rustc_pattern_analysis/
rustc.rs

1use std::cell::Cell;
2use std::fmt;
3use std::iter::once;
4
5use rustc_abi::{FIRST_VARIANT, FieldIdx, Integer, VariantIdx};
6use rustc_arena::DroplessArena;
7use rustc_hir::HirId;
8use rustc_hir::def_id::DefId;
9use rustc_index::{Idx, IndexVec};
10use rustc_middle::middle::stability::EvalResult;
11use rustc_middle::mir::{self, Const};
12use rustc_middle::thir::{self, Pat, PatKind, PatRange, PatRangeBoundary};
13use rustc_middle::ty::layout::IntegerExt;
14use rustc_middle::ty::{
15    self, FieldDef, OpaqueTypeKey, ScalarInt, Ty, TyCtxt, TypeVisitableExt, VariantDef,
16};
17use rustc_middle::{bug, span_bug};
18use rustc_session::lint;
19use rustc_span::{DUMMY_SP, ErrorGuaranteed, Span, sym};
20
21use crate::constructor::Constructor::*;
22use crate::constructor::{
23    IntRange, MaybeInfiniteInt, OpaqueId, RangeEnd, Slice, SliceKind, VariantVisibility,
24};
25use crate::lints::lint_nonexhaustive_missing_variants;
26use crate::pat_column::PatternColumn;
27use crate::rustc::print::EnumInfo;
28use crate::usefulness::{PlaceValidity, compute_match_usefulness};
29use crate::{PatCx, PrivateUninhabitedField, errors};
30
31mod print;
32
33// Re-export rustc-specific versions of all these types.
34pub type Constructor<'p, 'tcx> = crate::constructor::Constructor<RustcPatCtxt<'p, 'tcx>>;
35pub type ConstructorSet<'p, 'tcx> = crate::constructor::ConstructorSet<RustcPatCtxt<'p, 'tcx>>;
36pub type DeconstructedPat<'p, 'tcx> = crate::pat::DeconstructedPat<RustcPatCtxt<'p, 'tcx>>;
37pub type MatchArm<'p, 'tcx> = crate::MatchArm<'p, RustcPatCtxt<'p, 'tcx>>;
38pub type RedundancyExplanation<'p, 'tcx> =
39    crate::usefulness::RedundancyExplanation<'p, RustcPatCtxt<'p, 'tcx>>;
40pub type Usefulness<'p, 'tcx> = crate::usefulness::Usefulness<'p, RustcPatCtxt<'p, 'tcx>>;
41pub type UsefulnessReport<'p, 'tcx> =
42    crate::usefulness::UsefulnessReport<'p, RustcPatCtxt<'p, 'tcx>>;
43pub type WitnessPat<'p, 'tcx> = crate::pat::WitnessPat<RustcPatCtxt<'p, 'tcx>>;
44
45/// A type which has gone through `cx.reveal_opaque_ty`, i.e. if it was opaque it was replaced by
46/// the hidden type if allowed in the current body. This ensures we consistently inspect the hidden
47/// types when we should.
48///
49/// Use `.inner()` or deref to get to the `Ty<'tcx>`.
50#[repr(transparent)]
51#[derive(Clone, Copy, PartialEq, Eq, Hash)]
52pub struct RevealedTy<'tcx>(Ty<'tcx>);
53
54impl<'tcx> fmt::Display for RevealedTy<'tcx> {
55    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
56        self.0.fmt(fmt)
57    }
58}
59
60impl<'tcx> fmt::Debug for RevealedTy<'tcx> {
61    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
62        self.0.fmt(fmt)
63    }
64}
65
66impl<'tcx> std::ops::Deref for RevealedTy<'tcx> {
67    type Target = Ty<'tcx>;
68    fn deref(&self) -> &Self::Target {
69        &self.0
70    }
71}
72
73impl<'tcx> RevealedTy<'tcx> {
74    pub fn inner(self) -> Ty<'tcx> {
75        self.0
76    }
77}
78
79#[derive(Clone)]
80pub struct RustcPatCtxt<'p, 'tcx: 'p> {
81    pub tcx: TyCtxt<'tcx>,
82    pub typeck_results: &'tcx ty::TypeckResults<'tcx>,
83    /// The module in which the match occurs. This is necessary for
84    /// checking inhabited-ness of types because whether a type is (visibly)
85    /// inhabited can depend on whether it was defined in the current module or
86    /// not. E.g., `struct Foo { _private: ! }` cannot be seen to be empty
87    /// outside its module and should not be matchable with an empty match statement.
88    pub module: DefId,
89    pub typing_env: ty::TypingEnv<'tcx>,
90    /// To allocate the result of `self.ctor_sub_tys()`
91    pub dropless_arena: &'p DroplessArena,
92    /// Lint level at the match.
93    pub match_lint_level: HirId,
94    /// The span of the whole match, if applicable.
