rustc_mir_build/thir/pattern/
check_match.rs

1use rustc_arena::{DroplessArena, TypedArena};
2use rustc_ast::Mutability;
3use rustc_data_structures::fx::FxIndexSet;
4use rustc_data_structures::stack::ensure_sufficient_stack;
5use rustc_errors::codes::*;
6use rustc_errors::{Applicability, ErrorGuaranteed, MultiSpan, struct_span_code_err};
7use rustc_hir::def::*;
8use rustc_hir::def_id::LocalDefId;
9use rustc_hir::{self as hir, BindingMode, ByRef, HirId, MatchSource};
10use rustc_infer::infer::TyCtxtInferExt;
11use rustc_lint::Level;
12use rustc_middle::bug;
13use rustc_middle::thir::visit::Visitor;
14use rustc_middle::thir::*;
15use rustc_middle::ty::print::with_no_trimmed_paths;
16use rustc_middle::ty::{self, AdtDef, Ty, TyCtxt};
17use rustc_pattern_analysis::errors::Uncovered;
18use rustc_pattern_analysis::rustc::{
19    Constructor, DeconstructedPat, MatchArm, RedundancyExplanation, RevealedTy,
20    RustcPatCtxt as PatCtxt, Usefulness, UsefulnessReport, WitnessPat,
21};
22use rustc_session::lint::builtin::{
23    BINDINGS_WITH_VARIANT_NAME, IRREFUTABLE_LET_PATTERNS, UNREACHABLE_PATTERNS,
24};
25use rustc_span::edit_distance::find_best_match_for_name;
26use rustc_span::hygiene::DesugaringKind;
27use rustc_span::{Ident, Span};
28use rustc_trait_selection::infer::InferCtxtExt;
29use tracing::instrument;
30
31use crate::errors::*;
32use crate::fluent_generated as fluent;
33
34pub(crate) fn check_match(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Result<(), ErrorGuaranteed> {
35    let typeck_results = tcx.typeck(def_id);
36    let (thir, expr) = tcx.thir_body(def_id)?;
37    let thir = thir.borrow();
38    let pattern_arena = TypedArena::default();
39    let dropless_arena = DroplessArena::default();
40    let mut visitor = MatchVisitor {
41        tcx,
42        thir: &*thir,
43        typeck_results,
44        // FIXME(#132279): We're in a body, should handle opaques.
45        typing_env: ty::TypingEnv::non_body_analysis(tcx, def_id),
46        lint_level: tcx.local_def_id_to_hir_id(def_id),
47        let_source: LetSource::None,
48        pattern_arena: &pattern_arena,
49        dropless_arena: &dropless_arena,
50        error: Ok(()),
51    };
52    visitor.visit_expr(&thir[expr]);
53
54    let origin = match tcx.def_kind(def_id) {
55        DefKind::AssocFn | DefKind::Fn => "function argument",
56        DefKind::Closure => "closure argument",
57        // other types of MIR don't have function parameters, and we don't need to
58        // categorize those for the irrefutable check.
59        _ if thir.params.is_empty() => "",
60        kind => bug!("unexpected function parameters in THIR: {kind:?} {def_id:?}"),
61    };
62
63    for param in thir.params.iter() {
64        if let Some(box ref pattern) = param.pat {
65            visitor.check_binding_is_irrefutable(pattern, origin, None, None);
66        }
67    }
68    visitor.error
69}
70
71#[derive(Debug, Copy, Clone, PartialEq)]
72enum RefutableFlag {
73    Irrefutable,
74    Refutable,
75}
76use RefutableFlag::*;
77
78#[derive(Clone, Copy, Debug, PartialEq, Eq)]
79enum LetSource {
80    None,
81    PlainLet,
82    IfLet,
83    IfLetGuard,
84    LetElse,
85    WhileLet,
86    Else,
87    ElseIfLet,
88}
89
90struct MatchVisitor<'p, 'tcx> {
91    tcx: TyCtxt<'tcx>,
92    typing_env: ty::TypingEnv<'tcx>,
93    typeck_results: &'tcx ty::TypeckResults<'tcx>,
94    thir: &'p Thir<'tcx>,
95    lint_level: HirId,
96    let_source: LetSource,
97    pattern_arena: &'p TypedArena<DeconstructedPat<'p, 'tcx>>,
98    dropless_arena: &'p DroplessArena,
99    /// Tracks if we encountered an error while checking this body. That the first function to
100    /// report it stores it here. Some functions return `Result` to allow callers to short-circuit
101    /// on error, but callers don't need to store it here again.
102    error: Result<(), ErrorGuaranteed>,
103}
104
105// Visitor for a thir body. This calls `check_match`, `check_let` and `check_let_chain` as
106// appropriate.
107impl<'p, 'tcx> Visitor<'p, 'tcx> for MatchVisitor<'p, 'tcx> {
108    fn thir(&self) -> &'p Thir<'tcx> {
109        self.thir
110    }
111
112    #[instrument(level = "trace", skip(self))]
113    fn visit_arm(&mut self, arm: &'p Arm<'tcx>) {
114        self.with_lint_level(arm.lint_level, |this| {
115            if let Some(expr) = arm.guard {
116                this.with_let_source(LetSource::IfLetGuard, |this| {
117                    this.visit_expr(&this.thir[expr])
118                });
119            }
120            this.visit_pat(&arm.pattern);
121            this.visit_expr(&self.thir[arm.body]);
122        });
123    }
124
125    #[instrument(level = "trace", skip(self))]
126    fn visit_expr(&mut self, ex: &'p Expr<'tcx>) {
127        match ex.kind {
128            ExprKind::Scope { value, lint_level, .. } => {
129                self.with_lint_level(lint_level, |this| {
130                    this.visit_expr(&this.thir[value]);
131                });
132                return;
133            }
134            ExprKind::If { cond, then, else_opt, if_then_scope: _ } => {
135                // Give a specific `let_source` for the condition.
136                let let_source = match ex.span.desugaring_kind() {
137                    Some(DesugaringKind::WhileLoop) => LetSource::WhileLet,
138                    _ => match self.let_source {
139                        LetSource::Else => LetSource::ElseIfLet,
140                        _ => LetSource::IfLet,
141                    },
142                };
143                self.with_let_source(let_source, |this| this.visit_expr(&self.thir[cond]));
144                self.with_let_source(LetSource::None, |this| {
145                    this.visit_expr(&this.thir[then]);
146                });
147                if let Some(else_) = else_opt {
148                    self.with_let_source(LetSource::Else, |this| {
149                        this.visit_expr(&this.thir[else_])
150                    });
151                }
152                return;
153            }
154            ExprKind::Match { scrutinee, box ref arms, match_source } => {
155                self.check_match(scrutinee, arms, match_source, ex.span);
156            }
157            ExprKind::LoopMatch {
158                match_data: box LoopMatchMatchData { scrutinee, box ref arms, span },
159                ..
160            } => {
161                self.check_match(scrutinee, arms, MatchSource::Normal, span);
162            }
163            ExprKind::Let { box ref pat, expr } => {
164                self.check_let(pat, Some(expr), ex.span);
165            }
166            ExprKind::LogicalOp { op: LogicalOp::And, .. }
167                if !matches!(self.let_source, LetSource::None) =>
168            {
169                let mut chain_refutabilities = Vec::new();
170                let Ok(()) = self.visit_land(ex, &mut chain_refutabilities) else { return };
171                // If at least one of the operands is a `let ... = ...`.
172                if chain_refutabilities.iter().any(|x| x.is_some()) {
173                    self.check_let_chain(chain_refutabilities, ex.span);
174                }
175                return;
176            }
177            _ => {}
178        };
179        self.with_let_source(LetSource::None, |this| visit::walk_expr(this, ex));
180    }
181
182    fn visit_stmt(&mut self, stmt: &'p Stmt<'tcx>) {
183        match stmt.kind {
184            StmtKind::Let {
185                box ref pattern, initializer, else_block, lint_level, span, ..
