rustc_mir_build/builder/scope.rs
1/*!
2Managing the scope stack. The scopes are tied to lexical scopes, so as
3we descend the THIR, we push a scope on the stack, build its
4contents, and then pop it off. Every scope is named by a
5`region::Scope`.
6
7### SEME Regions
8
9When pushing a new [Scope], we record the current point in the graph (a
10basic block); this marks the entry to the scope. We then generate more
11stuff in the control-flow graph. Whenever the scope is exited, either
12via a `break` or `return` or just by fallthrough, that marks an exit
13from the scope. Each lexical scope thus corresponds to a single-entry,
14multiple-exit (SEME) region in the control-flow graph.
15
16For now, we record the `region::Scope` to each SEME region for later reference
17(see caveat in next paragraph). This is because destruction scopes are tied to
18them. This may change in the future so that MIR lowering determines its own
19destruction scopes.
20
21### Not so SEME Regions
22
23In the course of building matches, it sometimes happens that certain code
24(namely guards) gets executed multiple times. This means that the scope lexical
25scope may in fact correspond to multiple, disjoint SEME regions. So in fact our
26mapping is from one scope to a vector of SEME regions. Since the SEME regions
27are disjoint, the mapping is still one-to-one for the set of SEME regions that
28we're currently in.
29
30Also in matches, the scopes assigned to arms are not always even SEME regions!
31Each arm has a single region with one entry for each pattern. We manually
32manipulate the scheduled drops in this scope to avoid dropping things multiple
33times.
34
35### Drops
36
37The primary purpose for scopes is to insert drops: while building
38the contents, we also accumulate places that need to be dropped upon
39exit from each scope. This is done by calling `schedule_drop`. Once a
40drop is scheduled, whenever we branch out we will insert drops of all
41those places onto the outgoing edge. Note that we don't know the full
42set of scheduled drops up front, and so whenever we exit from the
43scope we only drop the values scheduled thus far. For example, consider
44the scope S corresponding to this loop:
45
46```
47# let cond = true;
48loop {
49 let x = ..;
50 if cond { break; }
51 let y = ..;
52}
53```
54
55When processing the `let x`, we will add one drop to the scope for
56`x`. The break will then insert a drop for `x`. When we process `let
57y`, we will add another drop (in fact, to a subscope, but let's ignore
58that for now); any later drops would also drop `y`.
59
60### Early exit
61
62There are numerous "normal" ways to early exit a scope: `break`,
63`continue`, `return` (panics are handled separately). Whenever an
64early exit occurs, the method `break_scope` is called. It is given the
65current point in execution where the early exit occurs, as well as the
66scope you want to branch to (note that all early exits from to some
67other enclosing scope). `break_scope` will record the set of drops currently
68scheduled in a [DropTree]. Later, before `in_breakable_scope` exits, the drops
69will be added to the CFG.
70
71Panics are handled in a similar fashion, except that the drops are added to the
72MIR once the rest of the function has finished being lowered. If a terminator
73can panic, call `diverge_from(block)` with the block containing the terminator
74`block`.
75
76### Breakable scopes
77
78In addition to the normal scope stack, we track a loop scope stack
79that contains only loops and breakable blocks. It tracks where a `break`,
80`continue` or `return` should go to.
81
82*/
83
84use std::mem;
85
86use interpret::ErrorHandled;
87use rustc_data_structures::fx::FxHashMap;
88use rustc_hir::HirId;
89use rustc_index::{IndexSlice, IndexVec};
90use rustc_middle::middle::region;
91use rustc_middle::mir::{self, *};
92use rustc_middle::thir::{AdtExpr, AdtExprBase, ArmId, ExprId, ExprKind, LintLevel};
93use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt, ValTree};
94use rustc_middle::{bug, span_bug};
95use rustc_pattern_analysis::rustc::RustcPatCtxt;
96use rustc_session::lint::Level;
97use rustc_span::source_map::Spanned;
98use rustc_span::{DUMMY_SP, Span};
99use tracing::{debug, instrument};
100
101use super::matches::BuiltMatchTree;
102use crate::builder::{BlockAnd, BlockAndExtension, BlockFrame, Builder, CFG};
103use crate::errors::{ConstContinueBadConst, ConstContinueUnknownJumpTarget};
104
105#[derive(Debug)]
106pub(crate) struct Scopes<'tcx> {
107 scopes: Vec<Scope>,
108
109 /// The current set of breakable scopes. See module comment for more details.
110 breakable_scopes: Vec<BreakableScope<'tcx>>,
111
112 const_continuable_scopes: Vec<ConstContinuableScope<'tcx>>,
113
114 /// The scope of the innermost if-then currently being lowered.
115 if_then_scope: Option<IfThenScope>,
116
117 /// Drops that need to be done on unwind paths. See the comment on
118 /// [DropTree] for more details.
119 unwind_drops: DropTree,
120
121 /// Drops that need to be done on paths to the `CoroutineDrop` terminator.
122 coroutine_drops: DropTree,
123}
124
125#[derive(Debug)]
126struct Scope {
127 /// The source scope this scope was created in.
128 source_scope: SourceScope,
129
130 /// the region span of this scope within source code.
131 region_scope: region::Scope,
132
133 /// set of places to drop when exiting this scope. This starts
134 /// out empty but grows as variables are declared during the
135 /// building process. This is a stack, so we always drop from the
136 /// end of the vector (top of the stack) first.
137 drops: Vec<DropData>,
138
139 moved_locals: Vec<Local>,
140
141 /// The drop index that will drop everything in and below this scope on an
142 /// unwind path.
143 cached_unwind_block: Option<DropIdx>,
144
145 /// The drop index that will drop everything in and below this scope on a
146 /// coroutine drop path.
147 cached_coroutine_drop_block: Option<DropIdx>,
148}
149
150#[derive(Clone, Copy, Debug)]
151struct DropData {
152 /// The `Span` where drop obligation was incurred (typically where place was
153 /// declared)
154 source_info: SourceInfo,
155
156 /// local to drop
157 local: Local,
158
159 /// Whether this is a value Drop or a StorageDead.
160 kind: DropKind,
161}
162
163#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
164pub(crate) enum DropKind {
165 Value,
166 Storage,
167 ForLint,
168}
169
170#[derive(Debug)]
171struct BreakableScope<'tcx> {
172 /// Region scope of the loop
173 region_scope: region::Scope,
174 /// The destination of the loop/block expression itself (i.e., where to put
175 /// the result of a `break` or `return` expression)
176 break_destination: Place<'tcx>,
177 /// Drops that happen on the `break`/`return` path.
178 break_drops: DropTree,
179 /// Drops that happen on the `continue` path.
180 continue_drops: Option<DropTree>,
181}
182
183#[derive(Debug)]
184struct ConstContinuableScope<'tcx> {
185 /// The scope for the `#[loop_match]` which its `#[const_continue]`s will jump to.
186 region_scope: region::Scope,
187 /// The place of the state of a `#[loop_match]`, which a `#[const_continue]` must update.
188 state_place: Place<'tcx>,
189
190 arms: Box<[ArmId]>,
191 built_match_tree: BuiltMatchTree<'tcx>,
192
193 /// Drops that happen on a `#[const_continue]`
194 const_continue_drops: DropTree,
195}
196
197#[derive(Debug)]
198struct IfThenScope {
199 /// The if-then scope or arm scope
200 region_scope: region::Scope,
201 /// Drops that happen on the `else` path.
202 else_drops: DropTree,
203}
204
205/// The target of an expression that breaks out of a scope
206#[derive(Clone, Copy, Debug)]
207pub(crate) enum BreakableTarget {
208 Continue(region::Scope),
209 Break(region::Scope),
210 Return,
211}
212
213rustc_index::newtype_index! {
214 #[orderable]
215 struct DropIdx {}
216}
217
218const ROOT_NODE: DropIdx = DropIdx::ZERO;
219
220/// A tree of drops that we have deferred lowering. It's used for:
221///
222/// * Drops on unwind paths
223/// * Drops on coroutine drop paths (when a suspended coroutine is dropped)
224/// * Drops on return and loop exit paths
225/// * Drops on the else path in an `if let` chain
226///
227/// Once no more nodes could be added to the tree, we lower it to MIR in one go
228/// in `build_mir`.
229#[derive(Debug)]
230struct DropTree {
231 /// Nodes in the drop tree, containing drop data and a link to the next node.
232 drop_nodes: IndexVec<DropIdx, DropNode>,
233 /// Map for finding the index of an existing node, given its contents.
234 existing_drops_map: FxHashMap<DropNodeKey, DropIdx>,
235 /// Edges into the `DropTree` that need to be added once it's lowered.
236 entry_points: Vec<(DropIdx, BasicBlock)>,
237}
238
239/// A single node in the drop tree.
240#[derive(Debug)]
241struct DropNode {
242 /// Info about the drop to be performed at this node in the drop tree.
243 data: DropData,
244 /// Index of the "next" drop to perform (in drop order, not declaration order).
245 next: DropIdx,
246}
247
248/// Subset of [`DropNode`] used for reverse lookup in a hash table.
249#[derive(Debug, PartialEq, Eq, Hash)]
250struct DropNodeKey {
251 next: DropIdx,
252 local: Local,
253}
254
255impl Scope {
256 /// Whether there's anything to do for the cleanup path, that is,
257 /// when unwinding through this scope. This includes destructors,
258 /// but not StorageDead statements, which don't get emitted at all
259 /// for unwinding, for several reasons:
260 /// * clang doesn't emit llvm.lifetime.end for C++ unwinding
261 /// * LLVM's memory dependency analysis can't handle it atm
262 /// * polluting the cleanup MIR with StorageDead creates
263 /// landing pads even though there's no actual destructors
264 /// * freeing up stack space has no effect during unwinding
265 /// Note that for coroutines we do emit StorageDeads, for the
266 /// use of optimizations in the MIR coroutine transform.
267 fn needs_cleanup(&self) -> bool {
268 self.drops.iter().any(|drop| match drop.kind {
269 DropKind::Value | DropKind::ForLint => true,
270 DropKind::Storage => false,
271 })
272 }
273
274 fn invalidate_cache(&mut self) {
275 self.cached_unwind_block = None;
276 self.cached_coroutine_drop_block = None;
277 }
278}
279
280/// A trait that determined how [DropTree] creates its blocks and
281/// links to any entry nodes.
282trait DropTreeBuilder<'tcx> {
283 /// Create a new block for the tree. This should call either
284 /// `cfg.start_new_block()` or `cfg.start_new_cleanup_block()`.
285 fn make_block(cfg: &mut CFG<'tcx>) -> BasicBlock;
286
287 /// Links a block outside the drop tree, `from`, to the block `to` inside
288 /// the drop tree.
289 fn link_entry_point(cfg: &mut CFG<'tcx>, from: BasicBlock, to: BasicBlock);
290}
291
292impl DropTree {
293 fn new() -> Self {
294 // The root node of the tree doesn't represent a drop, but instead
295 // represents the block in the tree that should be jumped to once all
296 // of the required drops have been performed.