95    pub whole_match_span: Option<Span>,
96    /// Span of the scrutinee.
97    pub scrut_span: Span,
98    /// Only produce `NON_EXHAUSTIVE_OMITTED_PATTERNS` lint on refutable patterns.
99    pub refutable: bool,
100    /// Whether the data at the scrutinee is known to be valid. This is false if the scrutinee comes
101    /// from a union field, a pointer deref, or a reference deref (pending opsem decisions).
102    pub known_valid_scrutinee: bool,
103    pub internal_state: RustcPatCtxtState,
104}
105
106/// Private fields of [`RustcPatCtxt`], separated out to permit record initialization syntax.
107#[derive(Clone, Default)]
108pub struct RustcPatCtxtState {
109    /// Has a deref pattern been lowered? This is initialized to `false` and is updated by
110    /// [`RustcPatCtxt::lower_pat`] in order to avoid performing deref-pattern-specific validation
111    /// for everything containing patterns.
112    has_lowered_deref_pat: Cell<bool>,
113}
114
115impl<'p, 'tcx: 'p> fmt::Debug for RustcPatCtxt<'p, 'tcx> {
116    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
117        f.debug_struct("RustcPatCtxt").finish()
118    }
119}
120
121impl<'p, 'tcx: 'p> RustcPatCtxt<'p, 'tcx> {
122    /// Type inference occasionally gives us opaque types in places where corresponding patterns
123    /// have more specific types. To avoid inconsistencies as well as detect opaque uninhabited
124    /// types, we use the corresponding concrete type if possible.
125    // FIXME(#132279): This will be unnecessary once we have a TypingMode which supports revealing
126    // opaque types defined in a body.
127    #[inline]
128    pub fn reveal_opaque_ty(&self, ty: Ty<'tcx>) -> RevealedTy<'tcx> {
129        fn reveal_inner<'tcx>(cx: &RustcPatCtxt<'_, 'tcx>, ty: Ty<'tcx>) -> RevealedTy<'tcx> {
130            let ty::Alias(ty::Opaque, alias_ty) = *ty.kind() else { bug!() };
131            if let Some(local_def_id) = alias_ty.def_id.as_local() {
132                let key = ty::OpaqueTypeKey { def_id: local_def_id, args: alias_ty.args };
133                if let Some(ty) = cx.reveal_opaque_key(key) {
134                    return RevealedTy(ty);
135                }
136            }
137            RevealedTy(ty)
138        }
139        if let ty::Alias(ty::Opaque, _) = ty.kind() {
140            reveal_inner(self, ty)
141        } else {
142            RevealedTy(ty)
143        }
144    }
145
146    /// Returns the hidden type corresponding to this key if the body under analysis is allowed to
147    /// know it.
148    fn reveal_opaque_key(&self, key: OpaqueTypeKey<'tcx>) -> Option<Ty<'tcx>> {
149        self.typeck_results
150            .concrete_opaque_types
151            .get(&key.def_id)
152            .map(|x| ty::EarlyBinder::bind(x.ty).instantiate(self.tcx, key.args))
153    }
154    // This can take a non-revealed `Ty` because it reveals opaques itself.
155    pub fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool {
156        !ty.inhabited_predicate(self.tcx).apply_revealing_opaque(
157            self.tcx,
158            self.typing_env,
159            self.module,
160            &|key| self.reveal_opaque_key(key),
161        )
162    }
163
164    /// Returns whether the given type is an enum from another crate declared `#[non_exhaustive]`.
165    pub fn is_foreign_non_exhaustive_enum(&self, ty: RevealedTy<'tcx>) -> bool {
166        match ty.kind() {
167            ty::Adt(def, ..) => def.variant_list_has_applicable_non_exhaustive(),
168            _ => false,
169        }
170    }
171
172    /// Whether the range denotes the fictitious values before `isize::MIN` or after
173    /// `usize::MAX`/`isize::MAX` (see doc of [`IntRange::split`] for why these exist).
174    pub fn is_range_beyond_boundaries(&self, range: &IntRange, ty: RevealedTy<'tcx>) -> bool {
175        ty.is_ptr_sized_integral() && {
176            // The two invalid ranges are `NegInfinity..isize::MIN` (represented as
177            // `NegInfinity..0`), and `{u,i}size::MAX+1..PosInfinity`. `hoist_pat_range_bdy`
178            // converts `MAX+1` to `PosInfinity`, and we couldn't have `PosInfinity` in `range.lo`
179            // otherwise.