186            } => {
187                self.with_lint_level(lint_level, |this| {
188                    let let_source =
189                        if else_block.is_some() { LetSource::LetElse } else { LetSource::PlainLet };
190                    this.with_let_source(let_source, |this| {
191                        this.check_let(pattern, initializer, span)
192                    });
193                    visit::walk_stmt(this, stmt);
194                });
195            }
196            StmtKind::Expr { .. } => {
197                visit::walk_stmt(self, stmt);
198            }
199        }
200    }
201}
202
203impl<'p, 'tcx> MatchVisitor<'p, 'tcx> {
204    #[instrument(level = "trace", skip(self, f))]
205    fn with_let_source(&mut self, let_source: LetSource, f: impl FnOnce(&mut Self)) {
206        let old_let_source = self.let_source;
207        self.let_source = let_source;
208        ensure_sufficient_stack(|| f(self));
209        self.let_source = old_let_source;
210    }
211
212    fn with_lint_level<T>(
213        &mut self,
214        new_lint_level: LintLevel,
215        f: impl FnOnce(&mut Self) -> T,
216    ) -> T {
217        if let LintLevel::Explicit(hir_id) = new_lint_level {
218            let old_lint_level = self.lint_level;
219            self.lint_level = hir_id;
220            let ret = f(self);
221            self.lint_level = old_lint_level;
222            ret
223        } else {
224            f(self)
225        }
226    }
227
228    /// Visit a nested chain of `&&`. Used for if-let chains. This must call `visit_expr` on the
229    /// subexpressions we are not handling ourselves.
230    fn visit_land(
231        &mut self,
232        ex: &'p Expr<'tcx>,
233        accumulator: &mut Vec<Option<(Span, RefutableFlag)>>,
234    ) -> Result<(), ErrorGuaranteed> {
235        match ex.kind {
236            ExprKind::Scope { value, lint_level, .. } => self.with_lint_level(lint_level, |this| {
237                this.visit_land(&this.thir[value], accumulator)
238            }),
239            ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => {
240                // We recurse into the lhs only, because `&&` chains associate to the left.
241                let res_lhs = self.visit_land(&self.thir[lhs], accumulator);
242                let res_rhs = self.visit_land_rhs(&self.thir[rhs])?;
243                accumulator.push(res_rhs);
244                res_lhs
245            }
246            _ => {
247                let res = self.visit_land_rhs(ex)?;
248                accumulator.push(res);
249                Ok(())
250            }
251        }
252    }
253
254    /// Visit the right-hand-side of a `&&`. Used for if-let chains. Returns `Some` if the
255    /// expression was ultimately a `let ... = ...`, and `None` if it was a normal boolean
256    /// expression. This must call `visit_expr` on the subexpressions we are not handling ourselves.
257    fn visit_land_rhs(
258        &mut self,
259        ex: &'p Expr<'tcx>,
260    ) -> Result<Option<(Span, RefutableFlag)>, ErrorGuaranteed> {
261        match ex.kind {
262            ExprKind::Scope { value, lint_level, .. } => {
263                self.with_lint_level(lint_level, |this| this.visit_land_rhs(&this.thir[value]))
264            }
265            ExprKind::Let { box ref pat, expr } => {
266                let expr = &self.thir()[expr];
267                self.with_let_source(LetSource::None, |this| {
268                    this.visit_expr(expr);
269                });
270                Ok(Some((ex.span, self.is_let_irrefutable(pat, Some(expr))?)))
271            }
272            _ => {
273                self.with_let_source(LetSource::None, |this| {
274                    this.visit_expr(ex);
275                });
276                Ok(None)
277            }
278        }
279    }
280
281    fn lower_pattern(
282        &mut self,
283        cx: &PatCtxt<'p, 'tcx>,
284        pat: &'p Pat<'tcx>,
285    ) -> Result<&'p DeconstructedPat<'p, 'tcx>, ErrorGuaranteed> {
286        if let Err(err) = pat.pat_error_reported() {
287            self.error = Err(err);
288            Err(err)
289        } else {
290            // Check the pattern for some things unrelated to exhaustiveness.
291            let refutable = if cx.refutable { Refutable } else { Irrefutable };
292            let mut err = Ok(());
293            pat.walk_always(|pat| {
294                check_borrow_conflicts_in_at_patterns(self, pat);
295                check_for_bindings_named_same_as_variants(self, pat, refutable);
296                err = err.and(check_never_pattern(cx, pat));
297            });
298            err?;
299            Ok(self.pattern_arena.alloc(cx.lower_pat(pat)))
300        }
301    }
302
303    /// Inspects the match scrutinee expression to determine whether the place it evaluates to may
304    /// hold invalid data.
305    fn is_known_valid_scrutinee(&self, scrutinee: &Expr<'tcx>) -> bool {
306        use ExprKind::*;
307        match &scrutinee.kind {
308            // Pointers can validly point to a place with invalid data. It is undecided whether
309            // references can too, so we conservatively assume they can.
310            Deref { .. } => false,
311            // Inherit validity of the parent place, unless the parent is an union.
312            Field { lhs, .. } => {
313                let lhs = &self.thir()[*lhs];
314                match lhs.ty.kind() {
315                    ty::Adt(def, _) if def.is_union() => false,
316                    _ => self.is_known_valid_scrutinee(lhs),
317                }
318            }
319            // Essentially a field access.
320            Index { lhs, .. } => {
321                let lhs = &self.thir()[*lhs];
322                self.is_known_valid_scrutinee(lhs)
323            }
324
325            // No-op.
326            Scope { value, .. } => self.is_known_valid_scrutinee(&self.thir()[*value]),
327
328            // Casts don't cause a load.
329            NeverToAny { source }
330            | Cast { source }
331            | Use { source }
332            | PointerCoercion { source, .. }
333            | PlaceTypeAscription { source, .. }
334            | ValueTypeAscription { source, .. }
335            | PlaceUnwrapUnsafeBinder { source }
336            | ValueUnwrapUnsafeBinder { source }
337            | WrapUnsafeBinder { source } => self.is_known_valid_scrutinee(&self.thir()[*source]),
338
339            // These diverge.
340            Become { .. }
341            | Break { .. }
342            | Continue { .. }
343            | ConstContinue { .. }
344            | Return { .. } => true,
345
346            // These are statements that evaluate to `()`.
347            Assign { .. } | AssignOp { .. } | InlineAsm { .. } | Let { .. } => true,
348
349            // These evaluate to a value.
350            RawBorrow { .. }
351            | Adt { .. }
352            | Array { .. }
353            | Binary { .. }
354            | Block { .. }
355            | Borrow { .. }
356            | Box { .. }
357            | Call { .. }
358            | ByUse { .. }
359            | Closure { .. }
360            | ConstBlock { .. }
361            | ConstParam { .. }
362            | If { .. }
363            | Literal { .. }
364            | LogicalOp { .. }
365            | Loop { .. }
366            | LoopMatch { .. }
367            | Match { .. }
368            | NamedConst { .. }
369            | NonHirLiteral { .. }
370            | OffsetOf { .. }
371            | Repeat { .. }
372            | StaticRef { .. }
373            | ThreadLocalRef { .. }
374            | Tuple { .. }
375            | Unary { .. }
376            | UpvarRef { .. }
377            | VarRef { .. }
378            | ZstLiteral { .. }
379            | Yield { .. } => true,
380        }
381    }
382
383    fn new_cx(
384        &self,
385        refutability: RefutableFlag,
386        whole_match_span: Option<Span>,
387        scrutinee: Option<&Expr<'tcx>>,
388        scrut_span: Span,
389    ) -> PatCtxt<'p, 'tcx> {
390        let refutable = match refutability {
391            Irrefutable => false,
392            Refutable => true,
393        };
394        // If we don't have a scrutinee we're either a function parameter or a `let x;`. Both cases
395        // require validity.