297 let fake_source_info = SourceInfo::outermost(DUMMY_SP);
298 let fake_data =
299 DropData { source_info: fake_source_info, local: Local::MAX, kind: DropKind::Storage };
300 let drop_nodes = IndexVec::from_raw(vec![DropNode { data: fake_data, next: DropIdx::MAX }]);
301 Self { drop_nodes, entry_points: Vec::new(), existing_drops_map: FxHashMap::default() }
302 }
303
304 /// Adds a node to the drop tree, consisting of drop data and the index of
305 /// the "next" drop (in drop order), which could be the sentinel [`ROOT_NODE`].
306 ///
307 /// If there is already an equivalent node in the tree, nothing is added, and
308 /// that node's index is returned. Otherwise, the new node's index is returned.
309 fn add_drop(&mut self, data: DropData, next: DropIdx) -> DropIdx {
310 let drop_nodes = &mut self.drop_nodes;
311 *self
312 .existing_drops_map
313 .entry(DropNodeKey { next, local: data.local })
314 // Create a new node, and also add its index to the map.
315 .or_insert_with(|| drop_nodes.push(DropNode { data, next }))
316 }
317
318 /// Registers `from` as an entry point to this drop tree, at `to`.
319 ///
320 /// During [`Self::build_mir`], `from` will be linked to the corresponding
321 /// block within the drop tree.
322 fn add_entry_point(&mut self, from: BasicBlock, to: DropIdx) {
323 debug_assert!(to < self.drop_nodes.next_index());
324 self.entry_points.push((to, from));
325 }
326
327 /// Builds the MIR for a given drop tree.
328 fn build_mir<'tcx, T: DropTreeBuilder<'tcx>>(
329 &mut self,
330 cfg: &mut CFG<'tcx>,
331 root_node: Option<BasicBlock>,
332 ) -> IndexVec<DropIdx, Option<BasicBlock>> {
333 debug!("DropTree::build_mir(drops = {:#?})", self);
334
335 let mut blocks = self.assign_blocks::<T>(cfg, root_node);
336 self.link_blocks(cfg, &mut blocks);
337
338 blocks
339 }
340
341 /// Assign blocks for all of the drops in the drop tree that need them.
342 fn assign_blocks<'tcx, T: DropTreeBuilder<'tcx>>(
343 &mut self,
344 cfg: &mut CFG<'tcx>,
345 root_node: Option<BasicBlock>,
346 ) -> IndexVec<DropIdx, Option<BasicBlock>> {
347 // StorageDead statements can share blocks with each other and also with
348 // a Drop terminator. We iterate through the drops to find which drops
349 // need their own block.
350 #[derive(Clone, Copy)]
351 enum Block {
352 // This drop is unreachable
353 None,
354 // This drop is only reachable through the `StorageDead` with the
355 // specified index.
356 Shares(DropIdx),
357 // This drop has more than one way of being reached, or it is
358 // branched to from outside the tree, or its predecessor is a
359 // `Value` drop.
360 Own,
361 }
362
363 let mut blocks = IndexVec::from_elem(None, &self.drop_nodes);
364 blocks[ROOT_NODE] = root_node;
365
366 let mut needs_block = IndexVec::from_elem(Block::None, &self.drop_nodes);
367 if root_node.is_some() {
368 // In some cases (such as drops for `continue`) the root node
369 // already has a block. In this case, make sure that we don't
370 // override it.
371 needs_block[ROOT_NODE] = Block::Own;
372 }
373
374 // Sort so that we only need to check the last value.
375 let entry_points = &mut self.entry_points;
376 entry_points.sort();
377
378 for (drop_idx, drop_node) in self.drop_nodes.iter_enumerated().rev() {
379 if entry_points.last().is_some_and(|entry_point| entry_point.0 == drop_idx) {
380 let block = *blocks[drop_idx].get_or_insert_with(|| T::make_block(cfg));
381 needs_block[drop_idx] = Block::Own;
382 while entry_points.last().is_some_and(|entry_point| entry_point.0 == drop_idx) {
383 let entry_block = entry_points.pop().unwrap().1;
384 T::link_entry_point(cfg, entry_block, block);
385 }
386 }
387 match needs_block[drop_idx] {
388 Block::None => continue,
389 Block::Own => {
390 blocks[drop_idx].get_or_insert_with(|| T::make_block(cfg));
391 }
392 Block::Shares(pred) => {
393 blocks[drop_idx] = blocks[pred];
394 }
395 }
396 if let DropKind::Value = drop_node.data.kind {
397 needs_block[drop_node.next] = Block::Own;
398 } else if drop_idx != ROOT_NODE {
399 match &mut needs_block[drop_node.next] {
400 pred @ Block::None => *pred = Block::Shares(drop_idx),
401 pred @ Block::Shares(_) => *pred = Block::Own,
402 Block::Own => (),
403 }
404 }
405 }
406
407 debug!("assign_blocks: blocks = {:#?}", blocks);
408 assert!(entry_points.is_empty());
409
410 blocks
411 }
412
413 fn link_blocks<'tcx>(
414 &self,
415 cfg: &mut CFG<'tcx>,
416 blocks: &IndexSlice<DropIdx, Option<BasicBlock>>,
417 ) {
418 for (drop_idx, drop_node) in self.drop_nodes.iter_enumerated().rev() {
419 let Some(block) = blocks[drop_idx] else { continue };
420 match drop_node.data.kind {
421 DropKind::Value => {
422 let terminator = TerminatorKind::Drop {
423 target: blocks[drop_node.next].unwrap(),
424 // The caller will handle this if needed.
425 unwind: UnwindAction::Terminate(UnwindTerminateReason::InCleanup),
426 place: drop_node.data.local.into(),
427 replace: false,
428 drop: None,
429 async_fut: None,
430 };
431 cfg.terminate(block, drop_node.data.source_info, terminator);
432 }
433 DropKind::ForLint => {
434 let stmt = Statement::new(
435 drop_node.data.source_info,
436 StatementKind::BackwardIncompatibleDropHint {
437 place: Box::new(drop_node.data.local.into()),
438 reason: BackwardIncompatibleDropReason::Edition2024,
439 },
440 );
441 cfg.push(block, stmt);
442 let target = blocks[drop_node.next].unwrap();
443 if target != block {
444 // Diagnostics don't use this `Span` but debuginfo
445 // might. Since we don't want breakpoints to be placed
446 // here, especially when this is on an unwind path, we
447 // use `DUMMY_SP`.
448 let source_info =
449 SourceInfo { span: DUMMY_SP, ..drop_node.data.source_info };
450 let terminator = TerminatorKind::Goto { target };
451 cfg.terminate(block, source_info, terminator);
452 }
453 }
454 // Root nodes don't correspond to a drop.
455 DropKind::Storage if drop_idx == ROOT_NODE => {}
456 DropKind::Storage => {
457 let stmt = Statement::new(
458 drop_node.data.source_info,
459 StatementKind::StorageDead(drop_node.data.local),
460 );
461 cfg.push(block, stmt);
462 let target = blocks[drop_node.next].unwrap();
463 if target != block {
464 // Diagnostics don't use this `Span` but debuginfo
465 // might. Since we don't want breakpoints to be placed
466 // here, especially when this is on an unwind path, we
467 // use `DUMMY_SP`.
468 let source_info =
469 SourceInfo { span: DUMMY_SP, ..drop_node.data.source_info };
470 let terminator = TerminatorKind::Goto { target };
471 cfg.terminate(block, source_info, terminator);
472 }
473 }
474 }
475 }
476 }
477}
478
479impl<'tcx> Scopes<'tcx> {
480 pub(crate) fn new() -> Self {
481 Self {
482 scopes: Vec::new(),
483 breakable_scopes: Vec::new(),
484 const_continuable_scopes: Vec::new(),
485 if_then_scope: None,
486 unwind_drops: DropTree::new(),
487 coroutine_drops: DropTree::new(),
488 }
489 }
490
491 fn push_scope(&mut self, region_scope: (region::Scope, SourceInfo), vis_scope: SourceScope) {
492 debug!("push_scope({:?})", region_scope);
493 self.scopes.push(Scope {
494 source_scope: vis_scope,
495 region_scope: region_scope.0,
496 drops: vec![],
497 moved_locals: vec![],
498 cached_unwind_block: None,
499 cached_coroutine_drop_block: None,
500 });
501 }
502
503 fn pop_scope(&mut self, region_scope: (region::Scope, SourceInfo)) -> Scope {
504 let scope = self.scopes.pop().unwrap();
505 assert_eq!(scope.region_scope, region_scope.0);
506 scope
507 }
508
509 fn scope_index(&self, region_scope: region::Scope, span: Span) -> usize {
510 self.scopes
511 .iter()
512 .rposition(|scope| scope.region_scope == region_scope)
513 .unwrap_or_else(|| span_bug!(span, "region_scope {:?} does not enclose", region_scope))
514 }
515
516 /// Returns the topmost active scope, which is known to be alive until
517 /// the next scope expression.
518 fn topmost(&self) -> region::Scope {
519 self.scopes.last().expect("topmost_scope: no scopes present").region_scope
520 }
521}
522
523impl<'a, 'tcx> Builder<'a, 'tcx> {
524 // Adding and removing scopes
525 // ==========================
526
527 /// Start a breakable scope, which tracks where `continue`, `break` and
528 /// `return` should branch to.
529 pub(crate) fn in_breakable_scope<F>(
530 &mut self,
531 loop_block: Option<BasicBlock>,
532 break_destination: Place<'tcx>,
533 span: Span,
534 f: F,
535 ) -> BlockAnd<()>
536 where
537 F: FnOnce(&mut Builder<'a, 'tcx>) -> Option<BlockAnd<()>>,
538 {
539 let region_scope = self.scopes.topmost();
540 let scope = BreakableScope {
541 region_scope,
542 break_destination,
543 break_drops: DropTree::new(),
544 continue_drops: loop_block.map(|_| DropTree::new()),
545 };
546 self.scopes.breakable_scopes.push(scope);
547 let normal_exit_block = f(self);
548 let breakable_scope = self.scopes.breakable_scopes.pop().unwrap();
549 assert!(breakable_scope.region_scope == region_scope);
550 let break_block =
551 self.build_exit_tree(breakable_scope.break_drops, region_scope, span, None);
552 if let Some(drops) = breakable_scope.continue_drops {
553 self.build_exit_tree(drops, region_scope, span, loop_block);
554 }
555 match (normal_exit_block, break_block) {
556 (Some(block), None) | (None, Some(block)) => block,
557 (None, None) => self.cfg.start_new_block().unit(),
558 (Some(normal_block), Some(exit_block)) => {
559 let target = self.cfg.start_new_block();
560 let source_info = self.source_info(span);
561 self.cfg.terminate(
562 normal_block.into_block(),
563 source_info,
564 TerminatorKind::Goto { target },
565 );
566 self.cfg.terminate(
567 exit_block.into_block(),
568 source_info,
569 TerminatorKind::Goto { target },
570 );
571 target.unit()
572 }
573 }
574 }
575
576 /// Start a const-continuable scope, which tracks where `#[const_continue] break` should
577 /// branch to.