180            let lo = self.hoist_pat_range_bdy(range.lo, ty);
181            matches!(lo, PatRangeBoundary::PosInfinity)
182                || matches!(range.hi, MaybeInfiniteInt::Finite(0))
183        }
184    }
185
186    pub(crate) fn variant_sub_tys(
187        &self,
188        ty: RevealedTy<'tcx>,
189        variant: &'tcx VariantDef,
190    ) -> impl Iterator<Item = (&'tcx FieldDef, RevealedTy<'tcx>)> {
191        let ty::Adt(_, args) = ty.kind() else { bug!() };
192        variant.fields.iter().map(move |field| {
193            let ty = field.ty(self.tcx, args);
194            // `field.ty()` doesn't normalize after instantiating.
195            let ty = self.tcx.normalize_erasing_regions(self.typing_env, ty);
196            let ty = self.reveal_opaque_ty(ty);
197            (field, ty)
198        })
199    }
200
201    pub(crate) fn variant_index_for_adt(
202        ctor: &Constructor<'p, 'tcx>,
203        adt: ty::AdtDef<'tcx>,
204    ) -> VariantIdx {
205        match *ctor {
206            Variant(idx) => idx,
207            Struct | UnionField => {
208                assert!(!adt.is_enum());
209                FIRST_VARIANT
210            }
211            _ => bug!("bad constructor {:?} for adt {:?}", ctor, adt),
212        }
213    }
214
215    /// Returns the types of the fields for a given constructor. The result must have a length of
216    /// `ctor.arity()`.
217    pub(crate) fn ctor_sub_tys(
218        &self,
219        ctor: &Constructor<'p, 'tcx>,
220        ty: RevealedTy<'tcx>,
221    ) -> impl Iterator<Item = (RevealedTy<'tcx>, PrivateUninhabitedField)> + ExactSizeIterator {
222        fn reveal_and_alloc<'a, 'tcx>(
223            cx: &'a RustcPatCtxt<'_, 'tcx>,
224            iter: impl Iterator<Item = Ty<'tcx>>,
225        ) -> &'a [(RevealedTy<'tcx>, PrivateUninhabitedField)] {
226            cx.dropless_arena.alloc_from_iter(
227                iter.map(|ty| cx.reveal_opaque_ty(ty))
228                    .map(|ty| (ty, PrivateUninhabitedField(false))),
229            )
230        }
231        let cx = self;
232        let slice = match ctor {
233            Struct | Variant(_) | UnionField => match ty.kind() {
234                ty::Tuple(fs) => reveal_and_alloc(cx, fs.iter()),
235                ty::Adt(adt, _) => {
236                    let variant = &adt.variant(RustcPatCtxt::variant_index_for_adt(&ctor, *adt));
237                    let tys = cx.variant_sub_tys(ty, variant).map(|(field, ty)| {
238                        let is_visible =
239                            adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx);
240                        let is_uninhabited = cx.is_uninhabited(*ty);
241                        let is_unstable = cx.tcx.lookup_stability(field.did).is_some_and(|stab| {
242                            stab.is_unstable() && stab.feature != sym::rustc_private
243                        });
244                        let skip = is_uninhabited && (!is_visible || is_unstable);
245                        (ty, PrivateUninhabitedField(skip))
246                    });
247                    cx.dropless_arena.alloc_from_iter(tys)
248                }
249                _ => bug!("Unexpected type for constructor `{ctor:?}`: {ty:?}"),
250            },
251            Ref => match ty.kind() {
252                ty::Ref(_, rty, _) => reveal_and_alloc(cx, once(*rty)),
253                _ => bug!("Unexpected type for `Ref` constructor: {ty:?}"),
254            },
255            Slice(slice) => match ty.builtin_index() {
256                Some(ty) => {
257                    let arity = slice.arity();
258                    reveal_and_alloc(cx, (0..arity).map(|_| ty))
259                }
260                None => bug!("bad slice pattern {:?} {:?}", ctor, ty),
261            },
262            DerefPattern(pointee_ty) => reveal_and_alloc(cx, once(pointee_ty.inner())),
263            Bool(..) | IntRange(..) | F16Range(..) | F32Range(..) | F64Range(..)
264            | F128Range(..) | Str(..) | Opaque(..) | Never | NonExhaustive | Hidden | Missing
265            | PrivateUninhabited | Wildcard => &[],
266            Or => {
267                bug!("called `Fields::wildcards` on an `Or` ctor")
268            }
269        };
270        slice.iter().copied()
271    }
272
273    /// The number of fields for this constructor.
274    pub(crate) fn ctor_arity(&self, ctor: &Constructor<'p, 'tcx>, ty: RevealedTy<'tcx>) -> usize {
275        match ctor {
276            Struct | Variant(_) | UnionField => match ty.kind() {
277                ty::Tuple(fs) => fs.len(),
278                ty::Adt(adt, ..) => {
279                    let variant_idx = RustcPatCtxt::variant_index_for_adt(&ctor, *adt);
280                    adt.variant(variant_idx).fields.len()
281                }
282                _ => bug!("Unexpected type for constructor `{ctor:?}`: {ty:?}"),
283            },
284            Ref | DerefPattern(_) => 1,
285            Slice(slice) => slice.arity(),
286            Bool(..) | IntRange(..) | F16Range(..) | F32Range(..) | F64Range(..)
287            | F128Range(..) | Str(..) | Opaque(..) | Never | NonExhaustive | Hidden | Missing
288            | PrivateUninhabited | Wildcard => 0,
289            Or => bug!("The `Or` constructor doesn't have a fixed arity"),
290        }
291    }
292
293    /// Creates a set that represents all the constructors of `ty`.