396        let known_valid_scrutinee =
397            scrutinee.map(|scrut| self.is_known_valid_scrutinee(scrut)).unwrap_or(true);
398        PatCtxt {
399            tcx: self.tcx,
400            typeck_results: self.typeck_results,
401            typing_env: self.typing_env,
402            module: self.tcx.parent_module(self.lint_level).to_def_id(),
403            dropless_arena: self.dropless_arena,
404            match_lint_level: self.lint_level,
405            whole_match_span,
406            scrut_span,
407            refutable,
408            known_valid_scrutinee,
409            internal_state: Default::default(),
410        }
411    }
412
413    fn analyze_patterns(
414        &mut self,
415        cx: &PatCtxt<'p, 'tcx>,
416        arms: &[MatchArm<'p, 'tcx>],
417        scrut_ty: Ty<'tcx>,
418    ) -> Result<UsefulnessReport<'p, 'tcx>, ErrorGuaranteed> {
419        let report =
420            rustc_pattern_analysis::rustc::analyze_match(&cx, &arms, scrut_ty).map_err(|err| {
421                self.error = Err(err);
422                err
423            })?;
424
425        // Warn unreachable subpatterns.
426        for (arm, is_useful) in report.arm_usefulness.iter() {
427            if let Usefulness::Useful(redundant_subpats) = is_useful
428                && !redundant_subpats.is_empty()
429            {
430                let mut redundant_subpats = redundant_subpats.clone();
431                // Emit lints in the order in which they occur in the file.
432                redundant_subpats.sort_unstable_by_key(|(pat, _)| pat.data().span);
433                for (pat, explanation) in redundant_subpats {
434                    report_unreachable_pattern(cx, arm.arm_data, pat, &explanation, None)
435                }
436            }
437        }
438        Ok(report)
439    }
440
441    #[instrument(level = "trace", skip(self))]
442    fn check_let(&mut self, pat: &'p Pat<'tcx>, scrutinee: Option<ExprId>, span: Span) {
443        assert!(self.let_source != LetSource::None);
444        let scrut = scrutinee.map(|id| &self.thir[id]);
445        if let LetSource::PlainLet = self.let_source {
446            self.check_binding_is_irrefutable(pat, "local binding", scrut, Some(span))
447        } else {
448            let Ok(refutability) = self.is_let_irrefutable(pat, scrut) else { return };
449            if matches!(refutability, Irrefutable) {
450                report_irrefutable_let_patterns(
451                    self.tcx,
452                    self.lint_level,
453                    self.let_source,
454                    1,
455                    span,
456                );
457            }
458        }
459    }
460
461    fn check_match(
462        &mut self,
463        scrut: ExprId,
464        arms: &[ArmId],
465        source: hir::MatchSource,
466        expr_span: Span,
467    ) {
468        let scrut = &self.thir[scrut];
469        let cx = self.new_cx(Refutable, Some(expr_span), Some(scrut), scrut.span);
470
471        let mut tarms = Vec::with_capacity(arms.len());
472        for &arm in arms {
473            let arm = &self.thir.arms[arm];
474            let got_error = self.with_lint_level(arm.lint_level, |this| {
475                let Ok(pat) = this.lower_pattern(&cx, &arm.pattern) else { return true };
476                let arm =
477                    MatchArm { pat, arm_data: this.lint_level, has_guard: arm.guard.is_some() };
478                tarms.push(arm);
479                false
480            });
481            if got_error {
482                return;
483            }
484        }
485
486        let Ok(report) = self.analyze_patterns(&cx, &tarms, scrut.ty) else { return };
487
488        match source {
489            // Don't report arm reachability of desugared `match $iter.into_iter() { iter => .. }`
490            // when the iterator is an uninhabited type. unreachable_code will trigger instead.
491            hir::MatchSource::ForLoopDesugar if arms.len() == 1 => {}
492            hir::MatchSource::ForLoopDesugar
493            | hir::MatchSource::Postfix
494            | hir::MatchSource::Normal
495            | hir::MatchSource::FormatArgs => {
496                let is_match_arm =
497                    matches!(source, hir::MatchSource::Postfix | hir::MatchSource::Normal);
498                report_arm_reachability(&cx, &report, is_match_arm);
499            }
500            // Unreachable patterns in try and await expressions occur when one of
501            // the arms are an uninhabited type. Which is OK.
502            hir::MatchSource::AwaitDesugar | hir::MatchSource::TryDesugar(_) => {}
503        }
504
505        // Check if the match is exhaustive.
506        let witnesses = report.non_exhaustiveness_witnesses;
507        if !witnesses.is_empty() {
508            if source == hir::MatchSource::ForLoopDesugar
509                && let [_, snd_arm] = *arms
510            {
511                // the for loop pattern is not irrefutable
512                let pat = &self.thir[snd_arm].pattern;
513                // `pat` should be `Some(<pat_field>)` from a desugared for loop.
514                debug_assert_eq!(pat.span.desugaring_kind(), Some(DesugaringKind::ForLoop));
515                let PatKind::Variant { ref subpatterns, .. } = pat.kind else { bug!() };
516                let [pat_field] = &subpatterns[..] else { bug!() };
517                self.check_binding_is_irrefutable(
518                    &pat_field.pattern,
519                    "`for` loop binding",
520                    None,
521                    None,
522                );
523            } else {
524                // span after scrutinee, or after `.match`. That is, the braces, arms,
525                // and any whitespace preceding the braces.
526                let braces_span = match source {
527                    hir::MatchSource::Normal => scrut
528                        .span
529                        .find_ancestor_in_same_ctxt(expr_span)
530                        .map(|scrut_span| scrut_span.shrink_to_hi().with_hi(expr_span.hi())),
531                    hir::MatchSource::Postfix => {
532                        // This is horrendous, and we should deal with it by just
533                        // stashing the span of the braces somewhere (like in the match source).
534                        scrut.span.find_ancestor_in_same_ctxt(expr_span).and_then(|scrut_span| {
535                            let sm = self.tcx.sess.source_map();
536                            let brace_span = sm.span_extend_to_next_char(scrut_span, '{', true);
537                            if sm.span_to_snippet(sm.next_point(brace_span)).as_deref() == Ok("{") {
538                                let sp = brace_span.shrink_to_hi().with_hi(expr_span.hi());
539                                // We also need to extend backwards for whitespace
540                                sm.span_extend_prev_while(sp, |c| c.is_whitespace()).ok()
541                            } else {
542                                None
543                            }
544                        })
545                    }
546                    hir::MatchSource::ForLoopDesugar
547                    | hir::MatchSource::TryDesugar(_)
548                    | hir::MatchSource::AwaitDesugar
549                    | hir::MatchSource::FormatArgs => None,
550                };
551                self.error = Err(report_non_exhaustive_match(
552                    &cx,
553                    self.thir,
554                    scrut.ty,
555                    scrut.span,
556                    witnesses,
557                    arms,
558                    braces_span,
559                ));
560            }
561        }
562    }
563
564    #[instrument(level = "trace", skip(self))]
565    fn check_let_chain(
566        &mut self,
567        chain_refutabilities: Vec<Option<(Span, RefutableFlag)>>,
568        whole_chain_span: Span,
569    ) {
570        assert!(self.let_source != LetSource::None);
571
572        if chain_refutabilities.iter().all(|r| matches!(*r, Some((_, Irrefutable)))) {
573            // The entire chain is made up of irrefutable `let` statements
574            report_irrefutable_let_patterns(
575                self.tcx,
576                self.lint_level,
577                self.let_source,
578                chain_refutabilities.len(),
579                whole_chain_span,
580            );
581            return;
582        }
583
584        if let Some(until) =
585            chain_refutabilities.iter().position(|r| !matches!(*r, Some((_, Irrefutable))))
586            && until > 0
587        {
588            // The chain has a non-zero prefix of irrefutable `let` statements.
589
590            // Check if the let source is while, for there is no alternative place to put a prefix,
591            // and we shouldn't lint.
592            // For let guards inside a match, prefixes might use bindings of the match pattern,
593            // so can't always be moved out.
594            // For `else if let`, an extra indentation level would be required to move the bindings.
595            // FIXME: Add checking whether the bindings are actually used in the prefix,
596            // and lint if they are not.