578 pub(crate) fn in_const_continuable_scope<F>(
579 &mut self,
580 arms: Box<[ArmId]>,
581 built_match_tree: BuiltMatchTree<'tcx>,
582 state_place: Place<'tcx>,
583 span: Span,
584 f: F,
585 ) -> BlockAnd<()>
586 where
587 F: FnOnce(&mut Builder<'a, 'tcx>) -> BlockAnd<()>,
588 {
589 let region_scope = self.scopes.topmost();
590 let scope = ConstContinuableScope {
591 region_scope,
592 state_place,
593 const_continue_drops: DropTree::new(),
594 arms,
595 built_match_tree,
596 };
597 self.scopes.const_continuable_scopes.push(scope);
598 let normal_exit_block = f(self);
599 let const_continue_scope = self.scopes.const_continuable_scopes.pop().unwrap();
600 assert!(const_continue_scope.region_scope == region_scope);
601
602 let break_block = self.build_exit_tree(
603 const_continue_scope.const_continue_drops,
604 region_scope,
605 span,
606 None,
607 );
608
609 match (normal_exit_block, break_block) {
610 (block, None) => block,
611 (normal_block, Some(exit_block)) => {
612 let target = self.cfg.start_new_block();
613 let source_info = self.source_info(span);
614 self.cfg.terminate(
615 normal_block.into_block(),
616 source_info,
617 TerminatorKind::Goto { target },
618 );
619 self.cfg.terminate(
620 exit_block.into_block(),
621 source_info,
622 TerminatorKind::Goto { target },
623 );
624 target.unit()
625 }
626 }
627 }
628
629 /// Start an if-then scope which tracks drop for `if` expressions and `if`
630 /// guards.
631 ///
632 /// For an if-let chain:
633 ///
634 /// if let Some(x) = a && let Some(y) = b && let Some(z) = c { ... }
635 ///
636 /// There are three possible ways the condition can be false and we may have
637 /// to drop `x`, `x` and `y`, or neither depending on which binding fails.
638 /// To handle this correctly we use a `DropTree` in a similar way to a
639 /// `loop` expression and 'break' out on all of the 'else' paths.
640 ///
641 /// Notes:
642 /// - We don't need to keep a stack of scopes in the `Builder` because the
643 /// 'else' paths will only leave the innermost scope.
644 /// - This is also used for match guards.
645 pub(crate) fn in_if_then_scope<F>(
646 &mut self,
647 region_scope: region::Scope,
648 span: Span,
649 f: F,
650 ) -> (BasicBlock, BasicBlock)
651 where
652 F: FnOnce(&mut Builder<'a, 'tcx>) -> BlockAnd<()>,
653 {
654 let scope = IfThenScope { region_scope, else_drops: DropTree::new() };
655 let previous_scope = mem::replace(&mut self.scopes.if_then_scope, Some(scope));
656
657 let then_block = f(self).into_block();
658
659 let if_then_scope = mem::replace(&mut self.scopes.if_then_scope, previous_scope).unwrap();
660 assert!(if_then_scope.region_scope == region_scope);
661
662 let else_block =
663 self.build_exit_tree(if_then_scope.else_drops, region_scope, span, None).map_or_else(
664 || self.cfg.start_new_block(),
665 |else_block_and| else_block_and.into_block(),
666 );
667
668 (then_block, else_block)
669 }
670
671 /// Convenience wrapper that pushes a scope and then executes `f`
672 /// to build its contents, popping the scope afterwards.
673 #[instrument(skip(self, f), level = "debug")]
674 pub(crate) fn in_scope<F, R>(
675 &mut self,
676 region_scope: (region::Scope, SourceInfo),
677 lint_level: LintLevel,
678 f: F,
679 ) -> BlockAnd<R>
680 where
681 F: FnOnce(&mut Builder<'a, 'tcx>) -> BlockAnd<R>,
682 {
683 let source_scope = self.source_scope;
684 if let LintLevel::Explicit(current_hir_id) = lint_level {
685 let parent_id =
686 self.source_scopes[source_scope].local_data.as_ref().unwrap_crate_local().lint_root;
687 self.maybe_new_source_scope(region_scope.1.span, current_hir_id, parent_id);
688 }
689 self.push_scope(region_scope);
690 let mut block;
691 let rv = unpack!(block = f(self));
692 block = self.pop_scope(region_scope, block).into_block();
693 self.source_scope = source_scope;
694 debug!(?block);
695 block.and(rv)
696 }
697
698 /// Push a scope onto the stack. You can then build code in this
699 /// scope and call `pop_scope` afterwards. Note that these two
700 /// calls must be paired; using `in_scope` as a convenience
701 /// wrapper maybe preferable.
702 pub(crate) fn push_scope(&mut self, region_scope: (region::Scope, SourceInfo)) {
703 self.scopes.push_scope(region_scope, self.source_scope);
704 }
705
706 /// Pops a scope, which should have region scope `region_scope`,
707 /// adding any drops onto the end of `block` that are needed.
708 /// This must match 1-to-1 with `push_scope`.
709 pub(crate) fn pop_scope(
710 &mut self,
711 region_scope: (region::Scope, SourceInfo),
712 mut block: BasicBlock,
713 ) -> BlockAnd<()> {
714 debug!("pop_scope({:?}, {:?})", region_scope, block);
715
716 block = self.leave_top_scope(block);
717
718 self.scopes.pop_scope(region_scope);
719
720 block.unit()
721 }
722
723 /// Sets up the drops for breaking from `block` to `target`.
724 pub(crate) fn break_scope(
725 &mut self,
726 mut block: BasicBlock,
727 value: Option<ExprId>,
728 target: BreakableTarget,
729 source_info: SourceInfo,
730 ) -> BlockAnd<()> {
731 let span = source_info.span;
732
733 let get_scope_index = |scope: region::Scope| {
734 // find the loop-scope by its `region::Scope`.
735 self.scopes
736 .breakable_scopes
737 .iter()
738 .rposition(|breakable_scope| breakable_scope.region_scope == scope)
739 .unwrap_or_else(|| span_bug!(span, "no enclosing breakable scope found"))
740 };
741 let (break_index, destination) = match target {
742 BreakableTarget::Return => {
743 let scope = &self.scopes.breakable_scopes[0];
744 if scope.break_destination != Place::return_place() {
745 span_bug!(span, "`return` in item with no return scope");
746 }
747 (0, Some(scope.break_destination))
748 }
749 BreakableTarget::Break(scope) => {
750 let break_index = get_scope_index(scope);
751 let scope = &self.scopes.breakable_scopes[break_index];
752 (break_index, Some(scope.break_destination))
753 }
754 BreakableTarget::Continue(scope) => {
755 let break_index = get_scope_index(scope);
756 (break_index, None)
757 }
758 };
759
760 match (destination, value) {
761 (Some(destination), Some(value)) => {
762 debug!("stmt_expr Break val block_context.push(SubExpr)");
763 self.block_context.push(BlockFrame::SubExpr);
764 block = self.expr_into_dest(destination, block, value).into_block();
765 self.block_context.pop();
766 }
767 (Some(destination), None) => {
768 self.cfg.push_assign_unit(block, source_info, destination, self.tcx)
769 }
770 (None, Some(_)) => {
771 panic!("`return`, `become` and `break` with value and must have a destination")
772 }
773 (None, None) => {
774 if self.tcx.sess.instrument_coverage() {
775 // Normally we wouldn't build any MIR in this case, but that makes it
776 // harder for coverage instrumentation to extract a relevant span for
777 // `continue` expressions. So here we inject a dummy statement with the
778 // desired span.
779 self.cfg.push_coverage_span_marker(block, source_info);
780 }
781 }
782 }
783
784 let region_scope = self.scopes.breakable_scopes[break_index].region_scope;
785 let scope_index = self.scopes.scope_index(region_scope, span);
786 let drops = if destination.is_some() {
787 &mut self.scopes.breakable_scopes[break_index].break_drops
788 } else {
789 let Some(drops) = self.scopes.breakable_scopes[break_index].continue_drops.as_mut()
790 else {
791 self.tcx.dcx().span_delayed_bug(
792 source_info.span,
793 "unlabelled `continue` within labelled block",
794 );
795 self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
796
797 return self.cfg.start_new_block().unit();
798 };
799 drops
800 };
801
802 let mut drop_idx = ROOT_NODE;
803 for scope in &self.scopes.scopes[scope_index + 1..] {
804 for drop in &scope.drops {
805 drop_idx = drops.add_drop(*drop, drop_idx);
806 }
807 }
808 drops.add_entry_point(block, drop_idx);
809
810 // `build_drop_trees` doesn't have access to our source_info, so we
811 // create a dummy terminator now. `TerminatorKind::UnwindResume` is used
812 // because MIR type checking will panic if it hasn't been overwritten.
813 // (See `<ExitScopes as DropTreeBuilder>::link_entry_point`.)
814 self.cfg.terminate(block, source_info, TerminatorKind::UnwindResume);
815
816 self.cfg.start_new_block().unit()
817 }
818
819 /// Based on `FunctionCx::eval_unevaluated_mir_constant_to_valtree`.
820 fn eval_unevaluated_mir_constant_to_valtree(
821 &self,
822 constant: ConstOperand<'tcx>,
823 ) -> Result<(ty::ValTree<'tcx>, Ty<'tcx>), interpret::ErrorHandled> {
824 assert!(!constant.const_.ty().has_param());
825 let (uv, ty) = match constant.const_ {
826 mir::Const::Unevaluated(uv, ty) => (uv.shrink(), ty),
827 mir::Const::Ty(_, c) => match c.kind() {
828 // A constant that came from a const generic but was then used as an argument to
829 // old-style simd_shuffle (passing as argument instead of as a generic param).
830 ty::ConstKind::Value(cv) => return Ok((cv.valtree, cv.ty)),
831 other => span_bug!(constant.span, "{other:#?}"),
832 },
833 mir::Const::Val(mir::ConstValue::Scalar(mir::interpret::Scalar::Int(val)), ty) => {
834 return Ok((ValTree::from_scalar_int(self.tcx, val), ty));
835 }
836 // We should never encounter `Const::Val` unless MIR opts (like const prop) evaluate
837 // a constant and write that value back into `Operand`s. This could happen, but is
838 // unlikely. Also: all users of `simd_shuffle` are on unstable and already need to take
839 // a lot of care around intrinsics. For an issue to happen here, it would require a
840 // macro expanding to a `simd_shuffle` call without wrapping the constant argument in a
841 // `const {}` block, but the user pass through arbitrary expressions.
842
843 // FIXME(oli-obk): Replace the magic const generic argument of `simd_shuffle` with a
844 // real const generic, and get rid of this entire function.
