rustc_next_trait_solver/solve/eval_ctxt/
canonical.rs

1//! Canonicalization is used to separate some goal from its context,
2//! throwing away unnecessary information in the process.
3//!
4//! This is necessary to cache goals containing inference variables
5//! and placeholders without restricting them to the current `InferCtxt`.
6//!
7//! Canonicalization is fairly involved, for more details see the relevant
8//! section of the [rustc-dev-guide][c].
9//!
10//! [c]: https://rustc-dev-guide.rust-lang.org/solve/canonicalization.html
11
12use std::iter;
13
14use rustc_index::IndexVec;
15use rustc_type_ir::data_structures::HashSet;
16use rustc_type_ir::inherent::*;
17use rustc_type_ir::relate::solver_relating::RelateExt;
18use rustc_type_ir::{
19    self as ty, Canonical, CanonicalVarValues, InferCtxtLike, Interner, TypeFoldable,
20};
21use tracing::{debug, instrument, trace};
22
23use crate::canonicalizer::Canonicalizer;
24use crate::delegate::SolverDelegate;
25use crate::resolve::EagerResolver;
26use crate::solve::eval_ctxt::CurrentGoalKind;
27use crate::solve::{
28    CanonicalInput, CanonicalResponse, Certainty, EvalCtxt, ExternalConstraintsData, Goal,
29    MaybeCause, NestedNormalizationGoals, NoSolution, PredefinedOpaquesData, QueryInput,
30    QueryResult, Response, inspect, response_no_constraints_raw,
31};
32
33trait ResponseT<I: Interner> {
34    fn var_values(&self) -> CanonicalVarValues<I>;
35}
36
37impl<I: Interner> ResponseT<I> for Response<I> {
38    fn var_values(&self) -> CanonicalVarValues<I> {
39        self.var_values
40    }
41}
42
43impl<I: Interner, T> ResponseT<I> for inspect::State<I, T> {
44    fn var_values(&self) -> CanonicalVarValues<I> {
45        self.var_values
46    }
47}
48
49impl<D, I> EvalCtxt<'_, D>
50where
51    D: SolverDelegate<Interner = I>,
52    I: Interner,
53{
54    /// Canonicalizes the goal remembering the original values
55    /// for each bound variable.
56    pub(super) fn canonicalize_goal<T: TypeFoldable<I>>(
57        &self,
58        goal: Goal<I, T>,
59    ) -> (Vec<I::GenericArg>, CanonicalInput<I, T>) {
60        // We only care about one entry per `OpaqueTypeKey` here,
61        // so we only canonicalize the lookup table and ignore
62        // duplicate entries.
63        let opaque_types = self.delegate.clone_opaque_types_lookup_table();
64        let (goal, opaque_types) =
65            (goal, opaque_types).fold_with(&mut EagerResolver::new(self.delegate));
66
67        let mut orig_values = Default::default();
68        let canonical = Canonicalizer::canonicalize_input(
69            self.delegate,
70            &mut orig_values,
71            QueryInput {
72                goal,
73                predefined_opaques_in_body: self
74                    .cx()
75                    .mk_predefined_opaques_in_body(PredefinedOpaquesData { opaque_types }),
76            },
77        );
78        let query_input = ty::CanonicalQueryInput { canonical, typing_mode: self.typing_mode() };
79        (orig_values, query_input)
80    }
81
82    /// To return the constraints of a canonical query to the caller, we canonicalize:
83    ///
84    /// - `var_values`: a map from bound variables in the canonical goal to
85    ///   the values inferred while solving the instantiated goal.
86    /// - `external_constraints`: additional constraints which aren't expressible
87    ///   using simple unification of inference variables.
88    ///
89    /// This takes the `shallow_certainty` which represents whether we're confident
90    /// that the final result of the current goal only depends on the nested goals.
91    ///
92    /// In case this is `Certainy::Maybe`, there may still be additional nested goals
93    /// or inference constraints required for this candidate to be hold. The candidate
94    /// always requires all already added constraints and nested goals.
