v1), GenericArgKind::Type(v2)) => {
274 obligations.extend(
275 self.at(&cause, param_env)
276 .eq(DefineOpaqueTypes::Yes, v1, v2)?
277 .into_obligations(),
278 );
279 }
280
281 (GenericArgKind::Const(v1), GenericArgKind::Const(v2)) => {
282 obligations.extend(
283 self.at(&cause, param_env)
284 .eq(DefineOpaqueTypes::Yes, v1, v2)?
285 .into_obligations(),
286 );
287 }
288
289 _ => {
290 bug!("kind mismatch, cannot unify {:?} and {:?}", original_value, result_value);
291 }
292 }
293 }
294
295 // ...also include the other query region constraints from the query.
296 output_query_region_constraints.outlives.extend(
297 query_response.value.region_constraints.outlives.iter().filter_map(|&r_c| {
298 let r_c = instantiate_value(self.tcx, &result_args, r_c);
299
300 // Screen out `'a: 'a` cases.
301 let ty::OutlivesPredicate(k1, r2) = r_c.0;
302 if k1 != r2.into() { Some(r_c) } else { None }
303 }),
304 );
305
306 // FIXME(higher_ranked_auto): Optimize this to instantiate all assumptions
307 // at once, rather than calling `instantiate_value` repeatedly which may
308 // create more universes.
309 output_query_region_constraints.assumptions.extend(
310 query_response
311 .value
312 .region_constraints
313 .assumptions
314 .iter()
315 .map(|&r_c| instantiate_value(self.tcx, &result_args, r_c)),
316 );
317
318 let user_result: R =
319 query_response.instantiate_projected(self.tcx, &result_args, |q_r| q_r.value.clone());
320
321 Ok(InferOk { value: user_result, obligations })
322 }
323
324 /// Given the original values and the (canonicalized) result from
325 /// computing a query, returns an instantiation that can be applied
326 /// to the query result to convert the result back into the
327 /// original namespace.
328 ///
329 /// The instantiation also comes accompanied with subobligations
330 /// that arose from unification; these might occur if (for
331 /// example) we are doing lazy normalization and the value
332 /// assigned to a type variable is unified with an unnormalized
333 /// projection.
334 fn query_response_instantiation<R>(
335 &self,
336 cause: &ObligationCause<'tcx>,
337 param_env: ty::ParamEnv<'tcx>,
338 original_values: &OriginalQueryValues<'tcx>,
339 query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
340 ) -> InferResult<'tcx, CanonicalVarValues<'tcx>>
341 where
342 R: Debug + TypeFoldable<TyCtxt<'tcx>>,
343 {
344 debug!(
345 "query_response_instantiation(original_values={:#?}, query_response={:#?})",
346 original_values, query_response,
347 );
348
349 let mut value = self.query_response_instantiation_guess(
350 cause,
351 param_env,
352 original_values,
353 query_response,
354 )?;
355
356 value.obligations.extend(
357 self.unify_query_response_instantiation_guess(
358 cause,
359 param_env,
360 original_values,
361 &value.value,
362 query_response,
363 )?
364 .into_obligations(),
365 );
366
367 Ok(value)
368 }
369
370 /// Given the original values and the (canonicalized) result from
371 /// computing a query, returns a **guess** at an instantiation that
372 /// can be applied to the query result to convert the result back
373 /// into the original namespace. This is called a **guess**
374 /// because it uses a quick heuristic to find the values for each
375 /// canonical variable; if that quick heuristic fails, then we
376 /// will instantiate fresh inference variables for each canonical
377 /// variable instead. Therefore, the result of this method must be
378 /// properly unified
379 #[instrument(level = "debug", skip(self, param_env))]
380 fn query_response_instantiation_guess<R>(
381 &self,
382 cause: &ObligationCause<'tcx>,
383 param_env: ty::ParamEnv<'tcx>,
384 original_values: &OriginalQueryValues<'tcx>,
385 query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
386 ) -> InferResult<'tcx, CanonicalVarValues<'tcx>>
387 where
388 R: Debug + TypeFoldable<TyCtxt<'tcx>>,
389 {
390 // For each new universe created in the query result that did
391 // not appear in the original query, create a local
392 // superuniverse.
393 let mut universe_map = original_values.universe_map.clone();
394 let num_universes_in_query = original_values.universe_map.len();
395 let num_universes_in_response = query_response.max_universe.as_usize() + 1;
396 for _ in num_universes_in_query..num_universes_in_response {
397 universe_map.push(self.create_next_universe());
398 }
399 assert!(!universe_map.is_empty()); // always have the root universe
400 assert_eq!(universe_map[ty::UniverseIndex::ROOT.as_usize()], ty::UniverseIndex::ROOT);
401
402 // Every canonical query result includes values for each of
403 // the inputs to the query. Therefore, we begin by unifying
404 // these values with the original inputs that were
405 // canonicalized.