845 other => span_bug!(constant.span, "{other:#?}"),
846 };
847
848 match self.tcx.const_eval_resolve_for_typeck(self.typing_env(), uv, constant.span) {
849 Ok(Ok(valtree)) => Ok((valtree, ty)),
850 Ok(Err(ty)) => span_bug!(constant.span, "could not convert {ty:?} to a valtree"),
851 Err(e) => Err(e),
852 }
853 }
854
855 /// Sets up the drops for jumping from `block` to `scope`.
856 pub(crate) fn break_const_continuable_scope(
857 &mut self,
858 mut block: BasicBlock,
859 value: ExprId,
860 scope: region::Scope,
861 source_info: SourceInfo,
862 ) -> BlockAnd<()> {
863 let span = source_info.span;
864
865 // A break can only break out of a scope, so the value should be a scope.
866 let rustc_middle::thir::ExprKind::Scope { value, .. } = self.thir[value].kind else {
867 span_bug!(span, "break value must be a scope")
868 };
869
870 let constant = match &self.thir[value].kind {
871 ExprKind::Adt(box AdtExpr { variant_index, fields, base, .. }) => {
872 assert!(matches!(base, AdtExprBase::None));
873 assert!(fields.is_empty());
874 ConstOperand {
875 span: self.thir[value].span,
876 user_ty: None,
877 const_: Const::Ty(
878 self.thir[value].ty,
879 ty::Const::new_value(
880 self.tcx,
881 ValTree::from_branches(
882 self.tcx,
883 [ValTree::from_scalar_int(self.tcx, variant_index.as_u32().into())],
884 ),
885 self.thir[value].ty,
886 ),
887 ),
888 }
889 }
890 _ => self.as_constant(&self.thir[value]),
891 };
892
893 let break_index = self
894 .scopes
895 .const_continuable_scopes
896 .iter()
897 .rposition(|const_continuable_scope| const_continuable_scope.region_scope == scope)
898 .unwrap_or_else(|| span_bug!(span, "no enclosing const-continuable scope found"));
899
900 let scope = &self.scopes.const_continuable_scopes[break_index];
901
902 let state_decl = &self.local_decls[scope.state_place.as_local().unwrap()];
903 let state_ty = state_decl.ty;
904 let (discriminant_ty, rvalue) = match state_ty.kind() {
905 ty::Adt(adt_def, _) if adt_def.is_enum() => {
906 (state_ty.discriminant_ty(self.tcx), Rvalue::Discriminant(scope.state_place))
907 }
908 ty::Uint(_) | ty::Int(_) | ty::Float(_) | ty::Bool | ty::Char => {
909 (state_ty, Rvalue::Use(Operand::Copy(scope.state_place)))
910 }
911 _ => span_bug!(state_decl.source_info.span, "unsupported #[loop_match] state"),
912 };
913
914 // The `PatCtxt` is normally used in pattern exhaustiveness checking, but reused
915 // here because it performs normalization and const evaluation.
916 let dropless_arena = rustc_arena::DroplessArena::default();
917 let typeck_results = self.tcx.typeck(self.def_id);
918 let cx = RustcPatCtxt {
919 tcx: self.tcx,
920 typeck_results,
921 module: self.tcx.parent_module(self.hir_id).to_def_id(),
922 // FIXME(#132279): We're in a body, should handle opaques.
923 typing_env: rustc_middle::ty::TypingEnv::non_body_analysis(self.tcx, self.def_id),
924 dropless_arena: &dropless_arena,
925 match_lint_level: self.hir_id,
926 whole_match_span: Some(rustc_span::Span::default()),
927 scrut_span: rustc_span::Span::default(),
928 refutable: true,
929 known_valid_scrutinee: true,
930 internal_state: Default::default(),
931 };
932
933 let valtree = match self.eval_unevaluated_mir_constant_to_valtree(constant) {
934 Ok((valtree, ty)) => {
935 // Defensively check that the type is monomorphic.
936 assert!(!ty.has_param());
937
938 valtree
939 }
940 Err(ErrorHandled::Reported(..)) => {
941 return block.unit();
942 }
943 Err(ErrorHandled::TooGeneric(_)) => {
944 self.tcx.dcx().emit_fatal(ConstContinueBadConst { span: constant.span });
945 }
946 };
947
948 let Some(real_target) =
949 self.static_pattern_match(&cx, valtree, &*scope.arms, &scope.built_match_tree)
950 else {
951 self.tcx.dcx().emit_fatal(ConstContinueUnknownJumpTarget { span })
952 };
953
954 self.block_context.push(BlockFrame::SubExpr);
955 let state_place = scope.state_place;
956 block = self.expr_into_dest(state_place, block, value).into_block();
957 self.block_context.pop();
958
959 let discr = self.temp(discriminant_ty, source_info.span);
960 let scope_index = self
961 .scopes
962 .scope_index(self.scopes.const_continuable_scopes[break_index].region_scope, span);
963 let scope = &mut self.scopes.const_continuable_scopes[break_index];
964 self.cfg.push_assign(block, source_info, discr, rvalue);
965 let drop_and_continue_block = self.cfg.start_new_block();
966 let imaginary_target = self.cfg.start_new_block();
967 self.cfg.terminate(
968 block,
969 source_info,
970 TerminatorKind::FalseEdge { real_target: drop_and_continue_block, imaginary_target },
971 );
972
973 let drops = &mut scope.const_continue_drops;
974
975 let drop_idx = self.scopes.scopes[scope_index + 1..]
976 .iter()
977 .flat_map(|scope| &scope.drops)
978 .fold(ROOT_NODE, |drop_idx, &drop| drops.add_drop(drop, drop_idx));
979
980 drops.add_entry_point(imaginary_target, drop_idx);
981
982 self.cfg.terminate(imaginary_target, source_info, TerminatorKind::UnwindResume);
983
984 let region_scope = scope.region_scope;
985 let scope_index = self.scopes.scope_index(region_scope, span);
986 let mut drops = DropTree::new();
987
988 let drop_idx = self.scopes.scopes[scope_index + 1..]
989 .iter()
990 .flat_map(|scope| &scope.drops)
991 .fold(ROOT_NODE, |drop_idx, &drop| drops.add_drop(drop, drop_idx));
992
993 drops.add_entry_point(drop_and_continue_block, drop_idx);
994
995 // `build_drop_trees` doesn't have access to our source_info, so we
996 // create a dummy terminator now. `TerminatorKind::UnwindResume` is used
997 // because MIR type checking will panic if it hasn't been overwritten.
998 // (See `<ExitScopes as DropTreeBuilder>::link_entry_point`.)
999 self.cfg.terminate(drop_and_continue_block, source_info, TerminatorKind::UnwindResume);
1000
1001 self.build_exit_tree(drops, region_scope, span, Some(real_target));
1002
1003 return self.cfg.start_new_block().unit();
1004 }
1005
1006 /// Sets up the drops for breaking from `block` due to an `if` condition
1007 /// that turned out to be false.
1008 ///
1009 /// Must be called in the context of [`Builder::in_if_then_scope`], so that
1010 /// there is an if-then scope to tell us what the target scope is.
1011 pub(crate) fn break_for_else(&mut self, block: BasicBlock, source_info: SourceInfo) {
1012 let if_then_scope = self
1013 .scopes
1014 .if_then_scope
1015 .as_ref()
1016 .unwrap_or_else(|| span_bug!(source_info.span, "no if-then scope found"));
1017
1018 let target = if_then_scope.region_scope;
1019 let scope_index = self.scopes.scope_index(target, source_info.span);
1020
1021 // Upgrade `if_then_scope` to `&mut`.
1022 let if_then_scope = self.scopes.if_then_scope.as_mut().expect("upgrading & to &mut");
1023
1024 let mut drop_idx = ROOT_NODE;
1025 let drops = &mut if_then_scope.else_drops;
1026 for scope in &self.scopes.scopes[scope_index + 1..] {
1027 for drop in &scope.drops {
1028 drop_idx = drops.add_drop(*drop, drop_idx);
1029 }
1030 }
1031 drops.add_entry_point(block, drop_idx);
1032
1033 // `build_drop_trees` doesn't have access to our source_info, so we
1034 // create a dummy terminator now. `TerminatorKind::UnwindResume` is used
1035 // because MIR type checking will panic if it hasn't been overwritten.
1036 // (See `<ExitScopes as DropTreeBuilder>::link_entry_point`.)
1037 self.cfg.terminate(block, source_info, TerminatorKind::UnwindResume);
1038 }
1039
1040 /// Sets up the drops for explicit tail calls.
1041 ///
1042 /// Unlike other kinds of early exits, tail calls do not go through the drop tree.
1043 /// Instead, all scheduled drops are immediately added to the CFG.
1044 pub(crate) fn break_for_tail_call(
1045 &mut self,
1046 mut block: BasicBlock,
1047 args: &[Spanned<Operand<'tcx>>],
1048 source_info: SourceInfo,
1049 ) -> BlockAnd<()> {
1050 let arg_drops: Vec<_> = args
1051 .iter()
1052 .rev()
1053 .filter_map(|arg| match &arg.node {
1054 Operand::Copy(_) => bug!("copy op in tail call args"),
1055 Operand::Move(place) => {
1056 let local =
1057 place.as_local().unwrap_or_else(|| bug!("projection in tail call args"));
1058
1059 if !self.local_decls[local].ty.needs_drop(self.tcx, self.typing_env()) {
1060 return None;
1061 }
1062
1063 Some(DropData { source_info, local, kind: DropKind::Value })
1064 }
1065 Operand::Constant(_) => None,
1066 })
1067 .collect();
1068
1069 let mut unwind_to = self.diverge_cleanup_target(
1070 self.scopes.scopes.iter().rev().nth(1).unwrap().region_scope,
1071 DUMMY_SP,
1072 );
1073 let typing_env = self.typing_env();
1074 let unwind_drops = &mut self.scopes.unwind_drops;
1075
1076 // the innermost scope contains only the destructors for the tail call arguments
1077 // we only want to drop these in case of a panic, so we skip it
1078 for scope in self.scopes.scopes[1..].iter().rev().skip(1) {
1079 // FIXME(explicit_tail_calls) code duplication with `build_scope_drops`
1080 for drop_data in scope.drops.iter().rev() {
1081 let source_info = drop_data.source_info;
1082 let local = drop_data.local;
1083
1084 if !self.local_decls[local].ty.needs_drop(self.tcx, typing_env) {
1085 continue;
1086 }
1087
1088 match drop_data.kind {
1089 DropKind::Value => {
1090 // `unwind_to` should drop the value that we're about to
1091 // schedule. If dropping this value panics, then we continue
1092 // with the *next* value on the unwind path.
