rustc_middle/ty/
sty.rs

1//! This module contains `TyKind` and its major components.
2
3#![allow(rustc::usage_of_ty_tykind)]
4
5use std::assert_matches::debug_assert_matches;
6use std::borrow::Cow;
7use std::ops::{ControlFlow, Range};
8
9use hir::def::{CtorKind, DefKind};
10use rustc_abi::{FIRST_VARIANT, FieldIdx, VariantIdx};
11use rustc_errors::{ErrorGuaranteed, MultiSpan};
12use rustc_hir as hir;
13use rustc_hir::LangItem;
14use rustc_hir::def_id::DefId;
15use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, extension};
16use rustc_span::{DUMMY_SP, Span, Symbol, sym};
17use rustc_type_ir::TyKind::*;
18use rustc_type_ir::solve::SizedTraitKind;
19use rustc_type_ir::walk::TypeWalker;
20use rustc_type_ir::{self as ir, BoundVar, CollectAndApply, DynKind, TypeVisitableExt, elaborate};
21use tracing::instrument;
22use ty::util::IntTypeExt;
23
24use super::GenericParamDefKind;
25use crate::infer::canonical::Canonical;
26use crate::ty::InferTy::*;
27use crate::ty::{
28    self, AdtDef, BoundRegionKind, Discr, GenericArg, GenericArgs, GenericArgsRef, List, ParamEnv,
29    Region, Ty, TyCtxt, TypeFlags, TypeSuperVisitable, TypeVisitable, TypeVisitor, UintTy,
30};
31
32// Re-export and re-parameterize some `I = TyCtxt<'tcx>` types here
33#[rustc_diagnostic_item = "TyKind"]
34pub type TyKind<'tcx> = ir::TyKind<TyCtxt<'tcx>>;
35pub type TypeAndMut<'tcx> = ir::TypeAndMut<TyCtxt<'tcx>>;
36pub type AliasTy<'tcx> = ir::AliasTy<TyCtxt<'tcx>>;
37pub type FnSig<'tcx> = ir::FnSig<TyCtxt<'tcx>>;
38pub type Binder<'tcx, T> = ir::Binder<TyCtxt<'tcx>, T>;
39pub type EarlyBinder<'tcx, T> = ir::EarlyBinder<TyCtxt<'tcx>, T>;
40pub type TypingMode<'tcx> = ir::TypingMode<TyCtxt<'tcx>>;
41
42pub trait Article {
43    fn article(&self) -> &'static str;
44}
45
46impl<'tcx> Article for TyKind<'tcx> {
47    /// Get the article ("a" or "an") to use with this type.
48    fn article(&self) -> &'static str {
49        match self {
50            Int(_) | Float(_) | Array(_, _) => "an",
51            Adt(def, _) if def.is_enum() => "an",
52            // This should never happen, but ICEing and causing the user's code
53            // to not compile felt too harsh.
54            Error(_) => "a",
55            _ => "a",
56        }
57    }
58}
59
60#[extension(pub trait CoroutineArgsExt<'tcx>)]
61impl<'tcx> ty::CoroutineArgs<TyCtxt<'tcx>> {
62    /// Coroutine has not been resumed yet.
63    const UNRESUMED: usize = 0;
64    /// Coroutine has returned or is completed.
65    const RETURNED: usize = 1;
66    /// Coroutine has been poisoned.
67    const POISONED: usize = 2;
68    /// Number of variants to reserve in coroutine state. Corresponds to
69    /// `UNRESUMED` (beginning of a coroutine) and `RETURNED`/`POISONED`
70    /// (end of a coroutine) states.
71    const RESERVED_VARIANTS: usize = 3;
72
73    const UNRESUMED_NAME: &'static str = "Unresumed";
74    const RETURNED_NAME: &'static str = "Returned";
75    const POISONED_NAME: &'static str = "Panicked";
76
77    /// The valid variant indices of this coroutine.
78    #[inline]
79    fn variant_range(&self, def_id: DefId, tcx: TyCtxt<'tcx>) -> Range<VariantIdx> {
80        // FIXME requires optimized MIR
81        FIRST_VARIANT..tcx.coroutine_layout(def_id, self.args).unwrap().variant_fields.next_index()
82    }
83
84    /// The discriminant for the given variant. Panics if the `variant_index` is
85    /// out of range.
86    #[inline]
87    fn discriminant_for_variant(
88        &self,
89        def_id: DefId,
90        tcx: TyCtxt<'tcx>,
91        variant_index: VariantIdx,
92    ) -> Discr<'tcx> {
93        // Coroutines don't support explicit discriminant values, so they are
94        // the same as the variant index.
95        assert!(self.variant_range(def_id, tcx).contains(&variant_index));
96        Discr { val: variant_index.as_usize() as u128, ty: self.discr_ty(tcx) }
97    }
98
99    /// The set of all discriminants for the coroutine, enumerated with their
100    /// variant indices.
101    #[inline]
102    fn discriminants(
103        self,
104        def_id: DefId,
105        tcx: TyCtxt<'tcx>,
106    ) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> {
107        self.variant_range(def_id, tcx).map(move |index| {
108            (index, Discr { val: index.as_usize() as u128, ty: self.discr_ty(tcx) })
109        })
110    }
111
112    /// Calls `f` with a reference to the name of the enumerator for the given
113    /// variant `v`.
114    fn variant_name(v: VariantIdx) -> Cow<'static, str> {
115        match v.as_usize() {
116            Self::UNRESUMED => Cow::from(Self::UNRESUMED_NAME),
117            Self::RETURNED => Cow::from(Self::RETURNED_NAME),
118            Self::POISONED => Cow::from(Self::POISONED_NAME),
119            _ => Cow::from(format!("Suspend{}", v.as_usize() - Self::RESERVED_VARIANTS)),
120        }
121    }
122
123    /// The type of the state discriminant used in the coroutine type.
124    #[inline]
125    fn discr_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
126        tcx.types.u32
127    }
128
129    /// This returns the types of the MIR locals which had to be stored across suspension points.
130    /// It is calculated in rustc_mir_transform::coroutine::StateTransform.
131    /// All the types here must be in the tuple in CoroutineInterior.
132    ///
133    /// The locals are grouped by their variant number. Note that some locals may
134    /// be repeated in multiple variants.
135    #[inline]
136    fn state_tys(
137        self,
138        def_id: DefId,
139        tcx: TyCtxt<'tcx>,
140    ) -> impl Iterator<Item: Iterator<Item = Ty<'tcx>>> {
141        let layout = tcx.coroutine_layout(def_id, self.args).unwrap();
142        layout.variant_fields.iter().map(move |variant| {
143            variant.iter().map(move |field| {
144                if tcx.is_async_drop_in_place_coroutine(def_id) {
145                    layout.field_tys[*field].ty
146                } else {
147                    ty::EarlyBinder::bind(layout.field_tys[*field].ty).instantiate(tcx, self.args)
148                }
149            })
150        })
151    }
152
153    /// This is the types of the fields of a coroutine which are not stored in a
154    /// variant.
155    #[inline]
156    fn prefix_tys(self) -> &'tcx List<Ty<'tcx>> {
157        self.upvar_tys()
158    }
159}
160
161#[derive(Debug, Copy, Clone, HashStable, TypeFoldable, TypeVisitable)]
162pub enum UpvarArgs<'tcx> {
163    Closure(GenericArgsRef<'tcx>),
164    Coroutine(GenericArgsRef<'tcx>),
165    CoroutineClosure(GenericArgsRef<'tcx>),
166}
167
168impl<'tcx> UpvarArgs<'tcx> {
169    /// Returns an iterator over the list of types of captured paths by the closure/coroutine.
170    /// In case there was a type error in figuring out the types of the captured path, an
171    /// empty iterator is returned.
172    #[inline]
173    pub fn upvar_tys(self) -> &'tcx List<Ty<'tcx>> {
174        let tupled_tys = match self {
175            UpvarArgs::Closure(args) => args.as_closure().tupled_upvars_ty(),
176            UpvarArgs::Coroutine(args) => args.as_coroutine().tupled_upvars_ty(),
177            UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().tupled_upvars_ty(),
178        };
179
180        match tupled_tys.kind() {
181            TyKind::Error(_) => ty::List::empty(),
182            TyKind::Tuple(..) => self.tupled_upvars_ty().tuple_fields(),
183            TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
184            ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
185        }
186    }
187
188    #[inline]
189    pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
190        match self {
191            UpvarArgs::Closure(args) => args.as_closure().tupled_upvars_ty(),
192            UpvarArgs::Coroutine(args) => args.as_coroutine().tupled_upvars_ty(),
193            UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().tupled_upvars_ty(),
194        }
195    }
196}
197
198/// An inline const is modeled like
199/// ```ignore (illustrative)
200/// const InlineConst<'l0...'li, T0...Tj, R>: R;
201/// ```
202/// where:
203///
204/// - 'l0...'li and T0...Tj are the generic parameters
205///   inherited from the item that defined the inline const,
206/// - R represents the type of the constant.
207///
208/// When the inline const is instantiated, `R` is instantiated as the actual inferred
209/// type of the constant. The reason that `R` is represented as an extra type parameter
210/// is the same reason that [`ty::ClosureArgs`] have `CS` and `U` as type parameters:
211/// inline const can reference lifetimes that are internal to the creating function.
212#[derive(Copy, Clone, Debug)]
213pub struct InlineConstArgs<'tcx> {
214    /// Generic parameters from the enclosing item,
215    /// concatenated with the inferred type of the constant.
216    pub args: GenericArgsRef<'tcx>,
217}
218
219/// Struct returned by `split()`.
220pub struct InlineConstArgsParts<'tcx, T> {
221    pub parent_args: &'tcx [GenericArg<'tcx>],
222    pub ty: T,
223}
224
225impl<'tcx> InlineConstArgs<'tcx> {
226    /// Construct `InlineConstArgs` from `InlineConstArgsParts`.