597            if !matches!(
598                self.let_source,
599                LetSource::WhileLet | LetSource::IfLetGuard | LetSource::ElseIfLet
600            ) {
601                // Emit the lint
602                let prefix = &chain_refutabilities[..until];
603                let span_start = prefix[0].unwrap().0;
604                let span_end = prefix.last().unwrap().unwrap().0;
605                let span = span_start.to(span_end);
606                let count = prefix.len();
607                self.tcx.emit_node_span_lint(
608                    IRREFUTABLE_LET_PATTERNS,
609                    self.lint_level,
610                    span,
611                    LeadingIrrefutableLetPatterns { count },
612                );
613            }
614        }
615
616        if let Some(from) =
617            chain_refutabilities.iter().rposition(|r| !matches!(*r, Some((_, Irrefutable))))
618            && from != (chain_refutabilities.len() - 1)
619        {
620            // The chain has a non-empty suffix of irrefutable `let` statements
621            let suffix = &chain_refutabilities[from + 1..];
622            let span_start = suffix[0].unwrap().0;
623            let span_end = suffix.last().unwrap().unwrap().0;
624            let span = span_start.to(span_end);
625            let count = suffix.len();
626            self.tcx.emit_node_span_lint(
627                IRREFUTABLE_LET_PATTERNS,
628                self.lint_level,
629                span,
630                TrailingIrrefutableLetPatterns { count },
631            );
632        }
633    }
634
635    fn analyze_binding(
636        &mut self,
637        pat: &'p Pat<'tcx>,
638        refutability: RefutableFlag,
639        scrut: Option<&Expr<'tcx>>,
640    ) -> Result<(PatCtxt<'p, 'tcx>, UsefulnessReport<'p, 'tcx>), ErrorGuaranteed> {
641        let cx = self.new_cx(refutability, None, scrut, pat.span);
642        let pat = self.lower_pattern(&cx, pat)?;
643        let arms = [MatchArm { pat, arm_data: self.lint_level, has_guard: false }];
644        let report = self.analyze_patterns(&cx, &arms, pat.ty().inner())?;
645        Ok((cx, report))
646    }
647
648    fn is_let_irrefutable(
649        &mut self,
650        pat: &'p Pat<'tcx>,
651        scrut: Option<&Expr<'tcx>>,
652    ) -> Result<RefutableFlag, ErrorGuaranteed> {
653        let (cx, report) = self.analyze_binding(pat, Refutable, scrut)?;
654        // Report if the pattern is unreachable, which can only occur when the type is uninhabited.
655        report_arm_reachability(&cx, &report, false);
656        // If the list of witnesses is empty, the match is exhaustive, i.e. the `if let` pattern is
657        // irrefutable.
658        Ok(if report.non_exhaustiveness_witnesses.is_empty() { Irrefutable } else { Refutable })
659    }
660
661    #[instrument(level = "trace", skip(self))]
662    fn check_binding_is_irrefutable(
663        &mut self,
664        pat: &'p Pat<'tcx>,
665        origin: &str,
666        scrut: Option<&Expr<'tcx>>,
667        sp: Option<Span>,
668    ) {
669        let pattern_ty = pat.ty;
670
671        let Ok((cx, report)) = self.analyze_binding(pat, Irrefutable, scrut) else { return };
672        let witnesses = report.non_exhaustiveness_witnesses;
673        if witnesses.is_empty() {
674            // The pattern is irrefutable.
675            return;
676        }
677
678        let inform = sp.is_some().then_some(Inform);
679        let mut let_suggestion = None;
680        let mut misc_suggestion = None;
681        let mut interpreted_as_const = None;
682        let mut interpreted_as_const_sugg = None;
683
684        // These next few matches want to peek through `AscribeUserType` to see
685        // the underlying pattern.
686        let mut unpeeled_pat = pat;
687        while let PatKind::AscribeUserType { ref subpattern, .. } = unpeeled_pat.kind {
688            unpeeled_pat = subpattern;
689        }
690
691        if let PatKind::ExpandedConstant { def_id, .. } = unpeeled_pat.kind
692            && let DefKind::Const = self.tcx.def_kind(def_id)
693            && let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(pat.span)
694            // We filter out paths with multiple path::segments.
695            && snippet.chars().all(|c| c.is_alphanumeric() || c == '_')
696        {
697            let span = self.tcx.def_span(def_id);
698            let variable = self.tcx.item_name(def_id).to_string();
699            // When we encounter a constant as the binding name, point at the `const` definition.
700            interpreted_as_const = Some(InterpretedAsConst { span, variable: variable.clone() });
701            interpreted_as_const_sugg = Some(InterpretedAsConstSugg { span: pat.span, variable });
702        } else if let PatKind::Constant { .. } = unpeeled_pat.kind
703            && let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(pat.span)
704        {
705            // If the pattern to match is an integer literal:
706            if snippet.chars().all(|c| c.is_digit(10)) {
707                // Then give a suggestion, the user might've meant to create a binding instead.
708                misc_suggestion = Some(MiscPatternSuggestion::AttemptedIntegerLiteral {
709                    start_span: pat.span.shrink_to_lo(),
710                });
711            }
712        }
713
714        if let Some(span) = sp
715            && self.tcx.sess.source_map().is_span_accessible(span)
716            && interpreted_as_const.is_none()
717            && scrut.is_some()
718        {
719            let mut bindings = vec![];
720            pat.each_binding(|name, _, _, _| bindings.push(name));
721
722            let semi_span = span.shrink_to_hi();
723            let start_span = span.shrink_to_lo();
724            let end_span = semi_span.shrink_to_lo();
725            let count = witnesses.len();
726
727            let_suggestion = Some(if bindings.is_empty() {
728                SuggestLet::If { start_span, semi_span, count }
729            } else {
730                SuggestLet::Else { end_span, count }
731            });
732        };
733
734        let adt_defined_here = report_adt_defined_here(self.tcx, pattern_ty, &witnesses, false);
735
736        // Emit an extra note if the first uncovered witness would be uninhabited
737        // if we disregard visibility.
738        let witness_1_is_privately_uninhabited = if let Some(witness_1) = witnesses.get(0)
739            && let ty::Adt(adt, args) = witness_1.ty().kind()
740            && adt.is_enum()
741            && let Constructor::Variant(variant_index) = witness_1.ctor()
742        {
743            let variant_inhabited = adt
744                .variant(*variant_index)
745                .inhabited_predicate(self.tcx, *adt)
746                .instantiate(self.tcx, args);
747            variant_inhabited.apply(self.tcx, cx.typing_env, cx.module)
748                && !variant_inhabited.apply_ignore_module(self.tcx, cx.typing_env)
749        } else {
750            false
751        };
752
753        let witness_1 = cx.print_witness_pat(witnesses.get(0).unwrap());
754
755        self.error = Err(self.tcx.dcx().emit_err(PatternNotCovered {
756            span: pat.span,
757            origin,
758            uncovered: Uncovered::new(pat.span, &cx, witnesses),
759            inform,
760            interpreted_as_const,
761            interpreted_as_const_sugg,
762            witness_1_is_privately_uninhabited,
763            witness_1,
764            _p: (),
765            pattern_ty,
766            let_suggestion,
767            misc_suggestion,
768            adt_defined_here,
769        }));
770    }
771}
772
773/// Check if a by-value binding is by-value. That is, check if the binding's type is not `Copy`.
774/// Check that there are no borrow or move conflicts in `binding @ subpat` patterns.
775///
776/// For example, this would reject:
777/// - `ref x @ Some(ref mut y)`,
778/// - `ref mut x @ Some(ref y)`,
779/// - `ref mut x @ Some(ref mut y)`,
780/// - `ref mut? x @ Some(y)`, and
781/// - `x @ Some(ref mut? y)`.
782///
783/// This analysis is *not* subsumed by NLL.
784fn check_borrow_conflicts_in_at_patterns<'tcx>(cx: &MatchVisitor<'_, 'tcx>, pat: &Pat<'tcx>) {
785    // Extract `sub` in `binding @ sub`.
786    let PatKind::Binding { name, mode, ty, subpattern: Some(box ref sub), .. } = pat.kind else {
787        return;
788    };
789
790    let is_binding_by_move = |ty: Ty<'tcx>| !cx.tcx.type_is_copy_modulo_regions(cx.typing_env, ty);
791
792    let sess = cx.tcx.sess;
793
794    // Get the binding move, extract the mutability if by-ref.