95    #[instrument(level = "trace", skip(self), ret)]
96    pub(in crate::solve) fn evaluate_added_goals_and_make_canonical_response(
97        &mut self,
98        shallow_certainty: Certainty,
99    ) -> QueryResult<I> {
100        self.inspect.make_canonical_response(shallow_certainty);
101
102        let goals_certainty = self.try_evaluate_added_goals()?;
103        assert_eq!(
104            self.tainted,
105            Ok(()),
106            "EvalCtxt is tainted -- nested goals may have been dropped in a \
107            previous call to `try_evaluate_added_goals!`"
108        );
109
110        // We only check for leaks from universes which were entered inside
111        // of the query.
112        self.delegate.leak_check(self.max_input_universe).map_err(|NoSolution| {
113            trace!("failed the leak check");
114            NoSolution
115        })?;
116
117        let (certainty, normalization_nested_goals) =
118            match (self.current_goal_kind, shallow_certainty) {
119                // When normalizing, we've replaced the expected term with an unconstrained
120                // inference variable. This means that we dropped information which could
121                // have been important. We handle this by instead returning the nested goals
122                // to the caller, where they are then handled. We only do so if we do not
123                // need to recompute the `NormalizesTo` goal afterwards to avoid repeatedly
124                // uplifting its nested goals. This is the case if the `shallow_certainty` is
125                // `Certainty::Yes`.
126                (CurrentGoalKind::NormalizesTo, Certainty::Yes) => {
127                    let goals = std::mem::take(&mut self.nested_goals);
128                    // As we return all ambiguous nested goals, we can ignore the certainty
129                    // returned by `self.try_evaluate_added_goals()`.
130                    if goals.is_empty() {
131                        assert!(matches!(goals_certainty, Certainty::Yes));
132                    }
133                    (Certainty::Yes, NestedNormalizationGoals(goals))
134                }
135                _ => {
136                    let certainty = shallow_certainty.and(goals_certainty);
137                    (certainty, NestedNormalizationGoals::empty())
138                }
139            };
140
141        if let Certainty::Maybe(cause @ MaybeCause::Overflow { keep_constraints: false, .. }) =
142            certainty
143        {
144            // If we have overflow, it's probable that we're substituting a type
145            // into itself infinitely and any partial substitutions in the query
146            // response are probably not useful anyways, so just return an empty
147            // query response.
148            //
149            // This may prevent us from potentially useful inference, e.g.
150            // 2 candidates, one ambiguous and one overflow, which both
151            // have the same inference constraints.
152            //
153            // Changing this to retain some constraints in the future
154            // won't be a breaking change, so this is good enough for now.
155            return Ok(self.make_ambiguous_response_no_constraints(cause));
156        }
157
158        let external_constraints =
159            self.compute_external_query_constraints(certainty, normalization_nested_goals);
160        let (var_values, mut external_constraints) = (self.var_values, external_constraints)
161            .fold_with(&mut EagerResolver::new(self.delegate));
162
163        // Remove any trivial or duplicated region constraints once we've resolved regions
164        let mut unique = HashSet::default();
165        external_constraints.region_constraints.retain(|outlives| {
166            outlives.0.as_region().is_none_or(|re| re != outlives.1) && unique.insert(*outlives)
167        });
168
169        let canonical = Canonicalizer::canonicalize_response(
170            self.delegate,
171            self.max_input_universe,
172            &mut Default::default(),
173            Response {
174                var_values,
175                certainty,
176                external_constraints: self.cx().mk_external_constraints(external_constraints),
177            },
178        );
179
180        // HACK: We bail with overflow if the response would have too many non-region
181        // inference variables. This tends to only happen if we encounter a lot of
182        // ambiguous alias types which get replaced with fresh inference variables
183        // during generalization. This prevents hangs caused by an exponential blowup,
184        // see tests/ui/traits/next-solver/coherence-alias-hang.rs.
185        match self.current_goal_kind {
186            // We don't do so for `NormalizesTo` goals as we erased the expected term and
187            // bailing with overflow here would prevent us from detecting a type-mismatch,
188            // causing a coherence error in diesel, see #131969. We still bail with overflow
189            // when later returning from the parent AliasRelate goal.