227    pub fn new(
228        tcx: TyCtxt<'tcx>,
229        parts: InlineConstArgsParts<'tcx, Ty<'tcx>>,
230    ) -> InlineConstArgs<'tcx> {
231        InlineConstArgs {
232            args: tcx.mk_args_from_iter(
233                parts.parent_args.iter().copied().chain(std::iter::once(parts.ty.into())),
234            ),
235        }
236    }
237
238    /// Divides the inline const args into their respective components.
239    /// The ordering assumed here must match that used by `InlineConstArgs::new` above.
240    fn split(self) -> InlineConstArgsParts<'tcx, GenericArg<'tcx>> {
241        match self.args[..] {
242            [ref parent_args @ .., ty] => InlineConstArgsParts { parent_args, ty },
243            _ => bug!("inline const args missing synthetics"),
244        }
245    }
246
247    /// Returns the generic parameters of the inline const's parent.
248    pub fn parent_args(self) -> &'tcx [GenericArg<'tcx>] {
249        self.split().parent_args
250    }
251
252    /// Returns the type of this inline const.
253    pub fn ty(self) -> Ty<'tcx> {
254        self.split().ty.expect_ty()
255    }
256}
257
258#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
259#[derive(HashStable)]
260pub enum BoundVariableKind {
261    Ty(BoundTyKind),
262    Region(BoundRegionKind),
263    Const,
264}
265
266impl BoundVariableKind {
267    pub fn expect_region(self) -> BoundRegionKind {
268        match self {
269            BoundVariableKind::Region(lt) => lt,
270            _ => bug!("expected a region, but found another kind"),
271        }
272    }
273
274    pub fn expect_ty(self) -> BoundTyKind {
275        match self {
276            BoundVariableKind::Ty(ty) => ty,
277            _ => bug!("expected a type, but found another kind"),
278        }
279    }
280
281    pub fn expect_const(self) {
282        match self {
283            BoundVariableKind::Const => (),
284            _ => bug!("expected a const, but found another kind"),
285        }
286    }
287}
288
289pub type PolyFnSig<'tcx> = Binder<'tcx, FnSig<'tcx>>;
290pub type CanonicalPolyFnSig<'tcx> = Canonical<'tcx, Binder<'tcx, FnSig<'tcx>>>;
291
292#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
293#[derive(HashStable)]
294pub struct ParamTy {
295    pub index: u32,
296    pub name: Symbol,
297}
298
299impl rustc_type_ir::inherent::ParamLike for ParamTy {
300    fn index(self) -> u32 {
301        self.index
302    }
303}
304
305impl<'tcx> ParamTy {
306    pub fn new(index: u32, name: Symbol) -> ParamTy {
307        ParamTy { index, name }
308    }
309
310    pub fn for_def(def: &ty::GenericParamDef) -> ParamTy {
311        ParamTy::new(def.index, def.name)
312    }
313
314    #[inline]
315    pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
316        Ty::new_param(tcx, self.index, self.name)
317    }
318
319    pub fn span_from_generics(self, tcx: TyCtxt<'tcx>, item_with_generics: DefId) -> Span {
320        let generics = tcx.generics_of(item_with_generics);
321        let type_param = generics.type_param(self, tcx);
322        tcx.def_span(type_param.def_id)
323    }
324}
325
326#[derive(Copy, Clone, Hash, TyEncodable, TyDecodable, Eq, PartialEq, Ord, PartialOrd)]
327#[derive(HashStable)]
328pub struct ParamConst {
329    pub index: u32,
330    pub name: Symbol,
331}
332
333impl rustc_type_ir::inherent::ParamLike for ParamConst {
334    fn index(self) -> u32 {
335        self.index
336    }
337}
338
339impl ParamConst {
340    pub fn new(index: u32, name: Symbol) -> ParamConst {
341        ParamConst { index, name }
342    }
343
344    pub fn for_def(def: &ty::GenericParamDef) -> ParamConst {
345        ParamConst::new(def.index, def.name)
346    }
347
348    #[instrument(level = "debug")]
349    pub fn find_const_ty_from_env<'tcx>(self, env: ParamEnv<'tcx>) -> Ty<'tcx> {
350        let mut candidates = env.caller_bounds().iter().filter_map(|clause| {
351            // `ConstArgHasType` are never desugared to be higher ranked.
352            match clause.kind().skip_binder() {
353                ty::ClauseKind::ConstArgHasType(param_ct, ty) => {
354                    assert!(!(param_ct, ty).has_escaping_bound_vars());
355
356                    match param_ct.kind() {
357                        ty::ConstKind::Param(param_ct) if param_ct.index == self.index => Some(ty),
358                        _ => None,
359                    }
360                }
361                _ => None,
362            }
363        });
364
365        // N.B. it may be tempting to fix ICEs by making this function return
366        // `Option<Ty<'tcx>>` instead of `Ty<'tcx>`; however, this is generally
367        // considered to be a bandaid solution, since it hides more important
368        // underlying issues with how we construct generics and predicates of
369        // items. It's advised to fix the underlying issue rather than trying
370        // to modify this function.
371        let ty = candidates.next().unwrap_or_else(|| {
372            bug!("cannot find `{self:?}` in param-env: {env:#?}");
373        });
374        assert!(
375            candidates.next().is_none(),
376            "did not expect duplicate `ConstParamHasTy` for `{self:?}` in param-env: {env:#?}"
377        );
378        ty
379    }
380}
381
382#[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
383#[derive(HashStable)]
384pub struct BoundTy {
385    pub var: BoundVar,
386    pub kind: BoundTyKind,
387}
388
389impl<'tcx> rustc_type_ir::inherent::BoundVarLike<TyCtxt<'tcx>> for BoundTy {
390    fn var(self) -> BoundVar {
391        self.var
392    }
393
394    fn assert_eq(self, var: ty::BoundVariableKind) {
395        assert_eq!(self.kind, var.expect_ty())
396    }
397}
398
399#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
400#[derive(HashStable)]
401pub enum BoundTyKind {
402    Anon,
403    Param(DefId),
404}
405
406impl From<BoundVar> for BoundTy {
407    fn from(var: BoundVar) -> Self {
408        BoundTy { var, kind: BoundTyKind::Anon }
409    }
410}
411
412/// Constructors for `Ty`
413impl<'tcx> Ty<'tcx> {
414    /// Avoid using this in favour of more specific `new_*` methods, where possible.
415    /// The more specific methods will often optimize their creation.
416    #[allow(rustc::usage_of_ty_tykind)]
417    #[inline]
418    fn new(tcx: TyCtxt<'tcx>, st: TyKind<'tcx>) -> Ty<'tcx> {
419        tcx.mk_ty_from_kind(st)
420    }
421
422    #[inline]
423    pub fn new_infer(tcx: TyCtxt<'tcx>, infer: ty::InferTy) -> Ty<'tcx> {
424        Ty::new(tcx, TyKind::Infer(infer))
425    }
426
427    #[inline]
428    pub fn new_var(tcx: TyCtxt<'tcx>, v: ty::TyVid) -> Ty<'tcx> {
429        // Use a pre-interned one when possible.
430        tcx.types
431            .ty_vars
432            .get(v.as_usize())
433            .copied()
434            .unwrap_or_else(|| Ty::new(tcx, Infer(TyVar(v))))
435    }
436
437    #[inline]
438    pub fn new_int_var(tcx: TyCtxt<'tcx>, v: ty::IntVid) -> Ty<'tcx> {
439        Ty::new_infer(tcx, IntVar(v))
440    }
441
442    #[inline]
443    pub fn new_float_var(tcx: TyCtxt<'tcx>, v: ty::FloatVid) -> Ty<'tcx> {
444        Ty::new_infer(tcx, FloatVar(v))
445    }
446
447    #[inline]
448    pub fn new_fresh(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
449        // Use a pre-interned one when possible.
450        tcx.types
451            .fresh_tys
452            .get(n as usize)
453            .copied()
454            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshTy(n)))
455    }
456
457    #[inline]
458    pub fn new_fresh_int(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
459        // Use a pre-interned one when possible.
460        tcx.types
461            .fresh_int_tys
462            .get(n as usize)
463            .copied()
464            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshIntTy(n)))
465    }
466
467    #[inline]
468    pub fn new_fresh_float(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
469        // Use a pre-interned one when possible.
470        tcx.types
471            .fresh_float_tys
472            .get(n as usize)
473            .copied()
474            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshFloatTy(n)))
475    }
476
477    #[inline]
478    pub fn new_param(tcx: TyCtxt<'tcx>, index: u32, name: Symbol) -> Ty<'tcx> {
479        Ty::new(tcx, Param(ParamTy { index, name }))
480    }
481
482    #[inline]
483    pub fn new_bound(
484        tcx: TyCtxt<'tcx>,
485        index: ty::DebruijnIndex,
486        bound_ty: ty::BoundTy,
487    ) -> Ty<'tcx> {
488        Ty::new(tcx, Bound(index, bound_ty))
489    }
490
491    #[inline]
492    pub fn new_placeholder(tcx: TyCtxt<'tcx>, placeholder: ty::PlaceholderType) -> Ty<'tcx> {
493        Ty::new(tcx, Placeholder(placeholder))
494    }
495
496    #[inline]
497    pub fn new_alias(
498        tcx: TyCtxt<'tcx>,
499        kind: ty::AliasTyKind,
500        alias_ty: ty::AliasTy<'tcx>,
501    ) -> Ty<'tcx> {
502        debug_assert_matches!(
503            (kind, tcx.def_kind(alias_ty.def_id)),
504            (ty::Opaque, DefKind::OpaqueTy)
505                | (ty::Projection | ty::Inherent, DefKind::AssocTy)
506                | (ty::Free, DefKind::TyAlias)
507        );
508        Ty::new(tcx, Alias(kind, alias_ty))
509    }
510
511    #[inline]
512    pub fn new_pat(tcx: TyCtxt<'tcx>, base: Ty<'tcx>, pat: ty::Pattern<'tcx>) -> Ty<'tcx> {
513        Ty::new(tcx, Pat(base, pat))
514    }
515
516    #[inline]
517    #[instrument(level = "debug", skip(tcx))]
518    pub fn new_opaque(tcx: TyCtxt<'tcx>, def_id: DefId, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
519        Ty::new_alias(tcx, ty::Opaque, AliasTy::new_from_args(tcx, def_id, args))
520    }
521
522    /// Constructs a `TyKind::Error` type with current `ErrorGuaranteed`
523    pub fn new_error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Ty<'tcx> {
524        Ty::new(tcx, Error(guar))
525    }
526
527    /// Constructs a `TyKind::Error` type and registers a `span_delayed_bug` to ensure it gets used.