294    ///
295    /// See [`crate::constructor`] for considerations of emptiness.
296    pub fn ctors_for_ty(
297        &self,
298        ty: RevealedTy<'tcx>,
299    ) -> Result<ConstructorSet<'p, 'tcx>, ErrorGuaranteed> {
300        let cx = self;
301        let make_uint_range = |start, end| {
302            IntRange::from_range(
303                MaybeInfiniteInt::new_finite_uint(start),
304                MaybeInfiniteInt::new_finite_uint(end),
305                RangeEnd::Included,
306            )
307        };
308        // Abort on type error.
309        ty.error_reported()?;
310        // This determines the set of all possible constructors for the type `ty`. For numbers,
311        // arrays and slices we use ranges and variable-length slices when appropriate.
312        Ok(match ty.kind() {
313            ty::Bool => ConstructorSet::Bool,
314            ty::Char => {
315                // The valid Unicode Scalar Value ranges.
316                ConstructorSet::Integers {
317                    range_1: make_uint_range('\u{0000}' as u128, '\u{D7FF}' as u128),
318                    range_2: Some(make_uint_range('\u{E000}' as u128, '\u{10FFFF}' as u128)),
319                }
320            }
321            &ty::Int(ity) => {
322                let range = if ty.is_ptr_sized_integral() {
323                    // The min/max values of `isize` are not allowed to be observed.
324                    IntRange {
325                        lo: MaybeInfiniteInt::NegInfinity,
326                        hi: MaybeInfiniteInt::PosInfinity,
327                    }
328                } else {
329                    let size = Integer::from_int_ty(&cx.tcx, ity).size().bits();
330                    let min = 1u128 << (size - 1);
331                    let max = min - 1;
332                    let min = MaybeInfiniteInt::new_finite_int(min, size);
333                    let max = MaybeInfiniteInt::new_finite_int(max, size);
334                    IntRange::from_range(min, max, RangeEnd::Included)
335                };
336                ConstructorSet::Integers { range_1: range, range_2: None }
337            }
338            &ty::Uint(uty) => {
339                let range = if ty.is_ptr_sized_integral() {
340                    // The max value of `usize` is not allowed to be observed.
341                    let lo = MaybeInfiniteInt::new_finite_uint(0);
342                    IntRange { lo, hi: MaybeInfiniteInt::PosInfinity }
343                } else {
344                    let size = Integer::from_uint_ty(&cx.tcx, uty).size();
345                    let max = size.truncate(u128::MAX);
346                    make_uint_range(0, max)
347                };
348                ConstructorSet::Integers { range_1: range, range_2: None }
349            }
350            ty::Slice(sub_ty) => ConstructorSet::Slice {
351                array_len: None,
352                subtype_is_empty: cx.is_uninhabited(*sub_ty),
353            },
354            ty::Array(sub_ty, len) => {
355                // We treat arrays of a constant but unknown length like slices.
356                ConstructorSet::Slice {
357                    array_len: len.try_to_target_usize(cx.tcx).map(|l| l as usize),
358                    subtype_is_empty: cx.is_uninhabited(*sub_ty),
359                }
360            }
361            ty::Adt(def, args) if def.is_enum() => {
362                let is_declared_nonexhaustive = cx.is_foreign_non_exhaustive_enum(ty);
363                if def.variants().is_empty() && !is_declared_nonexhaustive {
364                    ConstructorSet::NoConstructors
365                } else {
366                    let mut variants =
367                        IndexVec::from_elem(VariantVisibility::Visible, def.variants());
368                    for (idx, v) in def.variants().iter_enumerated() {
369                        let variant_def_id = def.variant(idx).def_id;
370                        // Visibly uninhabited variants.
371                        let is_inhabited = v
372                            .inhabited_predicate(cx.tcx, *def)
373                            .instantiate(cx.tcx, args)
374                            .apply_revealing_opaque(cx.tcx, cx.typing_env, cx.module, &|key| {
375                                cx.reveal_opaque_key(key)
376                            });
377                        // Variants that depend on a disabled unstable feature.
378                        let is_unstable = matches!(
379                            cx.tcx.eval_stability(variant_def_id, None, DUMMY_SP, None),
380                            EvalResult::Deny { .. }
381                        );
382                        // Foreign `#[doc(hidden)]` variants.