406 let result_values = &query_response.value.var_values;
407 assert_eq!(original_values.var_values.len(), result_values.len());
408
409 // Quickly try to find initial values for the canonical
410 // variables in the result in terms of the query. We do this
411 // by iterating down the values that the query gave to each of
412 // the canonical inputs. If we find that one of those values
413 // is directly equal to one of the canonical variables in the
414 // result, then we can type the corresponding value from the
415 // input. See the example above.
416 let mut opt_values: IndexVec<BoundVar, Option<GenericArg<'tcx>>> =
417 IndexVec::from_elem_n(None, query_response.variables.len());
418
419 // In terms of our example above, we are iterating over pairs like:
420 // [(?A, Vec<?0>), ('static, '?1), (?B, ?0)]
421 for (original_value, result_value) in iter::zip(&original_values.var_values, result_values)
422 {
423 match result_value.kind() {
424 GenericArgKind::Type(result_value) => {
425 // e.g., here `result_value` might be `?0` in the example above...
426 if let ty::Bound(debruijn, b) = *result_value.kind() {
427 // ...in which case we would set `canonical_vars[0]` to `Some(?U)`.
428
429 // We only allow a `ty::INNERMOST` index in generic parameters.
430 assert_eq!(debruijn, ty::INNERMOST);
431 opt_values[b.var] = Some(*original_value);
432 }
433 }
434 GenericArgKind::Lifetime(result_value) => {
435 // e.g., here `result_value` might be `'?1` in the example above...
436 if let ty::ReBound(debruijn, br) = result_value.kind() {
437 // ... in which case we would set `canonical_vars[0]` to `Some('static)`.
438
439 // We only allow a `ty::INNERMOST` index in generic parameters.
440 assert_eq!(debruijn, ty::INNERMOST);
441 opt_values[br.var] = Some(*original_value);
442 }
443 }
444 GenericArgKind::Const(result_value) => {
445 if let ty::ConstKind::Bound(debruijn, b) = result_value.kind() {
446 // ...in which case we would set `canonical_vars[0]` to `Some(const X)`.
447
448 // We only allow a `ty::INNERMOST` index in generic parameters.
449 assert_eq!(debruijn, ty::INNERMOST);
450 opt_values[b] = Some(*original_value);
451 }
452 }
453 }
454 }
455
456 // Create result arguments: if we found a value for a
457 // given variable in the loop above, use that. Otherwise, use
458 // a fresh inference variable.
459 let result_args = CanonicalVarValues {
460 var_values: self.tcx.mk_args_from_iter(
461 query_response.variables.iter().enumerate().map(|(index, var_kind)| {
462 if var_kind.universe() != ty::UniverseIndex::ROOT {
463 // A variable from inside a binder of the query. While ideally these shouldn't
464 // exist at all, we have to deal with them for now.
465 self.instantiate_canonical_var(cause.span, var_kind, |u| {
466 universe_map[u.as_usize()]
467 })
468 } else if var_kind.is_existential() {
469 match opt_values[BoundVar::new(index)] {
470 Some(k) => k,
471 None => self.instantiate_canonical_var(cause.span, var_kind, |u| {
472 universe_map[u.as_usize()]
473 }),
474 }
475 } else {
476 // For placeholders which were already part of the input, we simply map this
477 // universal bound variable back the placeholder of the input.
478 opt_values[BoundVar::new(index)].expect(
479 "expected placeholder to be unified with itself during response",
480 )
481 }
482 }),
483 ),
484 };
485
486 let mut obligations = PredicateObligations::new();
487
488 // Carry all newly resolved opaque types to the caller's scope
489 for &(a, b) in &query_response.value.opaque_types {
490 let a = instantiate_value(self.tcx, &result_args, a);
491 let b = instantiate_value(self.tcx, &result_args, b);
492 debug!(?a, ?b, "constrain opaque type");
493 // We use equate here instead of, for example, just registering the
494 // opaque type's hidden value directly, because the hidden type may have been an inference
495 // variable that got constrained to the opaque type itself. In that case we want to equate
496 // the generic args of the opaque with the generic params of its hidden type version.
497 obligations.extend(
498 self.at(cause, param_env)
499 .eq(
500 DefineOpaqueTypes::Yes,
501 Ty::new_opaque(self.tcx, a.def_id.to_def_id(), a.args),
502 b,
503 )?
504 .obligations,
505 );
506 }
507
508 Ok(InferOk { value: result_args, obligations })
509 }
510
511 /// Given a "guess" at the values for the canonical variables in
512 /// the input, try to unify with the *actual* values found in the
513 /// query result. Often, but not always, this is a no-op, because
514 /// we already found the mapping in the "guessing" step.