190            CurrentGoalKind::NormalizesTo => {}
191            CurrentGoalKind::Misc | CurrentGoalKind::CoinductiveTrait => {
192                let num_non_region_vars = canonical
193                    .variables
194                    .iter()
195                    .filter(|c| !c.is_region() && c.is_existential())
196                    .count();
197                if num_non_region_vars > self.cx().recursion_limit() {
198                    debug!(?num_non_region_vars, "too many inference variables -> overflow");
199                    return Ok(self.make_ambiguous_response_no_constraints(MaybeCause::Overflow {
200                        suggest_increasing_limit: true,
201                        keep_constraints: false,
202                    }));
203                }
204            }
205        }
206
207        Ok(canonical)
208    }
209
210    /// Constructs a totally unconstrained, ambiguous response to a goal.
211    ///
212    /// Take care when using this, since often it's useful to respond with
213    /// ambiguity but return constrained variables to guide inference.
214    pub(in crate::solve) fn make_ambiguous_response_no_constraints(
215        &self,
216        maybe_cause: MaybeCause,
217    ) -> CanonicalResponse<I> {
218        response_no_constraints_raw(
219            self.cx(),
220            self.max_input_universe,
221            self.variables,
222            Certainty::Maybe(maybe_cause),
223        )
224    }
225
226    /// Computes the region constraints and *new* opaque types registered when
227    /// proving a goal.
228    ///
229    /// If an opaque was already constrained before proving this goal, then the
230    /// external constraints do not need to record that opaque, since if it is
231    /// further constrained by inference, that will be passed back in the var
232    /// values.
233    #[instrument(level = "trace", skip(self), ret)]
234    fn compute_external_query_constraints(
235        &self,
236        certainty: Certainty,
237        normalization_nested_goals: NestedNormalizationGoals<I>,
238    ) -> ExternalConstraintsData<I> {
239        // We only return region constraints once the certainty is `Yes`. This
240        // is necessary as we may drop nested goals on ambiguity, which may result
241        // in unconstrained inference variables in the region constraints. It also
242        // prevents us from emitting duplicate region constraints, avoiding some
243        // unnecessary work. This slightly weakens the leak check in case it uses
244        // region constraints from an ambiguous nested goal. This is tested in both
245        // `tests/ui/higher-ranked/leak-check/leak-check-in-selection-5-ambig.rs` and
246        // `tests/ui/higher-ranked/leak-check/leak-check-in-selection-6-ambig-unify.rs`.
247        let region_constraints = if certainty == Certainty::Yes {
248            self.delegate.make_deduplicated_outlives_constraints()
249        } else {
250            Default::default()
251        };
252
253        // We only return *newly defined* opaque types from canonical queries.
254        //
255        // Constraints for any existing opaque types are already tracked by changes
256        // to the `var_values`.
257        let opaque_types = self
258            .delegate
259            .clone_opaque_types_added_since(self.initial_opaque_types_storage_num_entries);
260
261        ExternalConstraintsData { region_constraints, opaque_types, normalization_nested_goals }
262    }
263
264    /// After calling a canonical query, we apply the constraints returned
265    /// by the query using this function.
266    ///
267    /// This happens in three steps:
268    /// - we instantiate the bound variables of the query response
269    /// - we unify the `var_values` of the response with the `original_values`
270    /// - we apply the `external_constraints` returned by the query, returning
271    ///   the `normalization_nested_goals`
272    pub(super) fn instantiate_and_apply_query_response(
273        &mut self,
274        param_env: I::ParamEnv,
275        original_values: Vec<I::GenericArg>,
276        response: CanonicalResponse<I>,
277    ) -> (NestedNormalizationGoals<I>, Certainty) {
278        let instantiation = Self::compute_query_response_instantiation_values(
279            self.delegate,
280            &original_values,
281            &response,
282            self.origin_span,
283        );
284
285        let Response { var_values, external_constraints, certainty } =
286            self.delegate.instantiate_canonical(response, instantiation);
287
288        Self::unify_query_var_values(
289            self.delegate,
290            param_env,
291            &original_values,
292            var_values,
293            self.origin_span,
294        );
295
296        let ExternalConstraintsData {
297            region_constraints,
298            opaque_types,
299            normalization_nested_goals,
300        } = &*external_constraints;
301
302        self.register_region_constraints(region_constraints);
303        self.register_new_opaque_types(opaque_types);
304
305        (normalization_nested_goals.clone(), certainty)
306    }
307
308    /// This returns the canonical variable values to instantiate the bound variables of
309    /// the canonical response. This depends on the `original_values` for the
310    /// bound variables.