383                        let is_doc_hidden =
384                            cx.tcx.is_doc_hidden(variant_def_id) && !variant_def_id.is_local();
385                        let visibility = if !is_inhabited {
386                            // FIXME: handle empty+hidden
387                            VariantVisibility::Empty
388                        } else if is_unstable || is_doc_hidden {
389                            VariantVisibility::Hidden
390                        } else {
391                            VariantVisibility::Visible
392                        };
393                        variants[idx] = visibility;
394                    }
395
396                    ConstructorSet::Variants { variants, non_exhaustive: is_declared_nonexhaustive }
397                }
398            }
399            ty::Adt(def, _) if def.is_union() => ConstructorSet::Union,
400            ty::Adt(..) | ty::Tuple(..) => {
401                ConstructorSet::Struct { empty: cx.is_uninhabited(ty.inner()) }
402            }
403            ty::Ref(..) => ConstructorSet::Ref,
404            ty::Never => ConstructorSet::NoConstructors,
405            // This type is one for which we cannot list constructors, like `str` or `f64`.
406            // FIXME(Nadrieril): which of these are actually allowed?
407            ty::Float(_)
408            | ty::Str
409            | ty::Foreign(_)
410            | ty::RawPtr(_, _)
411            | ty::FnDef(_, _)
412            | ty::FnPtr(..)
413            | ty::Pat(_, _)
414            | ty::Dynamic(_, _, _)
415            | ty::Closure(..)
416            | ty::CoroutineClosure(..)
417            | ty::Coroutine(_, _)
418            | ty::UnsafeBinder(_)
419            | ty::Alias(_, _)
420            | ty::Param(_)
421            | ty::Error(_) => ConstructorSet::Unlistable,
422            ty::CoroutineWitness(_, _) | ty::Bound(_, _) | ty::Placeholder(_) | ty::Infer(_) => {
423                bug!("Encountered unexpected type in `ConstructorSet::for_ty`: {ty:?}")
424            }
425        })
426    }
427
428    pub(crate) fn lower_pat_range_bdy(
429        &self,
430        bdy: PatRangeBoundary<'tcx>,
431        ty: RevealedTy<'tcx>,
432    ) -> MaybeInfiniteInt {
433        match bdy {
434            PatRangeBoundary::NegInfinity => MaybeInfiniteInt::NegInfinity,
435            PatRangeBoundary::Finite(value) => {
436                let bits = value.eval_bits(self.tcx, self.typing_env);
437                match *ty.kind() {
438                    ty::Int(ity) => {
439                        let size = Integer::from_int_ty(&self.tcx, ity).size().bits();
440                        MaybeInfiniteInt::new_finite_int(bits, size)
441                    }
442                    _ => MaybeInfiniteInt::new_finite_uint(bits),
443                }
444            }
445            PatRangeBoundary::PosInfinity => MaybeInfiniteInt::PosInfinity,
446        }
447    }
448
449    /// Note: the input patterns must have been lowered through
450    /// `rustc_mir_build::thir::pattern::check_match::MatchVisitor::lower_pattern`.
451    pub fn lower_pat(&self, pat: &'p Pat<'tcx>) -> DeconstructedPat<'p, 'tcx> {
452        let cx = self;
453        let ty = cx.reveal_opaque_ty(pat.ty);
454        let ctor;
455        let arity;
456        let fields: Vec<_>;
457        match &pat.kind {
458            PatKind::AscribeUserType { subpattern, .. }
459            | PatKind::ExpandedConstant { subpattern, .. } => return self.lower_pat(subpattern),
460            PatKind::Binding { subpattern: Some(subpat), .. } => return self.lower_pat(subpat),
461            PatKind::Missing | PatKind::Binding { subpattern: None, .. } | PatKind::Wild => {
462                ctor = Wildcard;
463                fields = vec![];
464                arity = 0;
465            }
466            PatKind::Deref { subpattern } => {
467                fields = vec![self.lower_pat(subpattern).at_index(0)];
468                arity = 1;
469                ctor = match ty.kind() {
470                    ty::Ref(..) => Ref,
471                    _ => span_bug!(
472                        pat.span,
473                        "pattern has unexpected type: pat: {:?}, ty: {:?}",
474                        pat.kind,
475                        ty.inner()
476                    ),
477                };
478            }
479            PatKind::DerefPattern { subpattern, .. } => {
480                // NB(deref_patterns): This assumes the deref pattern is matching on a trusted
481                // `DerefPure` type. If the `Deref` impl isn't trusted, exhaustiveness must take
482                // into account that multiple calls to deref may return different results. Hence
483                // multiple deref! patterns cannot be exhaustive together unless each is exhaustive
484                // by itself.