795    let mut_outer = match mode.0 {
796        ByRef::No if is_binding_by_move(ty) => {
797            // We have `x @ pat` where `x` is by-move. Reject all borrows in `pat`.
798            let mut conflicts_ref = Vec::new();
799            sub.each_binding(|_, mode, _, span| {
800                if matches!(mode, ByRef::Yes(_)) {
801                    conflicts_ref.push(span)
802                }
803            });
804            if !conflicts_ref.is_empty() {
805                sess.dcx().emit_err(BorrowOfMovedValue {
806                    binding_span: pat.span,
807                    conflicts_ref,
808                    name: Ident::new(name, pat.span),
809                    ty,
810                    suggest_borrowing: Some(pat.span.shrink_to_lo()),
811                });
812            }
813            return;
814        }
815        ByRef::No => return,
816        ByRef::Yes(m) => m,
817    };
818
819    // We now have `ref $mut_outer binding @ sub` (semantically).
820    // Recurse into each binding in `sub` and find mutability or move conflicts.
821    let mut conflicts_move = Vec::new();
822    let mut conflicts_mut_mut = Vec::new();
823    let mut conflicts_mut_ref = Vec::new();
824    sub.each_binding(|name, mode, ty, span| {
825        match mode {
826            ByRef::Yes(mut_inner) => match (mut_outer, mut_inner) {
827                // Both sides are `ref`.
828                (Mutability::Not, Mutability::Not) => {}
829                // 2x `ref mut`.
830                (Mutability::Mut, Mutability::Mut) => {
831                    conflicts_mut_mut.push(Conflict::Mut { span, name })
832                }
833                (Mutability::Not, Mutability::Mut) => {
834                    conflicts_mut_ref.push(Conflict::Mut { span, name })
835                }
836                (Mutability::Mut, Mutability::Not) => {
837                    conflicts_mut_ref.push(Conflict::Ref { span, name })
838                }
839            },
840            ByRef::No if is_binding_by_move(ty) => {
841                conflicts_move.push(Conflict::Moved { span, name }) // `ref mut?` + by-move conflict.
842            }
843            ByRef::No => {} // `ref mut?` + by-copy is fine.
844        }
845    });
846
847    let report_mut_mut = !conflicts_mut_mut.is_empty();
848    let report_mut_ref = !conflicts_mut_ref.is_empty();
849    let report_move_conflict = !conflicts_move.is_empty();
850
851    let mut occurrences = match mut_outer {
852        Mutability::Mut => vec![Conflict::Mut { span: pat.span, name }],
853        Mutability::Not => vec![Conflict::Ref { span: pat.span, name }],
854    };
855    occurrences.extend(conflicts_mut_mut);
856    occurrences.extend(conflicts_mut_ref);
857    occurrences.extend(conflicts_move);
858
859    // Report errors if any.
860    if report_mut_mut {
861        // Report mutability conflicts for e.g. `ref mut x @ Some(ref mut y)`.
862        sess.dcx().emit_err(MultipleMutBorrows { span: pat.span, occurrences });
863    } else if report_mut_ref {
864        // Report mutability conflicts for e.g. `ref x @ Some(ref mut y)` or the converse.
865        match mut_outer {
866            Mutability::Mut => {
867                sess.dcx().emit_err(AlreadyMutBorrowed { span: pat.span, occurrences });
868            }
869            Mutability::Not => {
870                sess.dcx().emit_err(AlreadyBorrowed { span: pat.span, occurrences });
871            }
872        };
873    } else if report_move_conflict {
874        // Report by-ref and by-move conflicts, e.g. `ref x @ y`.
875        sess.dcx().emit_err(MovedWhileBorrowed { span: pat.span, occurrences });
876    }
877}
878
879fn check_for_bindings_named_same_as_variants(
880    cx: &MatchVisitor<'_, '_>,
881    pat: &Pat<'_>,
882    rf: RefutableFlag,
883) {
884    if let PatKind::Binding {
885        name,
886        mode: BindingMode(ByRef::No, Mutability::Not),
887        subpattern: None,
888        ty,
889        ..
890    } = pat.kind
891        && let ty::Adt(edef, _) = ty.peel_refs().kind()
892        && edef.is_enum()
893        && edef
894            .variants()
895            .iter()
896            .any(|variant| variant.name == name && variant.ctor_kind() == Some(CtorKind::Const))
897    {
898        let variant_count = edef.variants().len();
899        let ty_path = with_no_trimmed_paths!(cx.tcx.def_path_str(edef.did()));
900        cx.tcx.emit_node_span_lint(
901            BINDINGS_WITH_VARIANT_NAME,
902            cx.lint_level,
903            pat.span,
904            BindingsWithVariantName {
905                // If this is an irrefutable pattern, and there's > 1 variant,
906                // then we can't actually match on this. Applying the below
907                // suggestion would produce code that breaks on `check_binding_is_irrefutable`.
908                suggestion: if rf == Refutable || variant_count == 1 {
909                    Some(pat.span)
910                } else {
911                    None
912                },
913                ty_path,
914                name: Ident::new(name, pat.span),
915            },
916        )
917    }
918}
919
920/// Check that never patterns are only used on inhabited types.
921fn check_never_pattern<'tcx>(
922    cx: &PatCtxt<'_, 'tcx>,
923    pat: &Pat<'tcx>,
924) -> Result<(), ErrorGuaranteed> {
925    if let PatKind::Never = pat.kind {
926        if !cx.is_uninhabited(pat.ty) {
927            return Err(cx.tcx.dcx().emit_err(NonEmptyNeverPattern { span: pat.span, ty: pat.ty }));
928        }
929    }
930    Ok(())
931}
932
933fn report_irrefutable_let_patterns(
934    tcx: TyCtxt<'_>,
935    id: HirId,
936    source: LetSource,
937    count: usize,
938    span: Span,
939) {
940    macro_rules! emit_diag {
941        ($lint:tt) => {{
942            tcx.emit_node_span_lint(IRREFUTABLE_LET_PATTERNS, id, span, $lint { count });
943        }};
944    }
945
946    match source {
947        LetSource::None | LetSource::PlainLet | LetSource::Else => bug!(),
948        LetSource::IfLet | LetSource::ElseIfLet => emit_diag!(IrrefutableLetPatternsIfLet),
949        LetSource::IfLetGuard => emit_diag!(IrrefutableLetPatternsIfLetGuard),
950        LetSource::LetElse => emit_diag!(IrrefutableLetPatternsLetElse),
951        LetSource::WhileLet => emit_diag!(IrrefutableLetPatternsWhileLet),
952    }
953}
954
955/// Report unreachable arms, if any.
956fn report_unreachable_pattern<'p, 'tcx>(
957    cx: &PatCtxt<'p, 'tcx>,
958    hir_id: HirId,
959    pat: &DeconstructedPat<'p, 'tcx>,
960    explanation: &RedundancyExplanation<'p, 'tcx>,
961    whole_arm_span: Option<Span>,
962) {
963    static CAP_COVERED_BY_MANY: usize = 4;
964    let pat_span = pat.data().span;
965    let mut lint = UnreachablePattern {
966        span: Some(pat_span),
967        matches_no_values: None,
968        matches_no_values_ty: **pat.ty(),
969        uninhabited_note: None,
970        covered_by_catchall: None,
971        covered_by_one: None,
972        covered_by_many: None,
973        covered_by_many_n_more_count: 0,
974        wanted_constant: None,
975        accessible_constant: None,
976        inaccessible_constant: None,
977        pattern_let_binding: None,
978        suggest_remove: None,
979    };
980    match explanation.covered_by.as_slice() {
981        [] => {
982            // Empty pattern; we report the uninhabited type that caused the emptiness.
983            lint.span = None; // Don't label the pattern itself
984            lint.uninhabited_note = Some(()); // Give a link about empty types
985            lint.matches_no_values = Some(pat_span);
986            lint.suggest_remove = whole_arm_span; // Suggest to remove the match arm
987            pat.walk(&mut |subpat| {
988                let ty = **subpat.ty();
989                if cx.is_uninhabited(ty) {
990                    lint.matches_no_values_ty = ty;
991                    false // No need to dig further.