528    #[track_caller]
529    pub fn new_misc_error(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
530        Ty::new_error_with_message(tcx, DUMMY_SP, "TyKind::Error constructed but no error reported")
531    }
532
533    /// Constructs a `TyKind::Error` type and registers a `span_delayed_bug` with the given `msg` to
534    /// ensure it gets used.
535    #[track_caller]
536    pub fn new_error_with_message<S: Into<MultiSpan>>(
537        tcx: TyCtxt<'tcx>,
538        span: S,
539        msg: impl Into<Cow<'static, str>>,
540    ) -> Ty<'tcx> {
541        let reported = tcx.dcx().span_delayed_bug(span, msg);
542        Ty::new(tcx, Error(reported))
543    }
544
545    #[inline]
546    pub fn new_int(tcx: TyCtxt<'tcx>, i: ty::IntTy) -> Ty<'tcx> {
547        use ty::IntTy::*;
548        match i {
549            Isize => tcx.types.isize,
550            I8 => tcx.types.i8,
551            I16 => tcx.types.i16,
552            I32 => tcx.types.i32,
553            I64 => tcx.types.i64,
554            I128 => tcx.types.i128,
555        }
556    }
557
558    #[inline]
559    pub fn new_uint(tcx: TyCtxt<'tcx>, ui: ty::UintTy) -> Ty<'tcx> {
560        use ty::UintTy::*;
561        match ui {
562            Usize => tcx.types.usize,
563            U8 => tcx.types.u8,
564            U16 => tcx.types.u16,
565            U32 => tcx.types.u32,
566            U64 => tcx.types.u64,
567            U128 => tcx.types.u128,
568        }
569    }
570
571    #[inline]
572    pub fn new_float(tcx: TyCtxt<'tcx>, f: ty::FloatTy) -> Ty<'tcx> {
573        use ty::FloatTy::*;
574        match f {
575            F16 => tcx.types.f16,
576            F32 => tcx.types.f32,
577            F64 => tcx.types.f64,
578            F128 => tcx.types.f128,
579        }
580    }
581
582    #[inline]
583    pub fn new_ref(
584        tcx: TyCtxt<'tcx>,
585        r: Region<'tcx>,
586        ty: Ty<'tcx>,
587        mutbl: ty::Mutability,
588    ) -> Ty<'tcx> {
589        Ty::new(tcx, Ref(r, ty, mutbl))
590    }
591
592    #[inline]
593    pub fn new_mut_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
594        Ty::new_ref(tcx, r, ty, hir::Mutability::Mut)
595    }
596
597    #[inline]
598    pub fn new_imm_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
599        Ty::new_ref(tcx, r, ty, hir::Mutability::Not)
600    }
601
602    pub fn new_pinned_ref(
603        tcx: TyCtxt<'tcx>,
604        r: Region<'tcx>,
605        ty: Ty<'tcx>,
606        mutbl: ty::Mutability,
607    ) -> Ty<'tcx> {
608        let pin = tcx.adt_def(tcx.require_lang_item(LangItem::Pin, DUMMY_SP));
609        Ty::new_adt(tcx, pin, tcx.mk_args(&[Ty::new_ref(tcx, r, ty, mutbl).into()]))
610    }
611
612    #[inline]
613    pub fn new_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, mutbl: ty::Mutability) -> Ty<'tcx> {
614        Ty::new(tcx, ty::RawPtr(ty, mutbl))
615    }
616
617    #[inline]
618    pub fn new_mut_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
619        Ty::new_ptr(tcx, ty, hir::Mutability::Mut)
620    }
621
622    #[inline]
623    pub fn new_imm_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
624        Ty::new_ptr(tcx, ty, hir::Mutability::Not)
625    }
626
627    #[inline]
628    pub fn new_adt(tcx: TyCtxt<'tcx>, def: AdtDef<'tcx>, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
629        tcx.debug_assert_args_compatible(def.did(), args);
630        if cfg!(debug_assertions) {
631            match tcx.def_kind(def.did()) {
632                DefKind::Struct | DefKind::Union | DefKind::Enum => {}
633                DefKind::Mod
634                | DefKind::Variant
635                | DefKind::Trait
636                | DefKind::TyAlias
637                | DefKind::ForeignTy
638                | DefKind::TraitAlias
639                | DefKind::AssocTy
640                | DefKind::TyParam
641                | DefKind::Fn
642                | DefKind::Const
643                | DefKind::ConstParam
644                | DefKind::Static { .. }
645                | DefKind::Ctor(..)
646                | DefKind::AssocFn
647                | DefKind::AssocConst
648                | DefKind::Macro(..)
649                | DefKind::ExternCrate
650                | DefKind::Use
651                | DefKind::ForeignMod
652                | DefKind::AnonConst
653                | DefKind::InlineConst
654                | DefKind::OpaqueTy
655                | DefKind::Field
656                | DefKind::LifetimeParam
657                | DefKind::GlobalAsm
658                | DefKind::Impl { .. }
659                | DefKind::Closure
660                | DefKind::SyntheticCoroutineBody => {
661                    bug!("not an adt: {def:?} ({:?})", tcx.def_kind(def.did()))
662                }
663            }
664        }
665        Ty::new(tcx, Adt(def, args))
666    }
667
668    #[inline]
669    pub fn new_foreign(tcx: TyCtxt<'tcx>, def_id: DefId) -> Ty<'tcx> {
670        Ty::new(tcx, Foreign(def_id))
671    }
672
673    #[inline]
674    pub fn new_array(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, n: u64) -> Ty<'tcx> {
675        Ty::new(tcx, Array(ty, ty::Const::from_target_usize(tcx, n)))
676    }
677
678    #[inline]
679    pub fn new_array_with_const_len(
680        tcx: TyCtxt<'tcx>,
681        ty: Ty<'tcx>,
682        ct: ty::Const<'tcx>,
683    ) -> Ty<'tcx> {
684        Ty::new(tcx, Array(ty, ct))
685    }
686
687    #[inline]
688    pub fn new_slice(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
689        Ty::new(tcx, Slice(ty))
690    }
691
692    #[inline]
693    pub fn new_tup(tcx: TyCtxt<'tcx>, ts: &[Ty<'tcx>]) -> Ty<'tcx> {
694        if ts.is_empty() { tcx.types.unit } else { Ty::new(tcx, Tuple(tcx.mk_type_list(ts))) }
695    }
696
697    pub fn new_tup_from_iter<I, T>(tcx: TyCtxt<'tcx>, iter: I) -> T::Output
698    where
699        I: Iterator<Item = T>,
700        T: CollectAndApply<Ty<'tcx>, Ty<'tcx>>,
701    {
702        T::collect_and_apply(iter, |ts| Ty::new_tup(tcx, ts))
703    }
704
705    #[inline]
706    pub fn new_fn_def(
707        tcx: TyCtxt<'tcx>,
708        def_id: DefId,
709        args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
710    ) -> Ty<'tcx> {
711        debug_assert_matches!(
712            tcx.def_kind(def_id),
713            DefKind::AssocFn | DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn)
714        );
715        let args = tcx.check_and_mk_args(def_id, args);
716        Ty::new(tcx, FnDef(def_id, args))
717    }
718
719    #[inline]
720    pub fn new_fn_ptr(tcx: TyCtxt<'tcx>, fty: PolyFnSig<'tcx>) -> Ty<'tcx> {
721        let (sig_tys, hdr) = fty.split();
722        Ty::new(tcx, FnPtr(sig_tys, hdr))
723    }
724
725    #[inline]
726    pub fn new_unsafe_binder(tcx: TyCtxt<'tcx>, b: Binder<'tcx, Ty<'tcx>>) -> Ty<'tcx> {
727        Ty::new(tcx, UnsafeBinder(b.into()))
728    }
729
730    #[inline]
731    pub fn new_dynamic(
732        tcx: TyCtxt<'tcx>,
733        obj: &'tcx List<ty::PolyExistentialPredicate<'tcx>>,
734        reg: ty::Region<'tcx>,
735        repr: DynKind,
736    ) -> Ty<'tcx> {
737        if cfg!(debug_assertions) {
738            let projection_count = obj
739                .projection_bounds()
740                .filter(|item| !tcx.generics_require_sized_self(item.item_def_id()))
741                .count();
742            let expected_count: usize = obj
743                .principal_def_id()
744                .into_iter()
745                .flat_map(|principal_def_id| {
746                    // NOTE: This should agree with `needed_associated_types` in
747                    // dyn trait lowering, or else we'll have ICEs.