485                fields = vec![self.lower_pat(subpattern).at_index(0)];
486                arity = 1;
487                ctor = DerefPattern(cx.reveal_opaque_ty(subpattern.ty));
488                self.internal_state.has_lowered_deref_pat.set(true);
489            }
490            PatKind::Leaf { subpatterns } | PatKind::Variant { subpatterns, .. } => {
491                match ty.kind() {
492                    ty::Tuple(fs) => {
493                        ctor = Struct;
494                        arity = fs.len();
495                        fields = subpatterns
496                            .iter()
497                            .map(|ipat| self.lower_pat(&ipat.pattern).at_index(ipat.field.index()))
498                            .collect();
499                    }
500                    ty::Adt(adt, _) => {
501                        ctor = match pat.kind {
502                            PatKind::Leaf { .. } if adt.is_union() => UnionField,
503                            PatKind::Leaf { .. } => Struct,
504                            PatKind::Variant { variant_index, .. } => Variant(variant_index),
505                            _ => bug!(),
506                        };
507                        let variant =
508                            &adt.variant(RustcPatCtxt::variant_index_for_adt(&ctor, *adt));
509                        arity = variant.fields.len();
510                        fields = subpatterns
511                            .iter()
512                            .map(|ipat| self.lower_pat(&ipat.pattern).at_index(ipat.field.index()))
513                            .collect();
514                    }
515                    _ => span_bug!(
516                        pat.span,
517                        "pattern has unexpected type: pat: {:?}, ty: {}",
518                        pat.kind,
519                        ty.inner()
520                    ),
521                }
522            }
523            PatKind::Constant { value } => {
524                match ty.kind() {
525                    ty::Bool => {
526                        ctor = match value.try_eval_bool(cx.tcx, cx.typing_env) {
527                            Some(b) => Bool(b),
528                            None => Opaque(OpaqueId::new()),
529                        };
530                        fields = vec![];
531                        arity = 0;
532                    }
533                    ty::Char | ty::Int(_) | ty::Uint(_) => {
534                        ctor = match value.try_eval_bits(cx.tcx, cx.typing_env) {
535                            Some(bits) => {
536                                let x = match *ty.kind() {
537                                    ty::Int(ity) => {
538                                        let size = Integer::from_int_ty(&cx.tcx, ity).size().bits();
539                                        MaybeInfiniteInt::new_finite_int(bits, size)
540                                    }
541                                    _ => MaybeInfiniteInt::new_finite_uint(bits),
542                                };
543                                IntRange(IntRange::from_singleton(x))
544                            }
545                            None => Opaque(OpaqueId::new()),
546                        };
547                        fields = vec![];
548                        arity = 0;
549                    }
550                    ty::Float(ty::FloatTy::F16) => {
551                        ctor = match value.try_eval_bits(cx.tcx, cx.typing_env) {
552                            Some(bits) => {
553                                use rustc_apfloat::Float;
554                                let value = rustc_apfloat::ieee::Half::from_bits(bits);
555                                F16Range(value, value, RangeEnd::Included)
556                            }
557                            None => Opaque(OpaqueId::new()),
558                        };
559                        fields = vec![];
560                        arity = 0;
561                    }
562                    ty::Float(ty::FloatTy::F32) => {
563                        ctor = match value.try_eval_bits(cx.tcx, cx.typing_env) {
564                            Some(bits) => {
565                                use rustc_apfloat::Float;
566                                let value = rustc_apfloat::ieee::Single::from_bits(bits);
567                                F32Range(value, value, RangeEnd::Included)
568                            }
569                            None => Opaque(OpaqueId::new()),
570                        };
571                        fields = vec![];
572                        arity = 0;
573                    }
574                    ty::Float(ty::FloatTy::F64) => {
575                        ctor = match value.try_eval_bits(cx.tcx, cx.typing_env) {
576                            Some(bits) => {
577                                use rustc_apfloat::Float;
578                                let value = rustc_apfloat::ieee::Double::from_bits(bits);
579                                F64Range(value, value, RangeEnd::Included)
580                            }
581                            None => Opaque(OpaqueId::new()),
582                        };
583                        fields = vec![];
584                        arity = 0;
585                    }
586                    ty::Float(ty::FloatTy::F128) => {
587                        ctor = match value.try_eval_bits(cx.tcx, cx.typing_env) {
588                            Some(bits) => {
589                                use rustc_apfloat::Float;
590                                let value = rustc_apfloat::ieee::Quad::from_bits(bits);
591                                F128Range(value, value, RangeEnd::Included)
592                            }
593                            None => Opaque(OpaqueId::new()),
594                        };
595                        fields = vec![];
596                        arity = 0;
597                    }
598                    ty::Ref(_, t, _) if t.is_str() => {
599                        // We want a `&str` constant to behave like a `Deref` pattern, to be compatible
600                        // with other `Deref` patterns. This could have been done in `const_to_pat`,
601                        // but that causes issues with the rest of the matching code.