992                } else if matches!(subpat.ctor(), Constructor::Ref | Constructor::UnionField) {
993                    false // Don't explore further since they are not by-value.
994                } else {
995                    true
996                }
997            });
998        }
999        [covering_pat] if pat_is_catchall(covering_pat) => {
1000            // A binding pattern that matches all, a single binding name.
1001            let pat = covering_pat.data();
1002            lint.covered_by_catchall = Some(pat.span);
1003            find_fallback_pattern_typo(cx, hir_id, pat, &mut lint);
1004        }
1005        [covering_pat] => {
1006            lint.covered_by_one = Some(covering_pat.data().span);
1007        }
1008        covering_pats => {
1009            let mut iter = covering_pats.iter();
1010            let mut multispan = MultiSpan::from_span(pat_span);
1011            for p in iter.by_ref().take(CAP_COVERED_BY_MANY) {
1012                multispan.push_span_label(
1013                    p.data().span,
1014                    fluent::mir_build_unreachable_matches_same_values,
1015                );
1016            }
1017            let remain = iter.count();
1018            if remain == 0 {
1019                multispan.push_span_label(
1020                    pat_span,
1021                    fluent::mir_build_unreachable_making_this_unreachable,
1022                );
1023            } else {
1024                lint.covered_by_many_n_more_count = remain;
1025                multispan.push_span_label(
1026                    pat_span,
1027                    fluent::mir_build_unreachable_making_this_unreachable_n_more,
1028                );
1029            }
1030            lint.covered_by_many = Some(multispan);
1031        }
1032    }
1033    cx.tcx.emit_node_span_lint(UNREACHABLE_PATTERNS, hir_id, pat_span, lint);
1034}
1035
1036/// Detect typos that were meant to be a `const` but were interpreted as a new pattern binding.
1037fn find_fallback_pattern_typo<'tcx>(
1038    cx: &PatCtxt<'_, 'tcx>,
1039    hir_id: HirId,
1040    pat: &Pat<'tcx>,
1041    lint: &mut UnreachablePattern<'_>,
1042) {
1043    if let Level::Allow = cx.tcx.lint_level_at_node(UNREACHABLE_PATTERNS, hir_id).level {
1044        // This is because we use `with_no_trimmed_paths` later, so if we never emit the lint we'd
1045        // ICE. At the same time, we don't really need to do all of this if we won't emit anything.
1046        return;
1047    }
1048    if let PatKind::Binding { name, subpattern: None, ty, .. } = pat.kind {
1049        // See if the binding might have been a `const` that was mistyped or out of scope.
1050        let mut accessible = vec![];
1051        let mut accessible_path = vec![];
1052        let mut inaccessible = vec![];
1053        let mut imported = vec![];
1054        let mut imported_spans = vec![];
1055        let (infcx, param_env) = cx.tcx.infer_ctxt().build_with_typing_env(cx.typing_env);
1056        let parent = cx.tcx.hir_get_parent_item(hir_id);
1057
1058        for item in cx.tcx.hir_crate_items(()).free_items() {
1059            if let DefKind::Use = cx.tcx.def_kind(item.owner_id) {
1060                // Look for consts being re-exported.
1061                let item = cx.tcx.hir_expect_item(item.owner_id.def_id);
1062                let hir::ItemKind::Use(path, _) = item.kind else {
1063                    continue;
1064                };
1065                if let Some(value_ns) = path.res.value_ns
1066                    && let Res::Def(DefKind::Const, id) = value_ns
1067                    && infcx.can_eq(param_env, ty, cx.tcx.type_of(id).instantiate_identity())
1068                {
1069                    if cx.tcx.visibility(id).is_accessible_from(parent, cx.tcx) {
1070                        // The original const is accessible, suggest using it directly.
1071                        let item_name = cx.tcx.item_name(id);
1072                        accessible.push(item_name);
1073                        accessible_path.push(with_no_trimmed_paths!(cx.tcx.def_path_str(id)));
1074                    } else if cx.tcx.visibility(item.owner_id).is_accessible_from(parent, cx.tcx) {
1075                        // The const is accessible only through the re-export, point at
1076                        // the `use`.
1077                        let ident = item.kind.ident().unwrap();
1078                        imported.push(ident.name);
1079                        imported_spans.push(ident.span);
1080                    }
1081                }
1082            }
1083            if let DefKind::Const = cx.tcx.def_kind(item.owner_id)
1084                && infcx.can_eq(param_env, ty, cx.tcx.type_of(item.owner_id).instantiate_identity())
1085            {
1086                // Look for local consts.
1087                let item_name = cx.tcx.item_name(item.owner_id);
1088                let vis = cx.tcx.visibility(item.owner_id);
1089                if vis.is_accessible_from(parent, cx.tcx) {
1090                    accessible.push(item_name);
1091                    // FIXME: the line below from PR #135310 is a workaround for the ICE in issue
1092                    // #135289, where a macro in a dependency can create unreachable patterns in the
1093                    // current crate. Path trimming expects diagnostics for a typoed const, but no
1094                    // diagnostics are emitted and we ICE. See
1095                    // `tests/ui/resolve/const-with-typo-in-pattern-binding-ice-135289.rs` for a
1096                    // test that reproduces the ICE if we don't use `with_no_trimmed_paths!`.
1097                    let path = with_no_trimmed_paths!(cx.tcx.def_path_str(item.owner_id));
1098                    accessible_path.push(path);
1099                } else if name == item_name {
1100                    // The const exists somewhere in this crate, but it can't be imported
1101                    // from this pattern's scope. We'll just point at its definition.
1102                    inaccessible.push(cx.tcx.def_span(item.owner_id));
1103                }
1104            }
1105        }
1106        if let Some((i, &const_name)) =
1107            accessible.iter().enumerate().find(|&(_, &const_name)| const_name == name)
1108        {
1109            // The pattern name is an exact match, so the pattern needed to be imported.
1110            lint.wanted_constant = Some(WantedConstant {
1111                span: pat.span,
1112                is_typo: false,
1113                const_name: const_name.to_string(),
1114                const_path: accessible_path[i].clone(),
1115            });
1116        } else if let Some(name) = find_best_match_for_name(&accessible, name, None) {
1117            // The pattern name is likely a typo.
1118            lint.wanted_constant = Some(WantedConstant {
1119                span: pat.span,
1120                is_typo: true,
1121                const_name: name.to_string(),
1122                const_path: name.to_string(),
1123            });
1124        } else if let Some(i) =
1125            imported.iter().enumerate().find(|&(_, &const_name)| const_name == name).map(|(i, _)| i)
1126        {
1127            // The const with the exact name wasn't re-exported from an import in this
1128            // crate, we point at the import.
1129            lint.accessible_constant = Some(imported_spans[i]);
1130        } else if let Some(name) = find_best_match_for_name(&imported, name, None) {
1131            // The typoed const wasn't re-exported by an import in this crate, we suggest
1132            // the right name (which will likely require another follow up suggestion).
1133            lint.wanted_constant = Some(WantedConstant {
1134                span: pat.span,
1135                is_typo: true,
1136                const_path: name.to_string(),
1137                const_name: name.to_string(),
1138            });
1139        } else if !inaccessible.is_empty() {
1140            for span in inaccessible {
1141                // The const with the exact name match isn't accessible, we just point at it.
1142                lint.inaccessible_constant = Some(span);
1143            }
1144        } else {
1145            // Look for local bindings for people that might have gotten confused with how
1146            // `let` and `const` works.