1093 debug_assert_eq!(
1094 unwind_drops.drop_nodes[unwind_to].data.local,
1095 drop_data.local
1096 );
1097 debug_assert_eq!(
1098 unwind_drops.drop_nodes[unwind_to].data.kind,
1099 drop_data.kind
1100 );
1101 unwind_to = unwind_drops.drop_nodes[unwind_to].next;
1102
1103 let mut unwind_entry_point = unwind_to;
1104
1105 // the tail call arguments must be dropped if any of these drops panic
1106 for drop in arg_drops.iter().copied() {
1107 unwind_entry_point = unwind_drops.add_drop(drop, unwind_entry_point);
1108 }
1109
1110 unwind_drops.add_entry_point(block, unwind_entry_point);
1111
1112 let next = self.cfg.start_new_block();
1113 self.cfg.terminate(
1114 block,
1115 source_info,
1116 TerminatorKind::Drop {
1117 place: local.into(),
1118 target: next,
1119 unwind: UnwindAction::Continue,
1120 replace: false,
1121 drop: None,
1122 async_fut: None,
1123 },
1124 );
1125 block = next;
1126 }
1127 DropKind::ForLint => {
1128 self.cfg.push(
1129 block,
1130 Statement::new(
1131 source_info,
1132 StatementKind::BackwardIncompatibleDropHint {
1133 place: Box::new(local.into()),
1134 reason: BackwardIncompatibleDropReason::Edition2024,
1135 },
1136 ),
1137 );
1138 }
1139 DropKind::Storage => {
1140 // Only temps and vars need their storage dead.
1141 assert!(local.index() > self.arg_count);
1142 self.cfg.push(
1143 block,
1144 Statement::new(source_info, StatementKind::StorageDead(local)),
1145 );
1146 }
1147 }
1148 }
1149 }
1150
1151 block.unit()
1152 }
1153
1154 fn is_async_drop_impl(
1155 tcx: TyCtxt<'tcx>,
1156 local_decls: &IndexVec<Local, LocalDecl<'tcx>>,
1157 typing_env: ty::TypingEnv<'tcx>,
1158 local: Local,
1159 ) -> bool {
1160 let ty = local_decls[local].ty;
1161 if ty.is_async_drop(tcx, typing_env) || ty.is_coroutine() {
1162 return true;
1163 }
1164 ty.needs_async_drop(tcx, typing_env)
1165 }
1166 fn is_async_drop(&self, local: Local) -> bool {
1167 Self::is_async_drop_impl(self.tcx, &self.local_decls, self.typing_env(), local)
1168 }
1169
1170 fn leave_top_scope(&mut self, block: BasicBlock) -> BasicBlock {
1171 // If we are emitting a `drop` statement, we need to have the cached
1172 // diverge cleanup pads ready in case that drop panics.
1173 let needs_cleanup = self.scopes.scopes.last().is_some_and(|scope| scope.needs_cleanup());
1174 let is_coroutine = self.coroutine.is_some();
1175 let unwind_to = if needs_cleanup { self.diverge_cleanup() } else { DropIdx::MAX };
1176
1177 let scope = self.scopes.scopes.last().expect("leave_top_scope called with no scopes");
1178 let has_async_drops = is_coroutine
1179 && scope.drops.iter().any(|v| v.kind == DropKind::Value && self.is_async_drop(v.local));
1180 let dropline_to = if has_async_drops { Some(self.diverge_dropline()) } else { None };
1181 let scope = self.scopes.scopes.last().expect("leave_top_scope called with no scopes");
1182 let typing_env = self.typing_env();
1183 build_scope_drops(
1184 &mut self.cfg,
1185 &mut self.scopes.unwind_drops,
1186 &mut self.scopes.coroutine_drops,
1187 scope,
1188 block,
1189 unwind_to,
1190 dropline_to,
1191 is_coroutine && needs_cleanup,
1192 self.arg_count,
1193 |v: Local| Self::is_async_drop_impl(self.tcx, &self.local_decls, typing_env, v),
1194 )
1195 .into_block()
1196 }
1197
1198 /// Possibly creates a new source scope if `current_root` and `parent_root`
1199 /// are different, or if -Zmaximal-hir-to-mir-coverage is enabled.
1200 pub(crate) fn maybe_new_source_scope(
1201 &mut self,
1202 span: Span,
1203 current_id: HirId,
1204 parent_id: HirId,
1205 ) {
1206 let (current_root, parent_root) =
1207 if self.tcx.sess.opts.unstable_opts.maximal_hir_to_mir_coverage {
1208 // Some consumers of rustc need to map MIR locations back to HIR nodes. Currently
1209 // the only part of rustc that tracks MIR -> HIR is the
1210 // `SourceScopeLocalData::lint_root` field that tracks lint levels for MIR
1211 // locations. Normally the number of source scopes is limited to the set of nodes
1212 // with lint annotations. The -Zmaximal-hir-to-mir-coverage flag changes this
1213 // behavior to maximize the number of source scopes, increasing the granularity of
1214 // the MIR->HIR mapping.
1215 (current_id, parent_id)
1216 } else {
1217 // Use `maybe_lint_level_root_bounded` to avoid adding Hir dependencies on our
1218 // parents. We estimate the true lint roots here to avoid creating a lot of source
1219 // scopes.
1220 (
1221 self.maybe_lint_level_root_bounded(current_id),
1222 if parent_id == self.hir_id {
1223 parent_id // this is very common
1224 } else {
1225 self.maybe_lint_level_root_bounded(parent_id)
1226 },
1227 )
1228 };
1229
1230 if current_root != parent_root {
1231 let lint_level = LintLevel::Explicit(current_root);
1232 self.source_scope = self.new_source_scope(span, lint_level);
1233 }
1234 }
1235
1236 /// Walks upwards from `orig_id` to find a node which might change lint levels with attributes.
1237 /// It stops at `self.hir_id` and just returns it if reached.
1238 fn maybe_lint_level_root_bounded(&mut self, orig_id: HirId) -> HirId {
1239 // This assertion lets us just store `ItemLocalId` in the cache, rather
1240 // than the full `HirId`.
1241 assert_eq!(orig_id.owner, self.hir_id.owner);
1242
1243 let mut id = orig_id;
1244 loop {
1245 if id == self.hir_id {
1246 // This is a moderately common case, mostly hit for previously unseen nodes.
1247 break;
1248 }
1249
1250 if self.tcx.hir_attrs(id).iter().any(|attr| Level::from_attr(attr).is_some()) {
1251 // This is a rare case. It's for a node path that doesn't reach the root due to an
1252 // intervening lint level attribute. This result doesn't get cached.
1253 return id;
1254 }
1255
1256 let next = self.tcx.parent_hir_id(id);
1257 if next == id {
1258 bug!("lint traversal reached the root of the crate");
1259 }
1260 id = next;
1261
1262 // This lookup is just an optimization; it can be removed without affecting
1263 // functionality. It might seem strange to see this at the end of this loop, but the
1264 // `orig_id` passed in to this function is almost always previously unseen, for which a
1265 // lookup will be a miss. So we only do lookups for nodes up the parent chain, where
1266 // cache lookups have a very high hit rate.
1267 if self.lint_level_roots_cache.contains(id.local_id) {
1268 break;
1269 }
1270 }
1271
1272 // `orig_id` traced to `self_id`; record this fact. If `orig_id` is a leaf node it will
1273 // rarely (never?) subsequently be searched for, but it's hard to know if that is the case.
1274 // The performance wins from the cache all come from caching non-leaf nodes.
1275 self.lint_level_roots_cache.insert(orig_id.local_id);
1276 self.hir_id
1277 }
1278
1279 /// Creates a new source scope, nested in the current one.
1280 pub(crate) fn new_source_scope(&mut self, span: Span, lint_level: LintLevel) -> SourceScope {
1281 let parent = self.source_scope;
1282 debug!(
1283 "new_source_scope({:?}, {:?}) - parent({:?})={:?}",
1284 span,
1285 lint_level,
1286 parent,
1287 self.source_scopes.get(parent)
1288 );
1289 let scope_local_data = SourceScopeLocalData {
1290 lint_root: if let LintLevel::Explicit(lint_root) = lint_level {
1291 lint_root
1292 } else {
1293 self.source_scopes[parent].local_data.as_ref().unwrap_crate_local().lint_root
1294 },
1295 };
1296 self.source_scopes.push(SourceScopeData {
1297 span,
1298 parent_scope: Some(parent),
1299 inlined: None,
1300 inlined_parent_scope: None,
1301 local_data: ClearCrossCrate::Set(scope_local_data),
1302 })
1303 }
1304
1305 /// Given a span and the current source scope, make a SourceInfo.
1306 pub(crate) fn source_info(&self, span: Span) -> SourceInfo {
1307 SourceInfo { span, scope: self.source_scope }
1308 }
1309
1310 // Finding scopes
1311 // ==============
1312
1313 /// Returns the scope that we should use as the lifetime of an
1314 /// operand. Basically, an operand must live until it is consumed.
1315 /// This is similar to, but not quite the same as, the temporary
1316 /// scope (which can be larger or smaller).
1317 ///
1318 /// Consider:
1319 /// ```ignore (illustrative)
1320 /// let x = foo(bar(X, Y));
1321 /// ```
1322 /// We wish to pop the storage for X and Y after `bar()` is
1323 /// called, not after the whole `let` is completed.
1324 ///
1325 /// As another example, if the second argument diverges:
1326 /// ```ignore (illustrative)
1327 /// foo(Box::new(2), panic!())
1328 /// ```
1329 /// We would allocate the box but then free it on the unwinding
1330 /// path; we would also emit a free on the 'success' path from
1331 /// panic, but that will turn out to be removed as dead-code.
1332 pub(crate) fn local_scope(&self) -> region::Scope {
1333 self.scopes.topmost()
1334 }
1335
1336 // Scheduling drops
1337 // ================
1338
1339 pub(crate) fn schedule_drop_storage_and_value(
1340 &mut self,
1341 span: Span,
1342 region_scope: region::Scope,
1343 local: Local,
1344 ) {
1345 self.schedule_drop(span, region_scope, local, DropKind::Storage);
1346 self.schedule_drop(span, region_scope, local, DropKind::Value);
1347 }
1348
1349 /// Indicates that `place` should be dropped on exit from `region_scope`.
1350 ///
1351 /// When called with `DropKind::Storage`, `place` shouldn't be the return
1352 /// place, or a function parameter.
1353 pub(crate) fn schedule_drop(
1354 &mut self,
1355 span: Span,
1356 region_scope: region::Scope,
1357 local: Local,
1358 drop_kind: DropKind,
1359 ) {
1360 let needs_drop = match drop_kind {
1361 DropKind::Value | DropKind::ForLint => {
1362 if !self.local_decls[local].ty.needs_drop(self.tcx, self.typing_env()) {
1363 return;
1364 }
1365 true
1366 }
1367 DropKind::Storage => {
1368 if local.index() <= self.arg_count {
1369 span_bug!(
1370 span,
1371 "`schedule_drop` called with body argument {:?} \
1372 but its storage does not require a drop",
1373 local,
1374 )
1375 }
1376 false
1377 }
1378 };
1379
1380 // When building drops, we try to cache chains of drops to reduce the
1381 // number of `DropTree::add_drop` calls. This, however, means that
1382 // whenever we add a drop into a scope which already had some entries
1383 // in the drop tree built (and thus, cached) for it, we must invalidate
1384 // all caches which might branch into the scope which had a drop just
1385 // added to it. This is necessary, because otherwise some other code
1386 // might use the cache to branch into already built chain of drops,
1387 // essentially ignoring the newly added drop.