748                    elaborate::supertraits(
749                        tcx,
750                        ty::Binder::dummy(ty::TraitRef::identity(tcx, principal_def_id)),
751                    )
752                    .map(|principal| {
753                        tcx.associated_items(principal.def_id())
754                            .in_definition_order()
755                            .filter(|item| item.is_type())
756                            .filter(|item| !item.is_impl_trait_in_trait())
757                            .filter(|item| !tcx.generics_require_sized_self(item.def_id))
758                            .count()
759                    })
760                })
761                .sum();
762            assert_eq!(
763                projection_count, expected_count,
764                "expected {obj:?} to have {expected_count} projections, \
765                but it has {projection_count}"
766            );
767        }
768        Ty::new(tcx, Dynamic(obj, reg, repr))
769    }
770
771    #[inline]
772    pub fn new_projection_from_args(
773        tcx: TyCtxt<'tcx>,
774        item_def_id: DefId,
775        args: ty::GenericArgsRef<'tcx>,
776    ) -> Ty<'tcx> {
777        Ty::new_alias(tcx, ty::Projection, AliasTy::new_from_args(tcx, item_def_id, args))
778    }
779
780    #[inline]
781    pub fn new_projection(
782        tcx: TyCtxt<'tcx>,
783        item_def_id: DefId,
784        args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
785    ) -> Ty<'tcx> {
786        Ty::new_alias(tcx, ty::Projection, AliasTy::new(tcx, item_def_id, args))
787    }
788
789    #[inline]
790    pub fn new_closure(
791        tcx: TyCtxt<'tcx>,
792        def_id: DefId,
793        closure_args: GenericArgsRef<'tcx>,
794    ) -> Ty<'tcx> {
795        tcx.debug_assert_args_compatible(def_id, closure_args);
796        Ty::new(tcx, Closure(def_id, closure_args))
797    }
798
799    #[inline]
800    pub fn new_coroutine_closure(
801        tcx: TyCtxt<'tcx>,
802        def_id: DefId,
803        closure_args: GenericArgsRef<'tcx>,
804    ) -> Ty<'tcx> {
805        tcx.debug_assert_args_compatible(def_id, closure_args);
806        Ty::new(tcx, CoroutineClosure(def_id, closure_args))
807    }
808
809    #[inline]
810    pub fn new_coroutine(
811        tcx: TyCtxt<'tcx>,
812        def_id: DefId,
813        coroutine_args: GenericArgsRef<'tcx>,
814    ) -> Ty<'tcx> {
815        tcx.debug_assert_args_compatible(def_id, coroutine_args);
816        Ty::new(tcx, Coroutine(def_id, coroutine_args))
817    }
818
819    #[inline]
820    pub fn new_coroutine_witness(
821        tcx: TyCtxt<'tcx>,
822        id: DefId,
823        args: GenericArgsRef<'tcx>,
824    ) -> Ty<'tcx> {
825        Ty::new(tcx, CoroutineWitness(id, args))
826    }
827
828    // misc
829
830    #[inline]
831    pub fn new_static_str(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
832        Ty::new_imm_ref(tcx, tcx.lifetimes.re_static, tcx.types.str_)
833    }
834
835    #[inline]
836    pub fn new_diverging_default(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
837        if tcx.features().never_type_fallback() { tcx.types.never } else { tcx.types.unit }
838    }
839
840    // lang and diagnostic tys
841
842    fn new_generic_adt(tcx: TyCtxt<'tcx>, wrapper_def_id: DefId, ty_param: Ty<'tcx>) -> Ty<'tcx> {
843        let adt_def = tcx.adt_def(wrapper_def_id);
844        let args = GenericArgs::for_item(tcx, wrapper_def_id, |param, args| match param.kind {
845            GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => bug!(),
846            GenericParamDefKind::Type { has_default, .. } => {
847                if param.index == 0 {
848                    ty_param.into()
849                } else {
850                    assert!(has_default);
851                    tcx.type_of(param.def_id).instantiate(tcx, args).into()
852                }
853            }
854        });
855        Ty::new_adt(tcx, adt_def, args)
856    }
857
858    #[inline]
859    pub fn new_lang_item(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, item: LangItem) -> Option<Ty<'tcx>> {
860        let def_id = tcx.lang_items().get(item)?;
861        Some(Ty::new_generic_adt(tcx, def_id, ty))
862    }
863
864    #[inline]
865    pub fn new_diagnostic_item(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, name: Symbol) -> Option<Ty<'tcx>> {
866        let def_id = tcx.get_diagnostic_item(name)?;
867        Some(Ty::new_generic_adt(tcx, def_id, ty))
868    }
869
870    #[inline]
871    pub fn new_box(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
872        let def_id = tcx.require_lang_item(LangItem::OwnedBox, DUMMY_SP);
873        Ty::new_generic_adt(tcx, def_id, ty)
874    }
875
876    #[inline]
877    pub fn new_maybe_uninit(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
878        let def_id = tcx.require_lang_item(LangItem::MaybeUninit, DUMMY_SP);
879        Ty::new_generic_adt(tcx, def_id, ty)
880    }
881
882    /// Creates a `&mut Context<'_>` [`Ty`] with erased lifetimes.
883    pub fn new_task_context(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
884        let context_did = tcx.require_lang_item(LangItem::Context, DUMMY_SP);
885        let context_adt_ref = tcx.adt_def(context_did);
886        let context_args = tcx.mk_args(&[tcx.lifetimes.re_erased.into()]);
887        let context_ty = Ty::new_adt(tcx, context_adt_ref, context_args);
888        Ty::new_mut_ref(tcx, tcx.lifetimes.re_erased, context_ty)
889    }
890}
891
892impl<'tcx> rustc_type_ir::inherent::Ty<TyCtxt<'tcx>> for Ty<'tcx> {
893    fn new_bool(tcx: TyCtxt<'tcx>) -> Self {
894        tcx.types.bool
895    }
896
897    fn new_u8(tcx: TyCtxt<'tcx>) -> Self {
898        tcx.types.u8
899    }
900
901    fn new_infer(tcx: TyCtxt<'tcx>, infer: ty::InferTy) -> Self {
902        Ty::new_infer(tcx, infer)
903    }
904
905    fn new_var(tcx: TyCtxt<'tcx>, vid: ty::TyVid) -> Self {
906        Ty::new_var(tcx, vid)
907    }
908
909    fn new_param(tcx: TyCtxt<'tcx>, param: ty::ParamTy) -> Self {
910        Ty::new_param(tcx, param.index, param.name)
911    }
912
913    fn new_placeholder(tcx: TyCtxt<'tcx>, placeholder: ty::PlaceholderType) -> Self {
914        Ty::new_placeholder(tcx, placeholder)
915    }
916
917    fn new_bound(interner: TyCtxt<'tcx>, debruijn: ty::DebruijnIndex, var: ty::BoundTy) -> Self {
918        Ty::new_bound(interner, debruijn, var)
919    }
920
921    fn new_anon_bound(tcx: TyCtxt<'tcx>, debruijn: ty::DebruijnIndex, var: ty::BoundVar) -> Self {
922        Ty::new_bound(tcx, debruijn, ty::BoundTy { var, kind: ty::BoundTyKind::Anon })
923    }
924
925    fn new_alias(
926        interner: TyCtxt<'tcx>,
927        kind: ty::AliasTyKind,
928        alias_ty: ty::AliasTy<'tcx>,
929    ) -> Self {
930        Ty::new_alias(interner, kind, alias_ty)
931    }
932
933    fn new_error(interner: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Self {
934        Ty::new_error(interner, guar)
935    }
936
937    fn new_adt(
938        interner: TyCtxt<'tcx>,
939        adt_def: ty::AdtDef<'tcx>,
940        args: ty::GenericArgsRef<'tcx>,
941    ) -> Self {
942        Ty::new_adt(interner, adt_def, args)
943    }
944
945    fn new_foreign(interner: TyCtxt<'tcx>, def_id: DefId) -> Self {
946        Ty::new_foreign(interner, def_id)
947    }
948
949    fn new_dynamic(
950        interner: TyCtxt<'tcx>,
951        preds: &'tcx List<ty::PolyExistentialPredicate<'tcx>>,
952        region: ty::Region<'tcx>,
953        kind: ty::DynKind,
954    ) -> Self {
955        Ty::new_dynamic(interner, preds, region, kind)
956    }
957
958    fn new_coroutine(
959        interner: TyCtxt<'tcx>,
960        def_id: DefId,
961        args: ty::GenericArgsRef<'tcx>,
962    ) -> Self {
963        Ty::new_coroutine(interner, def_id, args)
964    }
965
966    fn new_coroutine_closure(
967        interner: TyCtxt<'tcx>,
968        def_id: DefId,
969        args: ty::GenericArgsRef<'tcx>,
970    ) -> Self {
971        Ty::new_coroutine_closure(interner, def_id, args)
972    }
973
974    fn new_closure(interner: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Self {
975        Ty::new_closure(interner, def_id, args)
976    }
977
978    fn new_coroutine_witness(
979        interner: TyCtxt<'tcx>,
980        def_id: DefId,
981        args: ty::GenericArgsRef<'tcx>,
982    ) -> Self {
983        Ty::new_coroutine_witness(interner, def_id, args)
984    }
985
986    fn new_ptr(interner: TyCtxt<'tcx>, ty: Self, mutbl: hir::Mutability) -> Self {
987        Ty::new_ptr(interner, ty, mutbl)
988    }
989
990    fn new_ref(
991        interner: TyCtxt<'tcx>,
992        region: ty::Region<'tcx>,
993        ty: Self,
994        mutbl: hir::Mutability,
995    ) -> Self {
996        Ty::new_ref(interner, region, ty, mutbl)
997    }
998
999    fn new_array_with_const_len(interner: TyCtxt<'tcx>, ty: Self, len: ty::Const<'tcx>) -> Self {
1000        Ty::new_array_with_const_len(interner, ty, len)
1001    }
1002
1003    fn new_slice(interner: TyCtxt<'tcx>, ty: Self) -> Self {
1004        Ty::new_slice(interner, ty)
1005    }
1006
1007    fn new_tup(interner: TyCtxt<'tcx>, tys: &[Ty<'tcx>]) -> Self {
1008        Ty::new_tup(interner, tys)
1009    }
1010
1011    fn new_tup_from_iter<It, T>(interner: TyCtxt<'tcx>, iter: It) -> T::Output
1012    where
1013        It: Iterator<Item = T>,
1014        T: CollectAndApply<Self, Self>,
1015    {
1016        Ty::new_tup_from_iter(interner, iter)
1017    }
1018
1019    fn tuple_fields(self) -> &'tcx ty::List<Ty<'tcx>> {
1020        self.tuple_fields()
1021    }
1022
1023    fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> {
1024        self.to_opt_closure_kind()
1025    }
1026
1027    fn from_closure_kind(interner: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Self {
1028        Ty::from_closure_kind(interner, kind)
1029    }
1030
1031    fn from_coroutine_closure_kind(
1032        interner: TyCtxt<'tcx>,
1033        kind: rustc_type_ir::ClosureKind,
1034    ) -> Self {
1035        Ty::from_coroutine_closure_kind(interner, kind)
1036    }
1037
1038    fn new_fn_def(interner: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Self {
1039        Ty::new_fn_def(interner, def_id, args)
1040    }
1041
1042    fn new_fn_ptr(interner: TyCtxt<'tcx>, sig: ty::Binder<'tcx, ty::FnSig<'tcx>>) -> Self {
1043        Ty::new_fn_ptr(interner, sig)
1044    }
1045
1046    fn new_pat(interner: TyCtxt<'tcx>, ty: Self, pat: ty::Pattern<'tcx>) -> Self {
1047        Ty::new_pat(interner, ty, pat)
1048    }
1049
1050    fn new_unsafe_binder(interner: TyCtxt<'tcx>, ty: ty::Binder<'tcx, Ty<'tcx>>) -> Self {
1051        Ty::new_unsafe_binder(interner, ty)
1052    }
1053
1054    fn new_unit(interner: TyCtxt<'tcx>) -> Self {
1055        interner.types.unit
1056    }
1057
1058    fn new_usize(interner: TyCtxt<'tcx>) -> Self {
1059        interner.types.usize
1060    }
1061
1062    fn discriminant_ty(self, interner: TyCtxt<'tcx>) -> Ty<'tcx> {
1063        self.discriminant_ty(interner)
1064    }
1065
1066    fn has_unsafe_fields(self) -> bool {
1067        Ty::has_unsafe_fields(self)
1068    }
1069}
1070
1071/// Type utilities
1072impl<'tcx> Ty<'tcx> {
1073    // It would be nicer if this returned the value instead of a reference,
1074    // like how `Predicate::kind` and `Region::kind` do. (It would result in
1075    // many fewer subsequent dereferences.) But that gives a small but
1076    // noticeable performance hit. See #126069 for details.