1147            for (_, node) in cx.tcx.hir_parent_iter(hir_id) {
1148                match node {
1149                    hir::Node::Stmt(hir::Stmt { kind: hir::StmtKind::Let(let_stmt), .. }) => {
1150                        if let hir::PatKind::Binding(_, _, binding_name, _) = let_stmt.pat.kind {
1151                            if name == binding_name.name {
1152                                lint.pattern_let_binding = Some(binding_name.span);
1153                            }
1154                        }
1155                    }
1156                    hir::Node::Block(hir::Block { stmts, .. }) => {
1157                        for stmt in *stmts {
1158                            if let hir::StmtKind::Let(let_stmt) = stmt.kind {
1159                                if let hir::PatKind::Binding(_, _, binding_name, _) =
1160                                    let_stmt.pat.kind
1161                                {
1162                                    if name == binding_name.name {
1163                                        lint.pattern_let_binding = Some(binding_name.span);
1164                                    }
1165                                }
1166                            }
1167                        }
1168                    }
1169                    hir::Node::Item(_) => break,
1170                    _ => {}
1171                }
1172            }
1173        }
1174    }
1175}
1176
1177/// Report unreachable arms, if any.
1178fn report_arm_reachability<'p, 'tcx>(
1179    cx: &PatCtxt<'p, 'tcx>,
1180    report: &UsefulnessReport<'p, 'tcx>,
1181    is_match_arm: bool,
1182) {
1183    let sm = cx.tcx.sess.source_map();
1184    for (arm, is_useful) in report.arm_usefulness.iter() {
1185        if let Usefulness::Redundant(explanation) = is_useful {
1186            let hir_id = arm.arm_data;
1187            let arm_span = cx.tcx.hir_span(hir_id);
1188            let whole_arm_span = if is_match_arm {
1189                // If the arm is followed by a comma, extend the span to include it.
1190                let with_whitespace = sm.span_extend_while_whitespace(arm_span);
1191                if let Some(comma) = sm.span_look_ahead(with_whitespace, ",", Some(1)) {
1192                    Some(arm_span.to(comma))
1193                } else {
1194                    Some(arm_span)
1195                }
1196            } else {
1197                None
1198            };
1199            report_unreachable_pattern(cx, hir_id, arm.pat, explanation, whole_arm_span)
1200        }
1201    }
1202}
1203
1204/// Checks for common cases of "catchall" patterns that may not be intended as such.
1205fn pat_is_catchall(pat: &DeconstructedPat<'_, '_>) -> bool {
1206    match pat.ctor() {
1207        Constructor::Wildcard => true,
1208        Constructor::Struct | Constructor::Ref => {
1209            pat.iter_fields().all(|ipat| pat_is_catchall(&ipat.pat))
1210        }
1211        _ => false,
1212    }
1213}
1214
1215/// Report that a match is not exhaustive.
1216fn report_non_exhaustive_match<'p, 'tcx>(
1217    cx: &PatCtxt<'p, 'tcx>,
1218    thir: &Thir<'tcx>,
1219    scrut_ty: Ty<'tcx>,
1220    sp: Span,
1221    witnesses: Vec<WitnessPat<'p, 'tcx>>,
1222    arms: &[ArmId],
1223    braces_span: Option<Span>,
1224) -> ErrorGuaranteed {
1225    let is_empty_match = arms.is_empty();
1226    let non_empty_enum = match scrut_ty.kind() {
1227        ty::Adt(def, _) => def.is_enum() && !def.variants().is_empty(),
1228        _ => false,
1229    };
1230    // In the case of an empty match, replace the '`_` not covered' diagnostic with something more
1231    // informative.
1232    if is_empty_match && !non_empty_enum {
1233        return cx.tcx.dcx().emit_err(NonExhaustivePatternsTypeNotEmpty {
1234            cx,
1235            scrut_span: sp,
1236            braces_span,
1237            ty: scrut_ty,
1238        });
1239    }
1240
1241    // FIXME: migration of this diagnostic will require list support
1242    let joined_patterns = joined_uncovered_patterns(cx, &witnesses);
1243    let mut err = struct_span_code_err!(
1244        cx.tcx.dcx(),
1245        sp,
1246        E0004,
1247        "non-exhaustive patterns: {joined_patterns} not covered"
1248    );
1249    err.span_label(
1250        sp,
1251        format!(
1252            "pattern{} {} not covered",
1253            rustc_errors::pluralize!(witnesses.len()),
1254            joined_patterns
1255        ),
1256    );
1257
1258    // Point at the definition of non-covered `enum` variants.
1259    if let Some(AdtDefinedHere { adt_def_span, ty, variants }) =
1260        report_adt_defined_here(cx.tcx, scrut_ty, &witnesses, true)
1261    {
1262        let mut multi_span = MultiSpan::from_span(adt_def_span);
1263        multi_span.push_span_label(adt_def_span, "");
1264        for Variant { span } in variants {
1265            multi_span.push_span_label(span, "not covered");
1266        }
1267        err.span_note(multi_span, format!("`{ty}` defined here"));
1268    }
1269    err.note(format!("the matched value is of type `{}`", scrut_ty));
1270
1271    if !is_empty_match {
1272        let mut special_tys = FxIndexSet::default();
1273        // Look at the first witness.
1274        collect_special_tys(cx, &witnesses[0], &mut special_tys);
1275
1276        for ty in special_tys {
1277            if ty.is_ptr_sized_integral() {
1278                if ty.inner() == cx.tcx.types.usize {
1279                    err.note(format!(
1280                        "`{ty}` does not have a fixed maximum value, so half-open ranges are \
1281                         necessary to match exhaustively",
1282                    ));
1283                } else if ty.inner() == cx.tcx.types.isize {
1284                    err.note(format!(
1285                        "`{ty}` does not have fixed minimum and maximum values, so half-open \
1286                         ranges are necessary to match exhaustively",
1287                    ));
1288                }
1289            } else if ty.inner() == cx.tcx.types.str_ {
1290                err.note("`&str` cannot be matched exhaustively, so a wildcard `_` is necessary");
1291            } else if cx.is_foreign_non_exhaustive_enum(ty) {
1292                err.note(format!("`{ty}` is marked as non-exhaustive, so a wildcard `_` is necessary to match exhaustively"));
1293            } else if cx.is_uninhabited(ty.inner()) {
1294                // The type is uninhabited yet there is a witness: we must be in the `MaybeInvalid`
1295                // case.
1296                err.note(format!("`{ty}` is uninhabited but is not being matched by value, so a wildcard `_` is required"));
1297            }
1298        }
1299    }
1300
1301    if let ty::Ref(_, sub_ty, _) = scrut_ty.kind() {
1302        if !sub_ty.is_inhabited_from(cx.tcx, cx.module, cx.typing_env) {
1303            err.note("references are always considered inhabited");
1304        }
1305    }
1306
1307    for &arm in arms {
1308        let arm = &thir.arms[arm];
1309        if let PatKind::ExpandedConstant { def_id, .. } = arm.pattern.kind
1310            && !matches!(cx.tcx.def_kind(def_id), DefKind::InlineConst)
1311            && let Ok(snippet) = cx.tcx.sess.source_map().span_to_snippet(arm.pattern.span)
1312            // We filter out paths with multiple path::segments.
1313            && snippet.chars().all(|c| c.is_alphanumeric() || c == '_')
1314        {
1315            let const_name = cx.tcx.item_name(def_id);
1316            err.span_label(
1317                arm.pattern.span,
1318                format!(
1319                    "this pattern doesn't introduce a new catch-all binding, but rather pattern \
1320                     matches against the value of constant `{const_name}`",
1321                ),
1322            );
1323            err.span_note(cx.tcx.def_span(def_id), format!("constant `{const_name}` defined here"));
1324            err.span_suggestion_verbose(
1325                arm.pattern.span.shrink_to_hi(),
1326                "if you meant to introduce a binding, use a different name",
1327                "_var".to_string(),
1328                Applicability::MaybeIncorrect,
1329            );
1330        }
1331    }
1332
1333    // Whether we suggest the actual missing patterns or `_`.
1334    let suggest_the_witnesses = witnesses.len() < 4;
1335    let suggested_arm = if suggest_the_witnesses {
1336        let pattern = witnesses
1337            .iter()
1338            .map(|witness| cx.print_witness_pat(witness))
1339            .collect::<Vec<String>>()
1340            .join(" | ");
1341        if witnesses.iter().all(|p| p.is_never_pattern()) && cx.tcx.features().never_patterns() {
1342            // Arms with a never pattern don't take a body.