1388 //
1389 // For example consider there’s two scopes with a drop in each. These
1390 // are built and thus the caches are filled:
1391 //
1392 // +--------------------------------------------------------+
1393 // | +---------------------------------+ |
1394 // | | +--------+ +-------------+ | +---------------+ |
1395 // | | | return | <-+ | drop(outer) | <-+ | drop(middle) | |
1396 // | | +--------+ +-------------+ | +---------------+ |
1397 // | +------------|outer_scope cache|--+ |
1398 // +------------------------------|middle_scope cache|------+
1399 //
1400 // Now, a new, innermost scope is added along with a new drop into
1401 // both innermost and outermost scopes:
1402 //
1403 // +------------------------------------------------------------+
1404 // | +----------------------------------+ |
1405 // | | +--------+ +-------------+ | +---------------+ | +-------------+
1406 // | | | return | <+ | drop(new) | <-+ | drop(middle) | <--+| drop(inner) |
1407 // | | +--------+ | | drop(outer) | | +---------------+ | +-------------+
1408 // | | +-+ +-------------+ | |
1409 // | +---|invalid outer_scope cache|----+ |
1410 // +----=----------------|invalid middle_scope cache|-----------+
1411 //
1412 // If, when adding `drop(new)` we do not invalidate the cached blocks for both
1413 // outer_scope and middle_scope, then, when building drops for the inner (rightmost)
1414 // scope, the old, cached blocks, without `drop(new)` will get used, producing the
1415 // wrong results.
1416 //
1417 // Note that this code iterates scopes from the innermost to the outermost,
1418 // invalidating caches of each scope visited. This way bare minimum of the
1419 // caches gets invalidated. i.e., if a new drop is added into the middle scope, the
1420 // cache of outer scope stays intact.
1421 //
1422 // Since we only cache drops for the unwind path and the coroutine drop
1423 // path, we only need to invalidate the cache for drops that happen on
1424 // the unwind or coroutine drop paths. This means that for
1425 // non-coroutines we don't need to invalidate caches for `DropKind::Storage`.
1426 let invalidate_caches = needs_drop || self.coroutine.is_some();
1427 for scope in self.scopes.scopes.iter_mut().rev() {
1428 if invalidate_caches {
1429 scope.invalidate_cache();
1430 }
1431
1432 if scope.region_scope == region_scope {
1433 let region_scope_span = region_scope.span(self.tcx, self.region_scope_tree);
1434 // Attribute scope exit drops to scope's closing brace.
1435 let scope_end = self.tcx.sess.source_map().end_point(region_scope_span);
1436
1437 scope.drops.push(DropData {
1438 source_info: SourceInfo { span: scope_end, scope: scope.source_scope },
1439 local,
1440 kind: drop_kind,
1441 });
1442
1443 return;
1444 }
1445 }
1446
1447 span_bug!(span, "region scope {:?} not in scope to drop {:?}", region_scope, local);
1448 }
1449
1450 /// Schedule emission of a backwards incompatible drop lint hint.
1451 /// Applicable only to temporary values for now.
1452 #[instrument(level = "debug", skip(self))]
1453 pub(crate) fn schedule_backwards_incompatible_drop(
1454 &mut self,
1455 span: Span,
1456 region_scope: region::Scope,
1457 local: Local,
1458 ) {
1459 // Note that we are *not* gating BIDs here on whether they have significant destructor.
1460 // We need to know all of them so that we can capture potential borrow-checking errors.
1461 for scope in self.scopes.scopes.iter_mut().rev() {
1462 // Since we are inserting linting MIR statement, we have to invalidate the caches
1463 scope.invalidate_cache();
1464 if scope.region_scope == region_scope {
1465 let region_scope_span = region_scope.span(self.tcx, self.region_scope_tree);
1466 let scope_end = self.tcx.sess.source_map().end_point(region_scope_span);
1467
1468 scope.drops.push(DropData {
1469 source_info: SourceInfo { span: scope_end, scope: scope.source_scope },
1470 local,
1471 kind: DropKind::ForLint,
1472 });
1473
1474 return;
1475 }
1476 }
1477 span_bug!(
1478 span,
1479 "region scope {:?} not in scope to drop {:?} for linting",
1480 region_scope,
1481 local
1482 );
1483 }
1484
1485 /// Indicates that the "local operand" stored in `local` is
1486 /// *moved* at some point during execution (see `local_scope` for
1487 /// more information about what a "local operand" is -- in short,
1488 /// it's an intermediate operand created as part of preparing some
1489 /// MIR instruction). We use this information to suppress
1490 /// redundant drops on the non-unwind paths. This results in less
1491 /// MIR, but also avoids spurious borrow check errors
1492 /// (c.f. #64391).
1493 ///
1494 /// Example: when compiling the call to `foo` here:
1495 ///
1496 /// ```ignore (illustrative)
1497 /// foo(bar(), ...)
1498 /// ```
1499 ///
1500 /// we would evaluate `bar()` to an operand `_X`. We would also
1501 /// schedule `_X` to be dropped when the expression scope for
1502 /// `foo(bar())` is exited. This is relevant, for example, if the
1503 /// later arguments should unwind (it would ensure that `_X` gets
1504 /// dropped). However, if no unwind occurs, then `_X` will be
1505 /// unconditionally consumed by the `call`:
1506 ///
1507 /// ```ignore (illustrative)
1508 /// bb {
1509 /// ...
1510 /// _R = CALL(foo, _X, ...)
1511 /// }
1512 /// ```
1513 ///
1514 /// However, `_X` is still registered to be dropped, and so if we
1515 /// do nothing else, we would generate a `DROP(_X)` that occurs
1516 /// after the call. This will later be optimized out by the
1517 /// drop-elaboration code, but in the meantime it can lead to
1518 /// spurious borrow-check errors -- the problem, ironically, is
1519 /// not the `DROP(_X)` itself, but the (spurious) unwind pathways
1520 /// that it creates. See #64391 for an example.
1521 pub(crate) fn record_operands_moved(&mut self, operands: &[Spanned<Operand<'tcx>>]) {
1522 let local_scope = self.local_scope();
1523 let scope = self.scopes.scopes.last_mut().unwrap();
1524
1525 assert_eq!(scope.region_scope, local_scope, "local scope is not the topmost scope!",);
1526
1527 // look for moves of a local variable, like `MOVE(_X)`
1528 let locals_moved = operands.iter().flat_map(|operand| match operand.node {
1529 Operand::Copy(_) | Operand::Constant(_) => None,
1530 Operand::Move(place) => place.as_local(),
1531 });
1532
1533 for local in locals_moved {
1534 // check if we have a Drop for this operand and -- if so
1535 // -- add it to the list of moved operands. Note that this
1536 // local might not have been an operand created for this
1537 // call, it could come from other places too.
1538 if scope.drops.iter().any(|drop| drop.local == local && drop.kind == DropKind::Value) {
1539 scope.moved_locals.push(local);
1540 }
1541 }
1542 }
1543
1544 // Other
1545 // =====
1546
1547 /// Returns the [DropIdx] for the innermost drop if the function unwound at
1548 /// this point. The `DropIdx` will be created if it doesn't already exist.
1549 fn diverge_cleanup(&mut self) -> DropIdx {
1550 // It is okay to use dummy span because the getting scope index on the topmost scope
1551 // must always succeed.
1552 self.diverge_cleanup_target(self.scopes.topmost(), DUMMY_SP)
1553 }
1554
1555 /// This is similar to [diverge_cleanup](Self::diverge_cleanup) except its target is set to
1556 /// some ancestor scope instead of the current scope.
1557 /// It is possible to unwind to some ancestor scope if some drop panics as
1558 /// the program breaks out of a if-then scope.
1559 fn diverge_cleanup_target(&mut self, target_scope: region::Scope, span: Span) -> DropIdx {
1560 let target = self.scopes.scope_index(target_scope, span);
1561 let (uncached_scope, mut cached_drop) = self.scopes.scopes[..=target]
1562 .iter()
1563 .enumerate()
1564 .rev()
1565 .find_map(|(scope_idx, scope)| {
1566 scope.cached_unwind_block.map(|cached_block| (scope_idx + 1, cached_block))
1567 })
1568 .unwrap_or((0, ROOT_NODE));
1569
1570 if uncached_scope > target {
1571 return cached_drop;
1572 }
1573
1574 let is_coroutine = self.coroutine.is_some();
1575 for scope in &mut self.scopes.scopes[uncached_scope..=target] {
1576 for drop in &scope.drops {
1577 if is_coroutine || drop.kind == DropKind::Value {
1578 cached_drop = self.scopes.unwind_drops.add_drop(*drop, cached_drop);
1579 }
1580 }
1581 scope.cached_unwind_block = Some(cached_drop);
1582 }
1583
1584 cached_drop
1585 }
1586
1587 /// Prepares to create a path that performs all required cleanup for a
1588 /// terminator that can unwind at the given basic block.
1589 ///
1590 /// This path terminates in Resume. The path isn't created until after all
1591 /// of the non-unwind paths in this item have been lowered.
1592 pub(crate) fn diverge_from(&mut self, start: BasicBlock) {
1593 debug_assert!(
1594 matches!(
1595 self.cfg.block_data(start).terminator().kind,
1596 TerminatorKind::Assert { .. }
1597 | TerminatorKind::Call { .. }
1598 | TerminatorKind::Drop { .. }
1599 | TerminatorKind::FalseUnwind { .. }
1600 | TerminatorKind::InlineAsm { .. }
1601 ),
1602 "diverge_from called on block with terminator that cannot unwind."
1603 );
1604
1605 let next_drop = self.diverge_cleanup();
1606 self.scopes.unwind_drops.add_entry_point(start, next_drop);
1607 }
1608
1609 /// Returns the [DropIdx] for the innermost drop for dropline (coroutine drop path).
1610 /// The `DropIdx` will be created if it doesn't already exist.
1611 fn diverge_dropline(&mut self) -> DropIdx {
1612 // It is okay to use dummy span because the getting scope index on the topmost scope
1613 // must always succeed.