1077    #[inline(always)]
1078    pub fn kind(self) -> &'tcx TyKind<'tcx> {
1079        self.0.0
1080    }
1081
1082    // FIXME(compiler-errors): Think about removing this.
1083    #[inline(always)]
1084    pub fn flags(self) -> TypeFlags {
1085        self.0.0.flags
1086    }
1087
1088    #[inline]
1089    pub fn is_unit(self) -> bool {
1090        match self.kind() {
1091            Tuple(tys) => tys.is_empty(),
1092            _ => false,
1093        }
1094    }
1095
1096    /// Check if type is an `usize`.
1097    #[inline]
1098    pub fn is_usize(self) -> bool {
1099        matches!(self.kind(), Uint(UintTy::Usize))
1100    }
1101
1102    /// Check if type is an `usize` or an integral type variable.
1103    #[inline]
1104    pub fn is_usize_like(self) -> bool {
1105        matches!(self.kind(), Uint(UintTy::Usize) | Infer(IntVar(_)))
1106    }
1107
1108    #[inline]
1109    pub fn is_never(self) -> bool {
1110        matches!(self.kind(), Never)
1111    }
1112
1113    #[inline]
1114    pub fn is_primitive(self) -> bool {
1115        matches!(self.kind(), Bool | Char | Int(_) | Uint(_) | Float(_))
1116    }
1117
1118    #[inline]
1119    pub fn is_adt(self) -> bool {
1120        matches!(self.kind(), Adt(..))
1121    }
1122
1123    #[inline]
1124    pub fn is_ref(self) -> bool {
1125        matches!(self.kind(), Ref(..))
1126    }
1127
1128    #[inline]
1129    pub fn is_ty_var(self) -> bool {
1130        matches!(self.kind(), Infer(TyVar(_)))
1131    }
1132
1133    #[inline]
1134    pub fn ty_vid(self) -> Option<ty::TyVid> {
1135        match self.kind() {
1136            &Infer(TyVar(vid)) => Some(vid),
1137            _ => None,
1138        }
1139    }
1140
1141    #[inline]
1142    pub fn is_ty_or_numeric_infer(self) -> bool {
1143        matches!(self.kind(), Infer(_))
1144    }
1145
1146    #[inline]
1147    pub fn is_phantom_data(self) -> bool {
1148        if let Adt(def, _) = self.kind() { def.is_phantom_data() } else { false }
1149    }
1150
1151    #[inline]
1152    pub fn is_bool(self) -> bool {
1153        *self.kind() == Bool
1154    }
1155
1156    /// Returns `true` if this type is a `str`.
1157    #[inline]
1158    pub fn is_str(self) -> bool {
1159        *self.kind() == Str
1160    }
1161
1162    #[inline]
1163    pub fn is_param(self, index: u32) -> bool {
1164        match self.kind() {
1165            ty::Param(data) => data.index == index,
1166            _ => false,
1167        }
1168    }
1169
1170    #[inline]
1171    pub fn is_slice(self) -> bool {
1172        matches!(self.kind(), Slice(_))
1173    }
1174
1175    #[inline]
1176    pub fn is_array_slice(self) -> bool {
1177        match self.kind() {
1178            Slice(_) => true,
1179            ty::RawPtr(ty, _) | Ref(_, ty, _) => matches!(ty.kind(), Slice(_)),
1180            _ => false,
1181        }
1182    }
1183
1184    #[inline]
1185    pub fn is_array(self) -> bool {
1186        matches!(self.kind(), Array(..))
1187    }
1188
1189    #[inline]
1190    pub fn is_simd(self) -> bool {
1191        match self.kind() {
1192            Adt(def, _) => def.repr().simd(),
1193            _ => false,
1194        }
1195    }
1196
1197    pub fn sequence_element_type(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1198        match self.kind() {
1199            Array(ty, _) | Slice(ty) => *ty,
1200            Str => tcx.types.u8,
1201            _ => bug!("`sequence_element_type` called on non-sequence value: {}", self),
1202        }
1203    }
1204
1205    pub fn simd_size_and_type(self, tcx: TyCtxt<'tcx>) -> (u64, Ty<'tcx>) {
1206        let Adt(def, args) = self.kind() else {
1207            bug!("`simd_size_and_type` called on invalid type")
1208        };
1209        assert!(def.repr().simd(), "`simd_size_and_type` called on non-SIMD type");
1210        let variant = def.non_enum_variant();
1211        assert_eq!(variant.fields.len(), 1);
1212        let field_ty = variant.fields[FieldIdx::ZERO].ty(tcx, args);
1213        let Array(f0_elem_ty, f0_len) = field_ty.kind() else {
1214            bug!("Simd type has non-array field type {field_ty:?}")
1215        };
1216        // FIXME(repr_simd): https://github.com/rust-lang/rust/pull/78863#discussion_r522784112
1217        // The way we evaluate the `N` in `[T; N]` here only works since we use
1218        // `simd_size_and_type` post-monomorphization. It will probably start to ICE
1219        // if we use it in generic code. See the `simd-array-trait` ui test.
1220        (
1221            f0_len
1222                .try_to_target_usize(tcx)
1223                .expect("expected SIMD field to have definite array size"),
1224            *f0_elem_ty,
1225        )
1226    }
1227
1228    #[inline]
1229    pub fn is_mutable_ptr(self) -> bool {
1230        matches!(self.kind(), RawPtr(_, hir::Mutability::Mut) | Ref(_, _, hir::Mutability::Mut))
1231    }
1232
1233    /// Get the mutability of the reference or `None` when not a reference
1234    #[inline]
1235    pub fn ref_mutability(self) -> Option<hir::Mutability> {
1236        match self.kind() {
1237            Ref(_, _, mutability) => Some(*mutability),
1238            _ => None,
1239        }
1240    }
1241
1242    #[inline]
1243    pub fn is_raw_ptr(self) -> bool {
1244        matches!(self.kind(), RawPtr(_, _))
1245    }
1246
1247    /// Tests if this is any kind of primitive pointer type (reference, raw pointer, fn pointer).
1248    /// `Box` is *not* considered a pointer here!
1249    #[inline]
1250    pub fn is_any_ptr(self) -> bool {
1251        self.is_ref() || self.is_raw_ptr() || self.is_fn_ptr()
1252    }
1253
1254    #[inline]
1255    pub fn is_box(self) -> bool {
1256        match self.kind() {
1257            Adt(def, _) => def.is_box(),
1258            _ => false,
1259        }
1260    }
1261
1262    /// Tests whether this is a Box definitely using the global allocator.
1263    ///
1264    /// If the allocator is still generic, the answer is `false`, but it may
1265    /// later turn out that it does use the global allocator.
1266    #[inline]
1267    pub fn is_box_global(self, tcx: TyCtxt<'tcx>) -> bool {
1268        match self.kind() {
1269            Adt(def, args) if def.is_box() => {
1270                let Some(alloc) = args.get(1) else {
1271                    // Single-argument Box is always global. (for "minicore" tests)
1272                    return true;
1273                };
1274                alloc.expect_ty().ty_adt_def().is_some_and(|alloc_adt| {
1275                    tcx.is_lang_item(alloc_adt.did(), LangItem::GlobalAlloc)
1276                })
1277            }
1278            _ => false,
1279        }
1280    }
1281
1282    pub fn boxed_ty(self) -> Option<Ty<'tcx>> {
1283        match self.kind() {
1284            Adt(def, args) if def.is_box() => Some(args.type_at(0)),
1285            _ => None,
1286        }
1287    }
1288
1289    /// Panics if called on any type other than `Box<T>`.
1290    pub fn expect_boxed_ty(self) -> Ty<'tcx> {
1291        self.boxed_ty()
1292            .unwrap_or_else(|| bug!("`expect_boxed_ty` is called on non-box type {:?}", self))
1293    }
1294
1295    /// A scalar type is one that denotes an atomic datum, with no sub-components.
1296    /// (A RawPtr is scalar because it represents a non-managed pointer, so its
1297    /// contents are abstract to rustc.)
1298    #[inline]
1299    pub fn is_scalar(self) -> bool {
1300        matches!(
1301            self.kind(),
1302            Bool | Char
1303                | Int(_)
1304                | Float(_)
1305                | Uint(_)
1306                | FnDef(..)
1307                | FnPtr(..)
1308                | RawPtr(_, _)
1309                | Infer(IntVar(_) | FloatVar(_))
1310        )
1311    }
1312
1313    /// Returns `true` if this type is a floating point type.