311    fn compute_query_response_instantiation_values<T: ResponseT<I>>(
312        delegate: &D,
313        original_values: &[I::GenericArg],
314        response: &Canonical<I, T>,
315        span: I::Span,
316    ) -> CanonicalVarValues<I> {
317        // FIXME: Longterm canonical queries should deal with all placeholders
318        // created inside of the query directly instead of returning them to the
319        // caller.
320        let prev_universe = delegate.universe();
321        let universes_created_in_query = response.max_universe.index();
322        for _ in 0..universes_created_in_query {
323            delegate.create_next_universe();
324        }
325
326        let var_values = response.value.var_values();
327        assert_eq!(original_values.len(), var_values.len());
328
329        // If the query did not make progress with constraining inference variables,
330        // we would normally create a new inference variables for bound existential variables
331        // only then unify this new inference variable with the inference variable from
332        // the input.
333        //
334        // We therefore instantiate the existential variable in the canonical response with the
335        // inference variable of the input right away, which is more performant.
336        let mut opt_values = IndexVec::from_elem_n(None, response.variables.len());
337        for (original_value, result_value) in
338            iter::zip(original_values, var_values.var_values.iter())
339        {
340            match result_value.kind() {
341                ty::GenericArgKind::Type(t) => {
342                    if let ty::Bound(debruijn, b) = t.kind() {
343                        assert_eq!(debruijn, ty::INNERMOST);
344                        opt_values[b.var()] = Some(*original_value);
345                    }
346                }
347                ty::GenericArgKind::Lifetime(r) => {
348                    if let ty::ReBound(debruijn, br) = r.kind() {
349                        assert_eq!(debruijn, ty::INNERMOST);
350                        opt_values[br.var()] = Some(*original_value);
351                    }
352                }
353                ty::GenericArgKind::Const(c) => {
354                    if let ty::ConstKind::Bound(debruijn, bv) = c.kind() {
355                        assert_eq!(debruijn, ty::INNERMOST);
356                        opt_values[bv.var()] = Some(*original_value);
357                    }
358                }
359            }
360        }
361
362        let var_values = delegate.cx().mk_args_from_iter(
363            response.variables.iter().enumerate().map(|(index, var_kind)| {
364                if var_kind.universe() != ty::UniverseIndex::ROOT {
365                    // A variable from inside a binder of the query. While ideally these shouldn't
366                    // exist at all (see the FIXME at the start of this method), we have to deal with
367                    // them for now.
368                    delegate.instantiate_canonical_var_with_infer(var_kind, span, |idx| {
369                        prev_universe + idx.index()
370                    })
371                } else if var_kind.is_existential() {
372                    // As an optimization we sometimes avoid creating a new inference variable here.
373                    //
374                    // All new inference variables we create start out in the current universe of the caller.
375                    // This is conceptually wrong as these inference variables would be able to name
376                    // more placeholders then they should be able to. However the inference variables have
377                    // to "come from somewhere", so by equating them with the original values of the caller
378                    // later on, we pull them down into their correct universe again.
379                    if let Some(v) = opt_values[ty::BoundVar::from_usize(index)] {
380                        v
381                    } else {
382                        delegate
383                            .instantiate_canonical_var_with_infer(var_kind, span, |_| prev_universe)
384                    }
385                } else {
386                    // For placeholders which were already part of the input, we simply map this
387                    // universal bound variable back the placeholder of the input.
388                    original_values[var_kind.expect_placeholder_index()]
389                }
390            }),
391        );
392
393        CanonicalVarValues { var_values }
394    }
395
396    /// Unify the `original_values` with the `var_values` returned by the canonical query..
397    ///
398    /// This assumes that this unification will always succeed. This is the case when
399    /// applying a query response right away. However, calling a canonical query, doing any
400    /// other kind of trait solving, and only then instantiating the result of the query
401    /// can cause the instantiation to fail. This is not supported and we ICE in this case.
402    ///
403    /// We always structurally instantiate aliases. Relating aliases needs to be different
404    /// depending on whether the alias is *rigid* or not. We're only really able to tell
405    /// whether an alias is rigid by using the trait solver. When instantiating a response
406    /// from the solver we assume that the solver correctly handled aliases and therefore
407    /// always relate them structurally here.