1614 self.diverge_dropline_target(self.scopes.topmost(), DUMMY_SP)
1615 }
1616
1617 /// Similar to diverge_cleanup_target, but for dropline (coroutine drop path)
1618 fn diverge_dropline_target(&mut self, target_scope: region::Scope, span: Span) -> DropIdx {
1619 debug_assert!(
1620 self.coroutine.is_some(),
1621 "diverge_dropline_target is valid only for coroutine"
1622 );
1623 let target = self.scopes.scope_index(target_scope, span);
1624 let (uncached_scope, mut cached_drop) = self.scopes.scopes[..=target]
1625 .iter()
1626 .enumerate()
1627 .rev()
1628 .find_map(|(scope_idx, scope)| {
1629 scope.cached_coroutine_drop_block.map(|cached_block| (scope_idx + 1, cached_block))
1630 })
1631 .unwrap_or((0, ROOT_NODE));
1632
1633 if uncached_scope > target {
1634 return cached_drop;
1635 }
1636
1637 for scope in &mut self.scopes.scopes[uncached_scope..=target] {
1638 for drop in &scope.drops {
1639 cached_drop = self.scopes.coroutine_drops.add_drop(*drop, cached_drop);
1640 }
1641 scope.cached_coroutine_drop_block = Some(cached_drop);
1642 }
1643
1644 cached_drop
1645 }
1646
1647 /// Sets up a path that performs all required cleanup for dropping a
1648 /// coroutine, starting from the given block that ends in
1649 /// [TerminatorKind::Yield].
1650 ///
1651 /// This path terminates in CoroutineDrop.
1652 pub(crate) fn coroutine_drop_cleanup(&mut self, yield_block: BasicBlock) {
1653 debug_assert!(
1654 matches!(
1655 self.cfg.block_data(yield_block).terminator().kind,
1656 TerminatorKind::Yield { .. }
1657 ),
1658 "coroutine_drop_cleanup called on block with non-yield terminator."
1659 );
1660 let cached_drop = self.diverge_dropline();
1661 self.scopes.coroutine_drops.add_entry_point(yield_block, cached_drop);
1662 }
1663
1664 /// Utility function for *non*-scope code to build their own drops
1665 /// Force a drop at this point in the MIR by creating a new block.
1666 pub(crate) fn build_drop_and_replace(
1667 &mut self,
1668 block: BasicBlock,
1669 span: Span,
1670 place: Place<'tcx>,
1671 value: Rvalue<'tcx>,
1672 ) -> BlockAnd<()> {
1673 let source_info = self.source_info(span);
1674
1675 // create the new block for the assignment
1676 let assign = self.cfg.start_new_block();
1677 self.cfg.push_assign(assign, source_info, place, value.clone());
1678
1679 // create the new block for the assignment in the case of unwinding
1680 let assign_unwind = self.cfg.start_new_cleanup_block();
1681 self.cfg.push_assign(assign_unwind, source_info, place, value.clone());
1682
1683 self.cfg.terminate(
1684 block,
1685 source_info,
1686 TerminatorKind::Drop {
1687 place,
1688 target: assign,
1689 unwind: UnwindAction::Cleanup(assign_unwind),
1690 replace: true,
1691 drop: None,
1692 async_fut: None,
1693 },
1694 );
1695 self.diverge_from(block);
1696
1697 assign.unit()
1698 }
1699
1700 /// Creates an `Assert` terminator and return the success block.
1701 /// If the boolean condition operand is not the expected value,
1702 /// a runtime panic will be caused with the given message.
1703 pub(crate) fn assert(
1704 &mut self,
1705 block: BasicBlock,
1706 cond: Operand<'tcx>,
1707 expected: bool,
1708 msg: AssertMessage<'tcx>,
1709 span: Span,
1710 ) -> BasicBlock {
1711 let source_info = self.source_info(span);
1712 let success_block = self.cfg.start_new_block();
1713
1714 self.cfg.terminate(
1715 block,
1716 source_info,
1717 TerminatorKind::Assert {
1718 cond,
1719 expected,
1720 msg: Box::new(msg),
1721 target: success_block,
1722 unwind: UnwindAction::Continue,
1723 },
1724 );
1725 self.diverge_from(block);
1726
1727 success_block
1728 }
1729
1730 /// Unschedules any drops in the top scope.
1731 ///
1732 /// This is only needed for `match` arm scopes, because they have one
1733 /// entrance per pattern, but only one exit.
1734 pub(crate) fn clear_top_scope(&mut self, region_scope: region::Scope) {
1735 let top_scope = self.scopes.scopes.last_mut().unwrap();
1736
1737 assert_eq!(top_scope.region_scope, region_scope);
1738
1739 top_scope.drops.clear();
1740 top_scope.invalidate_cache();
1741 }
1742}
1743
1744/// Builds drops for `pop_scope` and `leave_top_scope`.
1745///
1746/// # Parameters
1747///
1748/// * `unwind_drops`, the drop tree data structure storing what needs to be cleaned up if unwind occurs
1749/// * `scope`, describes the drops that will occur on exiting the scope in regular execution
1750/// * `block`, the block to branch to once drops are complete (assuming no unwind occurs)
1751/// * `unwind_to`, describes the drops that would occur at this point in the code if a
1752/// panic occurred (a subset of the drops in `scope`, since we sometimes elide StorageDead and other
1753/// instructions on unwinding)
1754/// * `dropline_to`, describes the drops that would occur at this point in the code if a
1755/// coroutine drop occurred.
1756/// * `storage_dead_on_unwind`, if true, then we should emit `StorageDead` even when unwinding
1757/// * `arg_count`, number of MIR local variables corresponding to fn arguments (used to assert that we don't drop those)
1758fn build_scope_drops<'tcx, F>(
1759 cfg: &mut CFG<'tcx>,
1760 unwind_drops: &mut DropTree,
1761 coroutine_drops: &mut DropTree,
1762 scope: &Scope,
1763 block: BasicBlock,
1764 unwind_to: DropIdx,
1765 dropline_to: Option<DropIdx>,
1766 storage_dead_on_unwind: bool,
1767 arg_count: usize,
1768 is_async_drop: F,
1769) -> BlockAnd<()>
1770where
1771 F: Fn(Local) -> bool,
1772{
1773 debug!("build_scope_drops({:?} -> {:?}), dropline_to={:?}", block, scope, dropline_to);
1774
1775 // Build up the drops in evaluation order. The end result will
1776 // look like:
1777 //
1778 // [SDs, drops[n]] --..> [SDs, drop[1]] -> [SDs, drop[0]] -> [[SDs]]
1779 // | | |
1780 // : | |
1781 // V V
1782 // [drop[n]] -...-> [drop[1]] ------> [drop[0]] ------> [last_unwind_to]
1783 //
1784 // The horizontal arrows represent the execution path when the drops return
1785 // successfully. The downwards arrows represent the execution path when the
1786 // drops panic (panicking while unwinding will abort, so there's no need for
1787 // another set of arrows).
1788 //
1789 // For coroutines, we unwind from a drop on a local to its StorageDead
1790 // statement. For other functions we don't worry about StorageDead. The
1791 // drops for the unwind path should have already been generated by
1792 // `diverge_cleanup_gen`.
1793
1794 // `unwind_to` indicates what needs to be dropped should unwinding occur.
1795 // This is a subset of what needs to be dropped when exiting the scope.
1796 // As we unwind the scope, we will also move `unwind_to` backwards to match,
1797 // so that we can use it should a destructor panic.
1798 let mut unwind_to = unwind_to;
1799
1800 // The block that we should jump to after drops complete. We start by building the final drop (`drops[n]`
1801 // in the diagram above) and then build the drops (e.g., `drop[1]`, `drop[0]`) that come before it.
1802 // block begins as the successor of `drops[n]` and then becomes `drops[n]` so that `drops[n-1]`
1803 // will branch to `drops[n]`.
1804 let mut block = block;
1805
1806 // `dropline_to` indicates what needs to be dropped should coroutine drop occur.
1807 let mut dropline_to = dropline_to;
1808
1809 for drop_data in scope.drops.iter().rev() {
1810 let source_info = drop_data.source_info;
1811 let local = drop_data.local;
1812
1813 match drop_data.kind {
1814 DropKind::Value => {
1815 // `unwind_to` should drop the value that we're about to
1816 // schedule. If dropping this value panics, then we continue
1817 // with the *next* value on the unwind path.
1818 //
1819 // We adjust this BEFORE we create the drop (e.g., `drops[n]`)
1820 // because `drops[n]` should unwind to `drops[n-1]`.
1821 debug_assert_eq!(unwind_drops.drop_nodes[unwind_to].data.local, drop_data.local);
1822 debug_assert_eq!(unwind_drops.drop_nodes[unwind_to].data.kind, drop_data.kind);
1823 unwind_to = unwind_drops.drop_nodes[unwind_to].next;
1824
1825 if let Some(idx) = dropline_to {
1826 debug_assert_eq!(coroutine_drops.drop_nodes[idx].data.local, drop_data.local);
1827 debug_assert_eq!(coroutine_drops.drop_nodes[idx].data.kind, drop_data.kind);
1828 dropline_to = Some(coroutine_drops.drop_nodes[idx].next);
1829 }
1830
1831 // If the operand has been moved, and we are not on an unwind
1832 // path, then don't generate the drop. (We only take this into
1833 // account for non-unwind paths so as not to disturb the
1834 // caching mechanism.)
1835 if scope.moved_locals.contains(&local) {
1836 continue;
1837 }
1838
1839 unwind_drops.add_entry_point(block, unwind_to);
1840 if let Some(to) = dropline_to
1841 && is_async_drop(local)
1842 {
1843 coroutine_drops.add_entry_point(block, to);
1844 }
1845
1846 let next = cfg.start_new_block();
1847 cfg.terminate(
1848 block,
1849 source_info,
1850 TerminatorKind::Drop {
1851 place: local.into(),
1852 target: next,
1853 unwind: UnwindAction::Continue,
1854 replace: false,
1855 drop: None,
1856 async_fut: None,
1857 },
1858 );
1859 block = next;
1860 }
1861 DropKind::ForLint => {
1862 // As in the `DropKind::Storage` case below:
1863 // normally lint-related drops are not emitted for unwind,
1864 // so we can just leave `unwind_to` unmodified, but in some
1865 // cases we emit things ALSO on the unwind path, so we need to adjust
1866 // `unwind_to` in that case.
1867 if storage_dead_on_unwind {
1868 debug_assert_eq!(
1869 unwind_drops.drop_nodes[unwind_to].data.local,
1870 drop_data.local
1871 );
1872 debug_assert_eq!(unwind_drops.drop_nodes[unwind_to].data.kind, drop_data.kind);
1873 unwind_to = unwind_drops.drop_nodes[unwind_to].next;
1874 }
1875
1876 // If the operand has been moved, and we are not on an unwind
1877 // path, then don't generate the drop. (We only take this into
1878 // account for non-unwind paths so as not to disturb the
1879 // caching mechanism.)
1880 if scope.moved_locals.contains(&local) {
1881 continue;
1882 }
1883
1884 cfg.push(
1885 block,
1886 Statement::new(
1887 source_info,
1888 StatementKind::BackwardIncompatibleDropHint {
1889 place: Box::new(local.into()),
1890 reason: BackwardIncompatibleDropReason::Edition2024,
1891 },
1892 ),
1893 );
1894 }
1895 DropKind::Storage => {
1896 // Ordinarily, storage-dead nodes are not emitted on unwind, so we don't
1897 // need to adjust `unwind_to` on this path. However, in some specific cases
1898 // we *do* emit storage-dead nodes on the unwind path, and in that case now that
1899 // the storage-dead has completed, we need to adjust the `unwind_to` pointer
1900 // so that any future drops we emit will not register storage-dead.