1314    #[inline]
1315    pub fn is_floating_point(self) -> bool {
1316        matches!(self.kind(), Float(_) | Infer(FloatVar(_)))
1317    }
1318
1319    #[inline]
1320    pub fn is_trait(self) -> bool {
1321        matches!(self.kind(), Dynamic(_, _, ty::Dyn))
1322    }
1323
1324    #[inline]
1325    pub fn is_enum(self) -> bool {
1326        matches!(self.kind(), Adt(adt_def, _) if adt_def.is_enum())
1327    }
1328
1329    #[inline]
1330    pub fn is_union(self) -> bool {
1331        matches!(self.kind(), Adt(adt_def, _) if adt_def.is_union())
1332    }
1333
1334    #[inline]
1335    pub fn is_closure(self) -> bool {
1336        matches!(self.kind(), Closure(..))
1337    }
1338
1339    #[inline]
1340    pub fn is_coroutine(self) -> bool {
1341        matches!(self.kind(), Coroutine(..))
1342    }
1343
1344    #[inline]
1345    pub fn is_coroutine_closure(self) -> bool {
1346        matches!(self.kind(), CoroutineClosure(..))
1347    }
1348
1349    #[inline]
1350    pub fn is_integral(self) -> bool {
1351        matches!(self.kind(), Infer(IntVar(_)) | Int(_) | Uint(_))
1352    }
1353
1354    #[inline]
1355    pub fn is_fresh_ty(self) -> bool {
1356        matches!(self.kind(), Infer(FreshTy(_)))
1357    }
1358
1359    #[inline]
1360    pub fn is_fresh(self) -> bool {
1361        matches!(self.kind(), Infer(FreshTy(_) | FreshIntTy(_) | FreshFloatTy(_)))
1362    }
1363
1364    #[inline]
1365    pub fn is_char(self) -> bool {
1366        matches!(self.kind(), Char)
1367    }
1368
1369    #[inline]
1370    pub fn is_numeric(self) -> bool {
1371        self.is_integral() || self.is_floating_point()
1372    }
1373
1374    #[inline]
1375    pub fn is_signed(self) -> bool {
1376        matches!(self.kind(), Int(_))
1377    }
1378
1379    #[inline]
1380    pub fn is_ptr_sized_integral(self) -> bool {
1381        matches!(self.kind(), Int(ty::IntTy::Isize) | Uint(ty::UintTy::Usize))
1382    }
1383
1384    #[inline]
1385    pub fn has_concrete_skeleton(self) -> bool {
1386        !matches!(self.kind(), Param(_) | Infer(_) | Error(_))
1387    }
1388
1389    /// Checks whether a type recursively contains another type
1390    ///
1391    /// Example: `Option<()>` contains `()`
1392    pub fn contains(self, other: Ty<'tcx>) -> bool {
1393        struct ContainsTyVisitor<'tcx>(Ty<'tcx>);
1394
1395        impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsTyVisitor<'tcx> {
1396            type Result = ControlFlow<()>;
1397
1398            fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
1399                if self.0 == t { ControlFlow::Break(()) } else { t.super_visit_with(self) }
1400            }
1401        }
1402
1403        let cf = self.visit_with(&mut ContainsTyVisitor(other));
1404        cf.is_break()
1405    }
1406
1407    /// Checks whether a type recursively contains any closure
1408    ///
1409    /// Example: `Option<{closure@file.rs:4:20}>` returns true
1410    pub fn contains_closure(self) -> bool {
1411        struct ContainsClosureVisitor;
1412
1413        impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsClosureVisitor {
1414            type Result = ControlFlow<()>;
1415
1416            fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
1417                if let ty::Closure(..) = t.kind() {
1418                    ControlFlow::Break(())
1419                } else {
1420                    t.super_visit_with(self)
1421                }
1422            }
1423        }
1424
1425        let cf = self.visit_with(&mut ContainsClosureVisitor);
1426        cf.is_break()
1427    }
1428
1429    /// Returns the deepest `async_drop_in_place::{closure}` implementation.
1430    ///
1431    /// `async_drop_in_place<T>::{closure}`, when T is a coroutine, is a proxy-impl
1432    /// to call async drop poll from impl coroutine.
1433    pub fn find_async_drop_impl_coroutine<F: FnMut(Ty<'tcx>)>(
1434        self,
1435        tcx: TyCtxt<'tcx>,
1436        mut f: F,
1437    ) -> Ty<'tcx> {
1438        assert!(self.is_coroutine());
1439        let mut cor_ty = self;
1440        let mut ty = cor_ty;
1441        loop {
1442            if let ty::Coroutine(def_id, args) = ty.kind() {
1443                cor_ty = ty;
1444                f(ty);
1445                if tcx.is_async_drop_in_place_coroutine(*def_id) {
1446                    ty = args.first().unwrap().expect_ty();
1447                    continue;
1448                } else {
1449                    return cor_ty;
1450                }
1451            } else {
1452                return cor_ty;
1453            }
1454        }
1455    }
1456
1457    /// Returns the type and mutability of `*ty`.
1458    ///
1459    /// The parameter `explicit` indicates if this is an *explicit* dereference.
1460    /// Some types -- notably raw ptrs -- can only be dereferenced explicitly.
1461    pub fn builtin_deref(self, explicit: bool) -> Option<Ty<'tcx>> {
1462        match *self.kind() {
1463            _ if let Some(boxed) = self.boxed_ty() => Some(boxed),
1464            Ref(_, ty, _) => Some(ty),
1465            RawPtr(ty, _) if explicit => Some(ty),
1466            _ => None,
1467        }
1468    }
1469
1470    /// Returns the type of `ty[i]`.
1471    pub fn builtin_index(self) -> Option<Ty<'tcx>> {
1472        match self.kind() {
1473            Array(ty, _) | Slice(ty) => Some(*ty),
1474            _ => None,
1475        }
1476    }
1477
1478    #[tracing::instrument(level = "trace", skip(tcx))]
1479    pub fn fn_sig(self, tcx: TyCtxt<'tcx>) -> PolyFnSig<'tcx> {
1480        self.kind().fn_sig(tcx)
1481    }
1482
1483    #[inline]
1484    pub fn is_fn(self) -> bool {
1485        matches!(self.kind(), FnDef(..) | FnPtr(..))
1486    }
1487
1488    #[inline]
1489    pub fn is_fn_ptr(self) -> bool {
1490        matches!(self.kind(), FnPtr(..))
1491    }
1492
1493    #[inline]
1494    pub fn is_impl_trait(self) -> bool {
1495        matches!(self.kind(), Alias(ty::Opaque, ..))
1496    }
1497
1498    #[inline]
1499    pub fn ty_adt_def(self) -> Option<AdtDef<'tcx>> {
1500        match self.kind() {
1501            Adt(adt, _) => Some(*adt),
1502            _ => None,
1503        }
1504    }
1505
1506    /// Iterates over tuple fields.
1507    /// Panics when called on anything but a tuple.
1508    #[inline]
1509    pub fn tuple_fields(self) -> &'tcx List<Ty<'tcx>> {
1510        match self.kind() {
1511            Tuple(args) => args,
1512            _ => bug!("tuple_fields called on non-tuple: {self:?}"),
1513        }
1514    }
1515
1516    /// If the type contains variants, returns the valid range of variant indices.
1517    //
1518    // FIXME: This requires the optimized MIR in the case of coroutines.
1519    #[inline]
1520    pub fn variant_range(self, tcx: TyCtxt<'tcx>) -> Option<Range<VariantIdx>> {
1521        match self.kind() {
1522            TyKind::Adt(adt, _) => Some(adt.variant_range()),
1523            TyKind::Coroutine(def_id, args) => {
1524                Some(args.as_coroutine().variant_range(*def_id, tcx))
1525            }
1526            _ => None,
1527        }
1528    }
1529
1530    /// If the type contains variants, returns the variant for `variant_index`.
1531    /// Panics if `variant_index` is out of range.
1532    //
1533    // FIXME: This requires the optimized MIR in the case of coroutines.
1534    #[inline]
1535    pub fn discriminant_for_variant(
1536        self,
1537        tcx: TyCtxt<'tcx>,
1538        variant_index: VariantIdx,
1539    ) -> Option<Discr<'tcx>> {
1540        match self.kind() {
1541            TyKind::Adt(adt, _) if adt.is_enum() => {
1542                Some(adt.discriminant_for_variant(tcx, variant_index))
1543            }
1544            TyKind::Coroutine(def_id, args) => {
1545                Some(args.as_coroutine().discriminant_for_variant(*def_id, tcx, variant_index))
1546            }
1547            _ => None,
1548        }
1549    }
1550
1551    /// Returns the type of the discriminant of this type.
1552    pub fn discriminant_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1553        match self.kind() {
1554            ty::Adt(adt, _) if adt.is_enum() => adt.repr().discr_type().to_ty(tcx),
1555            ty::Coroutine(_, args) => args.as_coroutine().discr_ty(tcx),
1556
1557            ty::Param(_) | ty::Alias(..) | ty::Infer(ty::TyVar(_)) => {
1558                let assoc_items = tcx.associated_item_def_ids(
1559                    tcx.require_lang_item(hir::LangItem::DiscriminantKind, DUMMY_SP),
1560                );
1561                Ty::new_projection_from_args(tcx, assoc_items[0], tcx.mk_args(&[self.into()]))
1562            }
1563
1564            ty::Pat(ty, _) => ty.discriminant_ty(tcx),
1565
1566            ty::Bool
1567            | ty::Char
1568            | ty::Int(_)
1569            | ty::Uint(_)
1570            | ty::Float(_)
1571            | ty::Adt(..)
1572            | ty::Foreign(_)
1573            | ty::Str
1574            | ty::Array(..)
1575            | ty::Slice(_)
1576            | ty::RawPtr(_, _)
1577            | ty::Ref(..)
1578            | ty::FnDef(..)
1579            | ty::FnPtr(..)
1580            | ty::Dynamic(..)
1581            | ty::Closure(..)
1582            | ty::CoroutineClosure(..)
1583            | ty::CoroutineWitness(..)