602                        // So here, the constructor for a `"foo"` pattern is `&` (represented by
603                        // `Ref`), and has one field. That field has constructor `Str(value)` and no
604                        // subfields.
605                        // Note: `t` is `str`, not `&str`.
606                        let ty = self.reveal_opaque_ty(*t);
607                        let subpattern = DeconstructedPat::new(Str(*value), Vec::new(), 0, ty, pat);
608                        ctor = Ref;
609                        fields = vec![subpattern.at_index(0)];
610                        arity = 1;
611                    }
612                    // All constants that can be structurally matched have already been expanded
613                    // into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
614                    // opaque.
615                    _ => {
616                        ctor = Opaque(OpaqueId::new());
617                        fields = vec![];
618                        arity = 0;
619                    }
620                }
621            }
622            PatKind::Range(patrange) => {
623                let PatRange { lo, hi, end, .. } = patrange.as_ref();
624                let end = match end {
625                    rustc_hir::RangeEnd::Included => RangeEnd::Included,
626                    rustc_hir::RangeEnd::Excluded => RangeEnd::Excluded,
627                };
628                ctor = match ty.kind() {
629                    ty::Char | ty::Int(_) | ty::Uint(_) => {
630                        let lo = cx.lower_pat_range_bdy(*lo, ty);
631                        let hi = cx.lower_pat_range_bdy(*hi, ty);
632                        IntRange(IntRange::from_range(lo, hi, end))
633                    }
634                    ty::Float(fty) => {
635                        use rustc_apfloat::Float;
636                        let lo = lo.as_finite().map(|c| c.eval_bits(cx.tcx, cx.typing_env));
637                        let hi = hi.as_finite().map(|c| c.eval_bits(cx.tcx, cx.typing_env));
638                        match fty {
639                            ty::FloatTy::F16 => {
640                                use rustc_apfloat::ieee::Half;
641                                let lo = lo.map(Half::from_bits).unwrap_or(-Half::INFINITY);
642                                let hi = hi.map(Half::from_bits).unwrap_or(Half::INFINITY);
643                                F16Range(lo, hi, end)
644                            }
645                            ty::FloatTy::F32 => {
646                                use rustc_apfloat::ieee::Single;
647                                let lo = lo.map(Single::from_bits).unwrap_or(-Single::INFINITY);
648                                let hi = hi.map(Single::from_bits).unwrap_or(Single::INFINITY);
649                                F32Range(lo, hi, end)
650                            }
651                            ty::FloatTy::F64 => {
652                                use rustc_apfloat::ieee::Double;
653                                let lo = lo.map(Double::from_bits).unwrap_or(-Double::INFINITY);
654                                let hi = hi.map(Double::from_bits).unwrap_or(Double::INFINITY);
655                                F64Range(lo, hi, end)
656                            }
657                            ty::FloatTy::F128 => {
658                                use rustc_apfloat::ieee::Quad;
659                                let lo = lo.map(Quad::from_bits).unwrap_or(-Quad::INFINITY);
660                                let hi = hi.map(Quad::from_bits).unwrap_or(Quad::INFINITY);
661                                F128Range(lo, hi, end)
662                            }
663                        }
664                    }
665                    _ => span_bug!(pat.span, "invalid type for range pattern: {}", ty.inner()),
666                };
667                fields = vec![];
668                arity = 0;
669            }
670            PatKind::Array { prefix, slice, suffix } | PatKind::Slice { prefix, slice, suffix } => {
671                let array_len = match ty.kind() {
672                    ty::Array(_, length) => Some(
673                        length
674                            .try_to_target_usize(cx.tcx)
675                            .expect("expected len of array pat to be definite")
676                            as usize,
677                    ),
678                    ty::Slice(_) => None,
679                    _ => span_bug!(pat.span, "bad ty {} for slice pattern", ty.inner()),
680                };
681                let kind = if slice.is_some() {
682                    SliceKind::VarLen(prefix.len(), suffix.len())
683                } else {
684                    SliceKind::FixedLen(prefix.len() + suffix.len())
685                };
686                ctor = Slice(Slice::new(array_len, kind));
687                fields = prefix
688                    .iter()
689                    .chain(suffix.iter())
690                    .map(|p| self.lower_pat(&*p))
691                    .enumerate()
692                    .map(|(i, p)| p.at_index(i))
693                    .collect();
694                arity = kind.arity();
695            }
696            PatKind::Or { .. } => {
697                ctor = Or;
698                let pats = expand_or_pat(pat);
699                fields = pats
700                    .into_iter()
701                    .map(|p| self.lower_pat(p))
702                    .enumerate()
703                    .map(|(i, p)| p.at_index(i))
704                    .collect();
705                arity = fields.len();
706            }
707            PatKind::Never => {
708                // A never pattern matches all the values of its type (namely none). Moreover it
709                // must be compatible with other constructors, since we can use `!` on a type like
710                // `Result<!, !>` which has other constructors. Hence we lower it as a wildcard.