408    #[instrument(level = "trace", skip(delegate))]
409    fn unify_query_var_values(
410        delegate: &D,
411        param_env: I::ParamEnv,
412        original_values: &[I::GenericArg],
413        var_values: CanonicalVarValues<I>,
414        span: I::Span,
415    ) {
416        assert_eq!(original_values.len(), var_values.len());
417
418        for (&orig, response) in iter::zip(original_values, var_values.var_values.iter()) {
419            let goals =
420                delegate.eq_structurally_relating_aliases(param_env, orig, response, span).unwrap();
421            assert!(goals.is_empty());
422        }
423    }
424
425    fn register_region_constraints(
426        &mut self,
427        outlives: &[ty::OutlivesPredicate<I, I::GenericArg>],
428    ) {
429        for &ty::OutlivesPredicate(lhs, rhs) in outlives {
430            match lhs.kind() {
431                ty::GenericArgKind::Lifetime(lhs) => self.register_region_outlives(lhs, rhs),
432                ty::GenericArgKind::Type(lhs) => self.register_ty_outlives(lhs, rhs),
433                ty::GenericArgKind::Const(_) => panic!("const outlives: {lhs:?}: {rhs:?}"),
434            }
435        }
436    }
437
438    fn register_new_opaque_types(&mut self, opaque_types: &[(ty::OpaqueTypeKey<I>, I::Ty)]) {
439        for &(key, ty) in opaque_types {
440            let prev = self.delegate.register_hidden_type_in_storage(key, ty, self.origin_span);
441            // We eagerly resolve inference variables when computing the query response.
442            // This can cause previously distinct opaque type keys to now be structurally equal.
443            //
444            // To handle this, we store any duplicate entries in a separate list to check them
445            // at the end of typeck/borrowck. We could alternatively eagerly equate the hidden
446            // types here. However, doing so is difficult as it may result in nested goals and
447            // any errors may make it harder to track the control flow for diagnostics.
448            if let Some(prev) = prev {
449                self.delegate.add_duplicate_opaque_type(key, prev, self.origin_span);
450            }
451        }
452    }
453}
454
455/// Used by proof trees to be able to recompute intermediate actions while
456/// evaluating a goal. The `var_values` not only include the bound variables
457/// of the query input, but also contain all unconstrained inference vars
458/// created while evaluating this goal.
459pub(in crate::solve) fn make_canonical_state<D, T, I>(
460    delegate: &D,
461    var_values: &[I::GenericArg],
462    max_input_universe: ty::UniverseIndex,
463    data: T,
464) -> inspect::CanonicalState<I, T>
465where
466    D: SolverDelegate<Interner = I>,
467    I: Interner,
468    T: TypeFoldable<I>,
469{
470    let var_values = CanonicalVarValues { var_values: delegate.cx().mk_args(var_values) };
471    let state = inspect::State { var_values, data };
472    let state = state.fold_with(&mut EagerResolver::new(delegate));
473    Canonicalizer::canonicalize_response(delegate, max_input_universe, &mut vec![], state)
474}
475
476// FIXME: needs to be pub to be accessed by downstream
477// `rustc_trait_selection::solve::inspect::analyse`.
478pub fn instantiate_canonical_state<D, I, T: TypeFoldable<I>>(
479    delegate: &D,
480    span: I::Span,
481    param_env: I::ParamEnv,
482    orig_values: &mut Vec<I::GenericArg>,
483    state: inspect::CanonicalState<I, T>,
484) -> T
485where
486    D: SolverDelegate<Interner = I>,
487    I: Interner,
488{
489    // In case any fresh inference variables have been created between `state`
490    // and the previous instantiation, extend `orig_values` for it.
491    orig_values.extend(
492        state.value.var_values.var_values.as_slice()[orig_values.len()..]
493            .iter()
494            .map(|&arg| delegate.fresh_var_for_kind_with_span(arg, span)),
495    );
496
497    let instantiation =
498        EvalCtxt::compute_query_response_instantiation_values(delegate, orig_values, &state, span);
499
500    let inspect::State { var_values, data } = delegate.instantiate_canonical(state, instantiation);
501
502    EvalCtxt::unify_query_var_values(delegate, param_env, orig_values, var_values, span);
503    data
504}