1584            | ty::Never
1585            | ty::Tuple(_)
1586            | ty::UnsafeBinder(_)
1587            | ty::Error(_)
1588            | ty::Infer(IntVar(_) | FloatVar(_)) => tcx.types.u8,
1589
1590            ty::Bound(..)
1591            | ty::Placeholder(_)
1592            | ty::Infer(FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1593                bug!("`discriminant_ty` applied to unexpected type: {:?}", self)
1594            }
1595        }
1596    }
1597
1598    /// Returns the type of metadata for (potentially wide) pointers to this type,
1599    /// or the struct tail if the metadata type cannot be determined.
1600    pub fn ptr_metadata_ty_or_tail(
1601        self,
1602        tcx: TyCtxt<'tcx>,
1603        normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
1604    ) -> Result<Ty<'tcx>, Ty<'tcx>> {
1605        let tail = tcx.struct_tail_raw(self, normalize, || {});
1606        match tail.kind() {
1607            // Sized types
1608            ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1609            | ty::Uint(_)
1610            | ty::Int(_)
1611            | ty::Bool
1612            | ty::Float(_)
1613            | ty::FnDef(..)
1614            | ty::FnPtr(..)
1615            | ty::RawPtr(..)
1616            | ty::Char
1617            | ty::Ref(..)
1618            | ty::Coroutine(..)
1619            | ty::CoroutineWitness(..)
1620            | ty::Array(..)
1621            | ty::Closure(..)
1622            | ty::CoroutineClosure(..)
1623            | ty::Never
1624            | ty::Error(_)
1625            // Extern types have metadata = ().
1626            | ty::Foreign(..)
1627            // If returned by `struct_tail_raw` this is a unit struct
1628            // without any fields, or not a struct, and therefore is Sized.
1629            | ty::Adt(..)
1630            // If returned by `struct_tail_raw` this is the empty tuple,
1631            // a.k.a. unit type, which is Sized
1632            | ty::Tuple(..) => Ok(tcx.types.unit),
1633
1634            ty::Str | ty::Slice(_) => Ok(tcx.types.usize),
1635
1636            ty::Dynamic(_, _, ty::Dyn) => {
1637                let dyn_metadata = tcx.require_lang_item(LangItem::DynMetadata, DUMMY_SP);
1638                Ok(tcx.type_of(dyn_metadata).instantiate(tcx, &[tail.into()]))
1639            }
1640
1641            // We don't know the metadata of `self`, but it must be equal to the
1642            // metadata of `tail`.
1643            ty::Param(_) | ty::Alias(..) => Err(tail),
1644
1645            | ty::UnsafeBinder(_) => todo!("FIXME(unsafe_binder)"),
1646
1647            ty::Infer(ty::TyVar(_))
1648            | ty::Pat(..)
1649            | ty::Bound(..)
1650            | ty::Placeholder(..)
1651            | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => bug!(
1652                "`ptr_metadata_ty_or_tail` applied to unexpected type: {self:?} (tail = {tail:?})"
1653            ),
1654        }
1655    }
1656
1657    /// Returns the type of metadata for (potentially wide) pointers to this type.
1658    /// Causes an ICE if the metadata type cannot be determined.
1659    pub fn ptr_metadata_ty(
1660        self,
1661        tcx: TyCtxt<'tcx>,
1662        normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
1663    ) -> Ty<'tcx> {
1664        match self.ptr_metadata_ty_or_tail(tcx, normalize) {
1665            Ok(metadata) => metadata,
1666            Err(tail) => bug!(
1667                "`ptr_metadata_ty` failed to get metadata for type: {self:?} (tail = {tail:?})"
1668            ),
1669        }
1670    }
1671
1672    /// Given a pointer or reference type, returns the type of the *pointee*'s
1673    /// metadata. If it can't be determined exactly (perhaps due to still
1674    /// being generic) then a projection through `ptr::Pointee` will be returned.
1675    ///
1676    /// This is particularly useful for getting the type of the result of
1677    /// [`UnOp::PtrMetadata`](crate::mir::UnOp::PtrMetadata).
1678    ///
1679    /// Panics if `self` is not dereferenceable.
1680    #[track_caller]
1681    pub fn pointee_metadata_ty_or_projection(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1682        let Some(pointee_ty) = self.builtin_deref(true) else {
1683            bug!("Type {self:?} is not a pointer or reference type")
1684        };
1685        if pointee_ty.has_trivial_sizedness(tcx, SizedTraitKind::Sized) {
1686            tcx.types.unit
1687        } else {
1688            match pointee_ty.ptr_metadata_ty_or_tail(tcx, |x| x) {
1689                Ok(metadata_ty) => metadata_ty,
1690                Err(tail_ty) => {
1691                    let metadata_def_id = tcx.require_lang_item(LangItem::Metadata, DUMMY_SP);
1692                    Ty::new_projection(tcx, metadata_def_id, [tail_ty])
1693                }
1694            }
1695        }
1696    }
1697
1698    /// When we create a closure, we record its kind (i.e., what trait
1699    /// it implements, constrained by how it uses its borrows) into its
1700    /// [`ty::ClosureArgs`] or [`ty::CoroutineClosureArgs`] using a type
1701    /// parameter. This is kind of a phantom type, except that the
1702    /// most convenient thing for us to are the integral types. This
1703    /// function converts such a special type into the closure
1704    /// kind. To go the other way, use [`Ty::from_closure_kind`].
1705    ///
1706    /// Note that during type checking, we use an inference variable
1707    /// to represent the closure kind, because it has not yet been
1708    /// inferred. Once upvar inference (in `rustc_hir_analysis/src/check/upvar.rs`)
1709    /// is complete, that type variable will be unified with one of
1710    /// the integral types.
1711    ///
1712    /// ```rust,ignore (snippet of compiler code)
1713    /// if let TyKind::Closure(def_id, args) = closure_ty.kind()
1714    ///     && let Some(closure_kind) = args.as_closure().kind_ty().to_opt_closure_kind()
1715    /// {
1716    ///     println!("{closure_kind:?}");
1717    /// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind()
1718    ///     && let Some(closure_kind) = args.as_coroutine_closure().kind_ty().to_opt_closure_kind()
1719    /// {
1720    ///     println!("{closure_kind:?}");
1721    /// }
1722    /// ```
1723    ///
1724    /// After upvar analysis, you should instead use [`ty::ClosureArgs::kind()`]
1725    /// or [`ty::CoroutineClosureArgs::kind()`] to assert that the `ClosureKind`
1726    /// has been constrained instead of manually calling this method.
1727    ///
1728    /// ```rust,ignore (snippet of compiler code)
1729    /// if let TyKind::Closure(def_id, args) = closure_ty.kind()
1730    /// {
1731    ///     println!("{:?}", args.as_closure().kind());
1732    /// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind()
1733    /// {
1734    ///     println!("{:?}", args.as_coroutine_closure().kind());
1735    /// }
1736    /// ```
1737    pub fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> {
1738        match self.kind() {
1739            Int(int_ty) => match int_ty {
1740                ty::IntTy::I8 => Some(ty::ClosureKind::Fn),
1741                ty::IntTy::I16 => Some(ty::ClosureKind::FnMut),
1742                ty::IntTy::I32 => Some(ty::ClosureKind::FnOnce),
1743                _ => bug!("cannot convert type `{:?}` to a closure kind", self),
1744            },
1745
1746            // "Bound" types appear in canonical queries when the
1747            // closure type is not yet known, and `Placeholder` and `Param`
1748            // may be encountered in generic `AsyncFnKindHelper` goals.
1749            Bound(..) | Placeholder(_) | Param(_) | Infer(_) => None,
1750
1751            Error(_) => Some(ty::ClosureKind::Fn),
1752
1753            _ => bug!("cannot convert type `{:?}` to a closure kind", self),
1754        }
1755    }
1756
1757    /// Inverse of [`Ty::to_opt_closure_kind`]. See docs on that method
1758    /// for explanation of the relationship between `Ty` and [`ty::ClosureKind`].
1759    pub fn from_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> {
1760        match kind {
1761            ty::ClosureKind::Fn => tcx.types.i8,
1762            ty::ClosureKind::FnMut => tcx.types.i16,
1763            ty::ClosureKind::FnOnce => tcx.types.i32,
1764        }
1765    }
1766
1767    /// Like [`Ty::to_opt_closure_kind`], but it caps the "maximum" closure kind
1768    /// to `FnMut`. This is because although we have three capability states,
1769    /// `AsyncFn`/`AsyncFnMut`/`AsyncFnOnce`, we only need to distinguish two coroutine
1770    /// bodies: by-ref and by-value.
1771    ///
1772    /// See the definition of `AsyncFn` and `AsyncFnMut` and the `CallRefFuture`
1773    /// associated type for why we don't distinguish [`ty::ClosureKind::Fn`] and
1774    /// [`ty::ClosureKind::FnMut`] for the purpose of the generated MIR bodies.
1775    ///
1776    /// This method should be used when constructing a `Coroutine` out of a
1777    /// `CoroutineClosure`, when the `Coroutine`'s `kind` field is being populated
1778    /// directly from the `CoroutineClosure`'s `kind`.
1779    pub fn from_coroutine_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> {
1780        match kind {
1781            ty::ClosureKind::Fn | ty::ClosureKind::FnMut => tcx.types.i16,
1782            ty::ClosureKind::FnOnce => tcx.types.i32,
1783        }
1784    }
1785
1786    /// Fast path helper for testing if a type is `Sized` or `MetaSized`.
1787    ///
1788    /// Returning true means the type is known to implement the sizedness trait. Returning `false`
1789    /// means nothing -- could be sized, might not be.
1790    ///
1791    /// Note that we could never rely on the fact that a type such as `[_]` is trivially `!Sized`
1792    /// because we could be in a type environment with a bound such as `[_]: Copy`. A function with
1793    /// such a bound obviously never can be called, but that doesn't mean it shouldn't typecheck.
1794    /// This is why this method doesn't return `Option<bool>`.