1343            pattern
1344        } else {
1345            format!("{pattern} => todo!()")
1346        }
1347    } else {
1348        format!("_ => todo!()")
1349    };
1350    let mut suggestion = None;
1351    let sm = cx.tcx.sess.source_map();
1352    match arms {
1353        [] if let Some(braces_span) = braces_span => {
1354            // Get the span for the empty match body `{}`.
1355            let (indentation, more) = if let Some(snippet) = sm.indentation_before(sp) {
1356                (format!("\n{snippet}"), "    ")
1357            } else {
1358                (" ".to_string(), "")
1359            };
1360            suggestion = Some((
1361                braces_span,
1362                format!(" {{{indentation}{more}{suggested_arm},{indentation}}}",),
1363            ));
1364        }
1365        [only] => {
1366            let only = &thir[*only];
1367            let (pre_indentation, is_multiline) = if let Some(snippet) =
1368                sm.indentation_before(only.span)
1369                && let Ok(with_trailing) =
1370                    sm.span_extend_while(only.span, |c| c.is_whitespace() || c == ',')
1371                && sm.is_multiline(with_trailing)
1372            {
1373                (format!("\n{snippet}"), true)
1374            } else {
1375                (" ".to_string(), false)
1376            };
1377            let only_body = &thir[only.body];
1378            let comma = if matches!(only_body.kind, ExprKind::Block { .. })
1379                && only.span.eq_ctxt(only_body.span)
1380                && is_multiline
1381            {
1382                ""
1383            } else {
1384                ","
1385            };
1386            suggestion = Some((
1387                only.span.shrink_to_hi(),
1388                format!("{comma}{pre_indentation}{suggested_arm}"),
1389            ));
1390        }
1391        [.., prev, last] => {
1392            let prev = &thir[*prev];
1393            let last = &thir[*last];
1394            if prev.span.eq_ctxt(last.span) {
1395                let last_body = &thir[last.body];
1396                let comma = if matches!(last_body.kind, ExprKind::Block { .. })
1397                    && last.span.eq_ctxt(last_body.span)
1398                {
1399                    ""
1400                } else {
1401                    ","
1402                };
1403                let spacing = if sm.is_multiline(prev.span.between(last.span)) {
1404                    sm.indentation_before(last.span).map(|indent| format!("\n{indent}"))
1405                } else {
1406                    Some(" ".to_string())
1407                };
1408                if let Some(spacing) = spacing {
1409                    suggestion = Some((
1410                        last.span.shrink_to_hi(),
1411                        format!("{comma}{spacing}{suggested_arm}"),
1412                    ));
1413                }
1414            }
1415        }
1416        _ => {}
1417    }
1418
1419    let msg = format!(
1420        "ensure that all possible cases are being handled by adding a match arm with a wildcard \
1421         pattern{}{}",
1422        if witnesses.len() > 1 && suggest_the_witnesses && suggestion.is_some() {
1423            ", a match arm with multiple or-patterns"
1424        } else {
1425            // we are either not suggesting anything, or suggesting `_`
1426            ""
1427        },
1428        match witnesses.len() {
1429            // non-exhaustive enum case
1430            0 if suggestion.is_some() => " as shown",
1431            0 => "",
1432            1 if suggestion.is_some() => " or an explicit pattern as shown",
1433            1 => " or an explicit pattern",
1434            _ if suggestion.is_some() => " as shown, or multiple match arms",
1435            _ => " or multiple match arms",
1436        },
1437    );
1438
1439    let all_arms_have_guards = arms.iter().all(|arm_id| thir[*arm_id].guard.is_some());
1440    if !is_empty_match && all_arms_have_guards {
1441        err.subdiagnostic(NonExhaustiveMatchAllArmsGuarded);
1442    }
1443    if let Some((span, sugg)) = suggestion {
1444        err.span_suggestion_verbose(span, msg, sugg, Applicability::HasPlaceholders);
1445    } else {
1446        err.help(msg);
1447    }
1448    err.emit()
1449}
1450
1451fn joined_uncovered_patterns<'p, 'tcx>(
1452    cx: &PatCtxt<'p, 'tcx>,
1453    witnesses: &[WitnessPat<'p, 'tcx>],
1454) -> String {
1455    const LIMIT: usize = 3;
1456    let pat_to_str = |pat: &WitnessPat<'p, 'tcx>| cx.print_witness_pat(pat);
1457    match witnesses {
1458        [] => bug!(),
1459        [witness] => format!("`{}`", cx.print_witness_pat(witness)),
1460        [head @ .., tail] if head.len() < LIMIT => {
1461            let head: Vec<_> = head.iter().map(pat_to_str).collect();
1462            format!("`{}` and `{}`", head.join("`, `"), cx.print_witness_pat(tail))
1463        }
1464        _ => {
1465            let (head, tail) = witnesses.split_at(LIMIT);
1466            let head: Vec<_> = head.iter().map(pat_to_str).collect();
1467            format!("`{}` and {} more", head.join("`, `"), tail.len())
1468        }
1469    }
1470}
1471
1472/// Collect types that require specific explanations when they show up in witnesses.
1473fn collect_special_tys<'tcx>(
1474    cx: &PatCtxt<'_, 'tcx>,
1475    pat: &WitnessPat<'_, 'tcx>,
1476    special_tys: &mut FxIndexSet<RevealedTy<'tcx>>,
1477) {
1478    if matches!(pat.ctor(), Constructor::NonExhaustive | Constructor::Never) {
1479        special_tys.insert(*pat.ty());
1480    }
1481    if let Constructor::IntRange(range) = pat.ctor() {
1482        if cx.is_range_beyond_boundaries(range, *pat.ty()) {
1483            // The range denotes the values before `isize::MIN` or the values after `usize::MAX`/`isize::MAX`.
1484            special_tys.insert(*pat.ty());
1485        }
1486    }
1487    pat.iter_fields().for_each(|field_pat| collect_special_tys(cx, field_pat, special_tys))
1488}
1489
1490fn report_adt_defined_here<'tcx>(
1491    tcx: TyCtxt<'tcx>,
1492    ty: Ty<'tcx>,
1493    witnesses: &[WitnessPat<'_, 'tcx>],
1494    point_at_non_local_ty: bool,
1495) -> Option<AdtDefinedHere<'tcx>> {
1496    let ty = ty.peel_refs();
1497    let ty::Adt(def, _) = ty.kind() else {
1498        return None;
1499    };
1500    let adt_def_span =
1501        tcx.hir_get_if_local(def.did()).and_then(|node| node.ident()).map(|ident| ident.span);
1502    let adt_def_span = if point_at_non_local_ty {
1503        adt_def_span.unwrap_or_else(|| tcx.def_span(def.did()))
1504    } else {
1505        adt_def_span?
1506    };
1507
1508    let mut variants = vec![];
1509    for span in maybe_point_at_variant(tcx, *def, witnesses.iter().take(5)) {
1510        variants.push(Variant { span });
1511    }
1512    Some(AdtDefinedHere { adt_def_span, ty, variants })
1513}
1514
1515fn maybe_point_at_variant<'a, 'p: 'a, 'tcx: 'p>(
1516    tcx: TyCtxt<'tcx>,
1517    def: AdtDef<'tcx>,
1518    patterns: impl Iterator<Item = &'a WitnessPat<'p, 'tcx>>,
1519) -> Vec<Span> {
1520    let mut covered = vec![];
1521    for pattern in patterns {
1522        if let Constructor::Variant(variant_index) = pattern.ctor() {
1523            if let ty::Adt(this_def, _) = pattern.ty().kind()
1524                && this_def.did() != def.did()
1525            {
1526                continue;
1527            }
1528            let sp = def.variant(*variant_index).ident(tcx).span;
1529            if covered.contains(&sp) {
1530                // Don't point at variants that have already been covered due to other patterns to avoid
1531                // visual clutter.
1532                continue;
1533            }
1534            covered.push(sp);
1535        }
1536        covered.extend(maybe_point_at_variant(tcx, def, pattern.iter_fields()));
1537    }
1538    covered
1539}