515 ///
516 /// See also: [`Self::query_response_instantiation_guess`]
517 fn unify_query_response_instantiation_guess<R>(
518 &self,
519 cause: &ObligationCause<'tcx>,
520 param_env: ty::ParamEnv<'tcx>,
521 original_values: &OriginalQueryValues<'tcx>,
522 result_args: &CanonicalVarValues<'tcx>,
523 query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
524 ) -> InferResult<'tcx, ()>
525 where
526 R: Debug + TypeFoldable<TyCtxt<'tcx>>,
527 {
528 // A closure that yields the result value for the given
529 // canonical variable; this is taken from
530 // `query_response.var_values` after applying the instantiation
531 // by `result_args`.
532 let instantiated_query_response = |index: BoundVar| -> GenericArg<'tcx> {
533 query_response.instantiate_projected(self.tcx, result_args, |v| v.var_values[index])
534 };
535
536 // Unify the original value for each variable with the value
537 // taken from `query_response` (after applying `result_args`).
538 self.unify_canonical_vars(cause, param_env, original_values, instantiated_query_response)
539 }
540
541 /// Given two sets of values for the same set of canonical variables, unify them.
542 /// The second set is produced lazily by supplying indices from the first set.
543 fn unify_canonical_vars(
544 &self,
545 cause: &ObligationCause<'tcx>,
546 param_env: ty::ParamEnv<'tcx>,
547 variables1: &OriginalQueryValues<'tcx>,
548 variables2: impl Fn(BoundVar) -> GenericArg<'tcx>,
549 ) -> InferResult<'tcx, ()> {
550 let mut obligations = PredicateObligations::new();
551 for (index, value1) in variables1.var_values.iter().enumerate() {
552 let value2 = variables2(BoundVar::new(index));
553
554 match (value1.kind(), value2.kind()) {
555 (GenericArgKind::Type(v1), GenericArgKind::Type(v2)) => {
556 obligations.extend(
557 self.at(cause, param_env)
558 .eq(DefineOpaqueTypes::Yes, v1, v2)?
559 .into_obligations(),
560 );
561 }
562 (GenericArgKind::Lifetime(re1), GenericArgKind::Lifetime(re2))
563 if re1.is_erased() && re2.is_erased() =>
564 {
565 // no action needed
566 }
567 (GenericArgKind::Lifetime(v1), GenericArgKind::Lifetime(v2)) => {
568 self.inner.borrow_mut().unwrap_region_constraints().make_eqregion(
569 SubregionOrigin::RelateRegionParamBound(cause.span, None),
570 v1,
571 v2,
572 );
573 }
574 (GenericArgKind::Const(v1), GenericArgKind::Const(v2)) => {
575 let ok = self.at(cause, param_env).eq(DefineOpaqueTypes::Yes, v1, v2)?;
576 obligations.extend(ok.into_obligations());
577 }
578 _ => {
579 bug!("kind mismatch, cannot unify {:?} and {:?}", value1, value2,);
580 }
581 }
582 }
583 Ok(InferOk { value: (), obligations })
584 }
585}
586
587/// Given the region obligations and constraints scraped from the infcx,
588/// creates query region constraints.
589pub fn make_query_region_constraints<'tcx>(
590 tcx: TyCtxt<'tcx>,
591 outlives_obligations: Vec<TypeOutlivesConstraint<'tcx>>,
592 region_constraints: &RegionConstraintData<'tcx>,
593 assumptions: Vec<ty::ArgOutlivesPredicate<'tcx>>,
594) -> QueryRegionConstraints<'tcx> {
595 let RegionConstraintData { constraints, verifys } = region_constraints;
596
597 assert!(verifys.is_empty());
598
599 debug!(?constraints);
600
601 let outlives: Vec<_> = constraints
602 .iter()
603 .map(|(k, origin)| {
604 let constraint = match *k {
605 // Swap regions because we are going from sub (<=) to outlives
606 // (>=).
607 Constraint::VarSubVar(v1, v2) => ty::OutlivesPredicate(
608 ty::Region::new_var(tcx, v2).into(),
609 ty::Region::new_var(tcx, v1),
610 ),
611 Constraint::VarSubReg(v1, r2) => {
612 ty::OutlivesPredicate(r2.into(), ty::Region::new_var(tcx, v1))
613 }
614 Constraint::RegSubVar(r1, v2) => {
615 ty::OutlivesPredicate(ty::Region::new_var(tcx, v2).into(), r1)
616 }
617 Constraint::RegSubReg(r1, r2) => ty::OutlivesPredicate(r2.into(), r1),
618 };
619 (constraint, origin.to_constraint_category())
620 })
621 .chain(outlives_obligations.into_iter().map(|obl| {
622 (
623 ty::OutlivesPredicate(obl.sup_type.into(), obl.sub_region),
624 obl.origin.to_constraint_category(),
625 )
626 }))
627 .collect();
628
629 QueryRegionConstraints { outlives, assumptions }
630}