1795    #[instrument(skip(tcx), level = "debug")]
1796    pub fn has_trivial_sizedness(self, tcx: TyCtxt<'tcx>, sizedness: SizedTraitKind) -> bool {
1797        match self.kind() {
1798            ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1799            | ty::Uint(_)
1800            | ty::Int(_)
1801            | ty::Bool
1802            | ty::Float(_)
1803            | ty::FnDef(..)
1804            | ty::FnPtr(..)
1805            | ty::UnsafeBinder(_)
1806            | ty::RawPtr(..)
1807            | ty::Char
1808            | ty::Ref(..)
1809            | ty::Coroutine(..)
1810            | ty::CoroutineWitness(..)
1811            | ty::Array(..)
1812            | ty::Pat(..)
1813            | ty::Closure(..)
1814            | ty::CoroutineClosure(..)
1815            | ty::Never
1816            | ty::Error(_) => true,
1817
1818            ty::Str | ty::Slice(_) | ty::Dynamic(_, _, ty::Dyn) => match sizedness {
1819                SizedTraitKind::Sized => false,
1820                SizedTraitKind::MetaSized => true,
1821            },
1822
1823            ty::Foreign(..) => match sizedness {
1824                SizedTraitKind::Sized | SizedTraitKind::MetaSized => false,
1825            },
1826
1827            ty::Tuple(tys) => tys.last().is_none_or(|ty| ty.has_trivial_sizedness(tcx, sizedness)),
1828
1829            ty::Adt(def, args) => def
1830                .sizedness_constraint(tcx, sizedness)
1831                .is_none_or(|ty| ty.instantiate(tcx, args).has_trivial_sizedness(tcx, sizedness)),
1832
1833            ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) | ty::Bound(..) => false,
1834
1835            ty::Infer(ty::TyVar(_)) => false,
1836
1837            ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1838                bug!("`has_trivial_sizedness` applied to unexpected type: {:?}", self)
1839            }
1840        }
1841    }
1842
1843    /// Fast path helper for primitives which are always `Copy` and which
1844    /// have a side-effect-free `Clone` impl.
1845    ///
1846    /// Returning true means the type is known to be pure and `Copy+Clone`.
1847    /// Returning `false` means nothing -- could be `Copy`, might not be.
1848    ///
1849    /// This is mostly useful for optimizations, as these are the types
1850    /// on which we can replace cloning with dereferencing.
1851    pub fn is_trivially_pure_clone_copy(self) -> bool {
1852        match self.kind() {
1853            ty::Bool | ty::Char | ty::Never => true,
1854
1855            // These aren't even `Clone`
1856            ty::Str | ty::Slice(..) | ty::Foreign(..) | ty::Dynamic(..) => false,
1857
1858            ty::Infer(ty::InferTy::FloatVar(_) | ty::InferTy::IntVar(_))
1859            | ty::Int(..)
1860            | ty::Uint(..)
1861            | ty::Float(..) => true,
1862
1863            // ZST which can't be named are fine.
1864            ty::FnDef(..) => true,
1865
1866            ty::Array(element_ty, _len) => element_ty.is_trivially_pure_clone_copy(),
1867
1868            // A 100-tuple isn't "trivial", so doing this only for reasonable sizes.
1869            ty::Tuple(field_tys) => {
1870                field_tys.len() <= 3 && field_tys.iter().all(Self::is_trivially_pure_clone_copy)
1871            }
1872
1873            ty::Pat(ty, _) => ty.is_trivially_pure_clone_copy(),
1874
1875            // Sometimes traits aren't implemented for every ABI or arity,
1876            // because we can't be generic over everything yet.
1877            ty::FnPtr(..) => false,
1878
1879            // Definitely absolutely not copy.
1880            ty::Ref(_, _, hir::Mutability::Mut) => false,
1881
1882            // The standard library has a blanket Copy impl for shared references and raw pointers,
1883            // for all unsized types.
1884            ty::Ref(_, _, hir::Mutability::Not) | ty::RawPtr(..) => true,
1885
1886            ty::Coroutine(..) | ty::CoroutineWitness(..) => false,
1887
1888            // Might be, but not "trivial" so just giving the safe answer.
1889            ty::Adt(..) | ty::Closure(..) | ty::CoroutineClosure(..) => false,
1890
1891            ty::UnsafeBinder(_) => false,
1892
1893            // Needs normalization or revealing to determine, so no is the safe answer.
1894            ty::Alias(..) => false,
1895
1896            ty::Param(..) | ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(..) => {
1897                false
1898            }
1899        }
1900    }
1901
1902    pub fn is_trivially_wf(self, tcx: TyCtxt<'tcx>) -> bool {
1903        match *self.kind() {
1904            ty::Bool
1905            | ty::Char
1906            | ty::Int(_)
1907            | ty::Uint(_)
1908            | ty::Float(_)
1909            | ty::Str
1910            | ty::Never
1911            | ty::Param(_)
1912            | ty::Placeholder(_)
1913            | ty::Bound(..) => true,
1914
1915            ty::Slice(ty) => {
1916                ty.is_trivially_wf(tcx) && ty.has_trivial_sizedness(tcx, SizedTraitKind::Sized)
1917            }
1918            ty::RawPtr(ty, _) => ty.is_trivially_wf(tcx),
1919
1920            ty::FnPtr(sig_tys, _) => {
1921                sig_tys.skip_binder().inputs_and_output.iter().all(|ty| ty.is_trivially_wf(tcx))
1922            }
1923            ty::Ref(_, ty, _) => ty.is_global() && ty.is_trivially_wf(tcx),
1924
1925            ty::Infer(infer) => match infer {
1926                ty::TyVar(_) => false,
1927                ty::IntVar(_) | ty::FloatVar(_) => true,
1928                ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => true,
1929            },
1930
1931            ty::Adt(_, _)
1932            | ty::Tuple(_)
1933            | ty::Array(..)
1934            | ty::Foreign(_)
1935            | ty::Pat(_, _)
1936            | ty::FnDef(..)
1937            | ty::UnsafeBinder(..)
1938            | ty::Dynamic(..)
1939            | ty::Closure(..)
1940            | ty::CoroutineClosure(..)
1941            | ty::Coroutine(..)
1942            | ty::CoroutineWitness(..)
1943            | ty::Alias(..)
1944            | ty::Error(_) => false,
1945        }
1946    }
1947
1948    /// If `self` is a primitive, return its [`Symbol`].
1949    pub fn primitive_symbol(self) -> Option<Symbol> {
1950        match self.kind() {
1951            ty::Bool => Some(sym::bool),
1952            ty::Char => Some(sym::char),
1953            ty::Float(f) => match f {
1954                ty::FloatTy::F16 => Some(sym::f16),
1955                ty::FloatTy::F32 => Some(sym::f32),
1956                ty::FloatTy::F64 => Some(sym::f64),
1957                ty::FloatTy::F128 => Some(sym::f128),
1958            },
1959            ty::Int(f) => match f {
1960                ty::IntTy::Isize => Some(sym::isize),
1961                ty::IntTy::I8 => Some(sym::i8),
1962                ty::IntTy::I16 => Some(sym::i16),
1963                ty::IntTy::I32 => Some(sym::i32),
1964                ty::IntTy::I64 => Some(sym::i64),
1965                ty::IntTy::I128 => Some(sym::i128),
1966            },
1967            ty::Uint(f) => match f {
1968                ty::UintTy::Usize => Some(sym::usize),
1969                ty::UintTy::U8 => Some(sym::u8),
1970                ty::UintTy::U16 => Some(sym::u16),
1971                ty::UintTy::U32 => Some(sym::u32),
1972                ty::UintTy::U64 => Some(sym::u64),
1973                ty::UintTy::U128 => Some(sym::u128),
1974            },
1975            ty::Str => Some(sym::str),
1976            _ => None,
1977        }
1978    }
1979
1980    pub fn is_c_void(self, tcx: TyCtxt<'_>) -> bool {
1981        match self.kind() {
1982            ty::Adt(adt, _) => tcx.is_lang_item(adt.did(), LangItem::CVoid),
1983            _ => false,
1984        }
1985    }
1986
1987    pub fn is_async_drop_in_place_coroutine(self, tcx: TyCtxt<'_>) -> bool {
1988        match self.kind() {
1989            ty::Coroutine(def, ..) => tcx.is_async_drop_in_place_coroutine(*def),
1990            _ => false,
1991        }
1992    }
1993
1994    /// Returns `true` when the outermost type cannot be further normalized,
1995    /// resolved, or instantiated. This includes all primitive types, but also
1996    /// things like ADTs and trait objects, since even if their arguments or
1997    /// nested types may be further simplified, the outermost [`TyKind`] or
1998    /// type constructor remains the same.
1999    pub fn is_known_rigid(self) -> bool {
2000        self.kind().is_known_rigid()
2001    }
2002
2003    /// Iterator that walks `self` and any types reachable from
2004    /// `self`, in depth-first order. Note that just walks the types
2005    /// that appear in `self`, it does not descend into the fields of
2006    /// structs or variants. For example:
2007    ///
2008    /// ```text
2009    /// isize => { isize }
2010    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
2011    /// [isize] => { [isize], isize }
2012    /// ```
2013    pub fn walk(self) -> TypeWalker<TyCtxt<'tcx>> {
2014        TypeWalker::new(self.into())
2015    }
2016}
2017
2018impl<'tcx> rustc_type_ir::inherent::Tys<TyCtxt<'tcx>> for &'tcx ty::List<Ty<'tcx>> {
2019    fn inputs(self) -> &'tcx [Ty<'tcx>] {
2020        self.split_last().unwrap().1
2021    }
2022
2023    fn output(self) -> Ty<'tcx> {
2024        *self.split_last().unwrap().0
2025    }
2026}
2027
2028// Some types are used a lot. Make sure they don't unintentionally get bigger.
2029#[cfg(target_pointer_width = "64")]
2030mod size_asserts {
2031    use rustc_data_structures::static_assert_size;
2032
2033    use super::*;
2034    // tidy-alphabetical-start
2035    static_assert_size!(ty::RegionKind<'_>, 20);
2036    static_assert_size!(ty::TyKind<'_>, 24);
2037    // tidy-alphabetical-end
2038}