1901 if storage_dead_on_unwind {
1902 debug_assert_eq!(
1903 unwind_drops.drop_nodes[unwind_to].data.local,
1904 drop_data.local
1905 );
1906 debug_assert_eq!(unwind_drops.drop_nodes[unwind_to].data.kind, drop_data.kind);
1907 unwind_to = unwind_drops.drop_nodes[unwind_to].next;
1908 }
1909 if let Some(idx) = dropline_to {
1910 debug_assert_eq!(coroutine_drops.drop_nodes[idx].data.local, drop_data.local);
1911 debug_assert_eq!(coroutine_drops.drop_nodes[idx].data.kind, drop_data.kind);
1912 dropline_to = Some(coroutine_drops.drop_nodes[idx].next);
1913 }
1914 // Only temps and vars need their storage dead.
1915 assert!(local.index() > arg_count);
1916 cfg.push(block, Statement::new(source_info, StatementKind::StorageDead(local)));
1917 }
1918 }
1919 }
1920 block.unit()
1921}
1922
1923impl<'a, 'tcx: 'a> Builder<'a, 'tcx> {
1924 /// Build a drop tree for a breakable scope.
1925 ///
1926 /// If `continue_block` is `Some`, then the tree is for `continue` inside a
1927 /// loop. Otherwise this is for `break` or `return`.
1928 fn build_exit_tree(
1929 &mut self,
1930 mut drops: DropTree,
1931 else_scope: region::Scope,
1932 span: Span,
1933 continue_block: Option<BasicBlock>,
1934 ) -> Option<BlockAnd<()>> {
1935 let blocks = drops.build_mir::<ExitScopes>(&mut self.cfg, continue_block);
1936 let is_coroutine = self.coroutine.is_some();
1937
1938 // Link the exit drop tree to unwind drop tree.
1939 if drops.drop_nodes.iter().any(|drop_node| drop_node.data.kind == DropKind::Value) {
1940 let unwind_target = self.diverge_cleanup_target(else_scope, span);
1941 let mut unwind_indices = IndexVec::from_elem_n(unwind_target, 1);
1942 for (drop_idx, drop_node) in drops.drop_nodes.iter_enumerated().skip(1) {
1943 match drop_node.data.kind {
1944 DropKind::Storage | DropKind::ForLint => {
1945 if is_coroutine {
1946 let unwind_drop = self
1947 .scopes
1948 .unwind_drops
1949 .add_drop(drop_node.data, unwind_indices[drop_node.next]);
1950 unwind_indices.push(unwind_drop);
1951 } else {
1952 unwind_indices.push(unwind_indices[drop_node.next]);
1953 }
1954 }
1955 DropKind::Value => {
1956 let unwind_drop = self
1957 .scopes
1958 .unwind_drops
1959 .add_drop(drop_node.data, unwind_indices[drop_node.next]);
1960 self.scopes.unwind_drops.add_entry_point(
1961 blocks[drop_idx].unwrap(),
1962 unwind_indices[drop_node.next],
1963 );
1964 unwind_indices.push(unwind_drop);
1965 }
1966 }
1967 }
1968 }
1969 // Link the exit drop tree to dropline drop tree (coroutine drop path) for async drops
1970 if is_coroutine
1971 && drops.drop_nodes.iter().any(|DropNode { data, next: _ }| {
1972 data.kind == DropKind::Value && self.is_async_drop(data.local)
1973 })
1974 {
1975 let dropline_target = self.diverge_dropline_target(else_scope, span);
1976 let mut dropline_indices = IndexVec::from_elem_n(dropline_target, 1);
1977 for (drop_idx, drop_data) in drops.drop_nodes.iter_enumerated().skip(1) {
1978 let coroutine_drop = self
1979 .scopes
1980 .coroutine_drops
1981 .add_drop(drop_data.data, dropline_indices[drop_data.next]);
1982 match drop_data.data.kind {
1983 DropKind::Storage | DropKind::ForLint => {}
1984 DropKind::Value => {
1985 if self.is_async_drop(drop_data.data.local) {
1986 self.scopes.coroutine_drops.add_entry_point(
1987 blocks[drop_idx].unwrap(),
1988 dropline_indices[drop_data.next],
1989 );
1990 }
1991 }
1992 }
1993 dropline_indices.push(coroutine_drop);
1994 }
1995 }
1996 blocks[ROOT_NODE].map(BasicBlock::unit)
1997 }
1998
1999 /// Build the unwind and coroutine drop trees.
2000 pub(crate) fn build_drop_trees(&mut self) {
2001 if self.coroutine.is_some() {
2002 self.build_coroutine_drop_trees();
2003 } else {
2004 Self::build_unwind_tree(
2005 &mut self.cfg,
2006 &mut self.scopes.unwind_drops,
2007 self.fn_span,
2008 &mut None,
2009 );
2010 }
2011 }
2012
2013 fn build_coroutine_drop_trees(&mut self) {
2014 // Build the drop tree for dropping the coroutine while it's suspended.
2015 let drops = &mut self.scopes.coroutine_drops;
2016 let cfg = &mut self.cfg;
2017 let fn_span = self.fn_span;
2018 let blocks = drops.build_mir::<CoroutineDrop>(cfg, None);
2019 if let Some(root_block) = blocks[ROOT_NODE] {
2020 cfg.terminate(
2021 root_block,
2022 SourceInfo::outermost(fn_span),
2023 TerminatorKind::CoroutineDrop,
2024 );
2025 }
2026
2027 // Build the drop tree for unwinding in the normal control flow paths.
2028 let resume_block = &mut None;
2029 let unwind_drops = &mut self.scopes.unwind_drops;
2030 Self::build_unwind_tree(cfg, unwind_drops, fn_span, resume_block);
2031
2032 // Build the drop tree for unwinding when dropping a suspended
2033 // coroutine.
2034 //
2035 // This is a different tree to the standard unwind paths here to
2036 // prevent drop elaboration from creating drop flags that would have
2037 // to be captured by the coroutine. I'm not sure how important this
2038 // optimization is, but it is here.
2039 for (drop_idx, drop_node) in drops.drop_nodes.iter_enumerated() {
2040 if let DropKind::Value = drop_node.data.kind
2041 && let Some(bb) = blocks[drop_idx]
2042 {
2043 debug_assert!(drop_node.next < drops.drop_nodes.next_index());
2044 drops.entry_points.push((drop_node.next, bb));
2045 }
2046 }
2047 Self::build_unwind_tree(cfg, drops, fn_span, resume_block);
2048 }
2049
2050 fn build_unwind_tree(
2051 cfg: &mut CFG<'tcx>,
2052 drops: &mut DropTree,
2053 fn_span: Span,
2054 resume_block: &mut Option<BasicBlock>,
2055 ) {
2056 let blocks = drops.build_mir::<Unwind>(cfg, *resume_block);
2057 if let (None, Some(resume)) = (*resume_block, blocks[ROOT_NODE]) {
2058 cfg.terminate(resume, SourceInfo::outermost(fn_span), TerminatorKind::UnwindResume);
2059
2060 *resume_block = blocks[ROOT_NODE];
2061 }
2062 }
2063}
2064
2065// DropTreeBuilder implementations.
2066
2067struct ExitScopes;
2068
2069impl<'tcx> DropTreeBuilder<'tcx> for ExitScopes {
2070 fn make_block(cfg: &mut CFG<'tcx>) -> BasicBlock {
2071 cfg.start_new_block()
2072 }
2073 fn link_entry_point(cfg: &mut CFG<'tcx>, from: BasicBlock, to: BasicBlock) {
2074 // There should be an existing terminator with real source info and a
2075 // dummy TerminatorKind. Replace it with a proper goto.
2076 // (The dummy is added by `break_scope` and `break_for_else`.)
2077 let term = cfg.block_data_mut(from).terminator_mut();
2078 if let TerminatorKind::UnwindResume = term.kind {
2079 term.kind = TerminatorKind::Goto { target: to };
2080 } else {
2081 span_bug!(term.source_info.span, "unexpected dummy terminator kind: {:?}", term.kind);
2082 }
2083 }
2084}
2085
2086struct CoroutineDrop;
2087
2088impl<'tcx> DropTreeBuilder<'tcx> for CoroutineDrop {
2089 fn make_block(cfg: &mut CFG<'tcx>) -> BasicBlock {
2090 cfg.start_new_block()
2091 }
2092 fn link_entry_point(cfg: &mut CFG<'tcx>, from: BasicBlock, to: BasicBlock) {
2093 let term = cfg.block_data_mut(from).terminator_mut();
2094 if let TerminatorKind::Yield { ref mut drop, .. } = term.kind {
2095 *drop = Some(to);
2096 } else if let TerminatorKind::Drop { ref mut drop, .. } = term.kind {
2097 *drop = Some(to);
2098 } else {
2099 span_bug!(
2100 term.source_info.span,
2101 "cannot enter coroutine drop tree from {:?}",
2102 term.kind
2103 )
2104 }
2105 }
2106}
2107
2108struct Unwind;
2109
2110impl<'tcx> DropTreeBuilder<'tcx> for Unwind {
2111 fn make_block(cfg: &mut CFG<'tcx>) -> BasicBlock {
2112 cfg.start_new_cleanup_block()
2113 }
2114 fn link_entry_point(cfg: &mut CFG<'tcx>, from: BasicBlock, to: BasicBlock) {
2115 let term = &mut cfg.block_data_mut(from).terminator_mut();
2116 match &mut term.kind {
2117 TerminatorKind::Drop { unwind, .. } => {
2118 if let UnwindAction::Cleanup(unwind) = *unwind {
2119 let source_info = term.source_info;
2120 cfg.terminate(unwind, source_info, TerminatorKind::Goto { target: to });
2121 } else {
2122 *unwind = UnwindAction::Cleanup(to);
2123 }
2124 }
2125 TerminatorKind::FalseUnwind { unwind, .. }
2126 | TerminatorKind::Call { unwind, .. }
2127 | TerminatorKind::Assert { unwind, .. }
2128 | TerminatorKind::InlineAsm { unwind, .. } => {
2129 *unwind = UnwindAction::Cleanup(to);
2130 }
2131 TerminatorKind::Goto { .. }
2132 | TerminatorKind::SwitchInt { .. }
2133 | TerminatorKind::UnwindResume
2134 | TerminatorKind::UnwindTerminate(_)
2135 | TerminatorKind::Return
2136 | TerminatorKind::TailCall { .. }
2137 | TerminatorKind::Unreachable
2138 | TerminatorKind::Yield { .. }
2139 | TerminatorKind::CoroutineDrop
2140 | TerminatorKind::FalseEdge { .. } => {
2141 span_bug!(term.source_info.span, "cannot unwind from {:?}", term.kind)
2142 }
2143 }
2144 }
2145}