711                ctor = Wildcard;
712                fields = vec![];
713                arity = 0;
714            }
715            PatKind::Error(_) => {
716                ctor = Opaque(OpaqueId::new());
717                fields = vec![];
718                arity = 0;
719            }
720        }
721        DeconstructedPat::new(ctor, fields, arity, ty, pat)
722    }
723
724    /// Convert back to a `thir::PatRangeBoundary` for diagnostic purposes.
725    /// Note: it is possible to get `isize/usize::MAX+1` here, as explained in the doc for
726    /// [`IntRange::split`]. This cannot be represented as a `Const`, so we represent it with
727    /// `PosInfinity`.
728    fn hoist_pat_range_bdy(
729        &self,
730        miint: MaybeInfiniteInt,
731        ty: RevealedTy<'tcx>,
732    ) -> PatRangeBoundary<'tcx> {
733        use MaybeInfiniteInt::*;
734        let tcx = self.tcx;
735        match miint {
736            NegInfinity => PatRangeBoundary::NegInfinity,
737            Finite(_) => {
738                let size = ty.primitive_size(tcx);
739                let bits = match *ty.kind() {
740                    ty::Int(_) => miint.as_finite_int(size.bits()).unwrap(),
741                    _ => miint.as_finite_uint().unwrap(),
742                };
743                match ScalarInt::try_from_uint(bits, size) {
744                    Some(scalar) => {
745                        let value = mir::Const::from_scalar(tcx, scalar.into(), ty.inner());
746                        PatRangeBoundary::Finite(value)
747                    }
748                    // The value doesn't fit. Since `x >= 0` and 0 always encodes the minimum value
749                    // for a type, the problem isn't that the value is too small. So it must be too
750                    // large.
751                    None => PatRangeBoundary::PosInfinity,
752                }
753            }
754            PosInfinity => PatRangeBoundary::PosInfinity,
755        }
756    }
757
758    /// Prints an [`IntRange`] to a string for diagnostic purposes.
759    fn print_pat_range(&self, range: &IntRange, ty: RevealedTy<'tcx>) -> String {
760        use MaybeInfiniteInt::*;
761        let cx = self;
762        if matches!((range.lo, range.hi), (NegInfinity, PosInfinity)) {
763            "_".to_string()
764        } else if range.is_singleton() {
765            let lo = cx.hoist_pat_range_bdy(range.lo, ty);
766            let value = lo.as_finite().unwrap();
767            value.to_string()
768        } else {
769            // We convert to an inclusive range for diagnostics.
770            let mut end = rustc_hir::RangeEnd::Included;
771            let mut lo = cx.hoist_pat_range_bdy(range.lo, ty);
772            if matches!(lo, PatRangeBoundary::PosInfinity) {
773                // The only reason to get `PosInfinity` here is the special case where
774                // `hoist_pat_range_bdy` found `{u,i}size::MAX+1`. So the range denotes the
775                // fictitious values after `{u,i}size::MAX` (see [`IntRange::split`] for why we do
776                // this). We show this to the user as `usize::MAX..` which is slightly incorrect but
777                // probably clear enough.
778                lo = PatRangeBoundary::Finite(ty.numeric_max_val(cx.tcx).unwrap());
779            }
780            let hi = if let Some(hi) = range.hi.minus_one() {
781                hi
782            } else {
783                // The range encodes `..ty::MIN`, so we can't convert it to an inclusive range.
784                end = rustc_hir::RangeEnd::Excluded;
785                range.hi
786            };
787            let hi = cx.hoist_pat_range_bdy(hi, ty);
788            PatRange { lo, hi, end, ty: ty.inner() }.to_string()
789        }
790    }
791
792    /// Prints a [`WitnessPat`] to an owned string, for diagnostic purposes.
793    ///
794    /// This panics for patterns that don't appear in diagnostics, like float ranges.
795    pub fn print_witness_pat(&self, pat: &WitnessPat<'p, 'tcx>) -> String {
796        let cx = self;
797        let print = |p| cx.print_witness_pat(p);
798        match pat.ctor() {
799            Bool(b) => b.to_string(),
800            Str(s) => s.to_string(),
801            IntRange(range) => return self.print_pat_range(range, *pat.ty()),
802            Struct | Variant(_) | UnionField => {
803                let enum_info = match *pat.ty().kind() {
804                    ty::Adt(adt_def, _) if adt_def.is_enum() => EnumInfo::Enum {
805                        adt_def,
806                        variant_index: RustcPatCtxt::variant_index_for_adt(pat.ctor(), adt_def),
807                    },
808                    ty::Adt(..) | ty::Tuple(..) => EnumInfo::NotEnum,
809                    _ => bug!("unexpected ctor for type {:?} {:?}", pat.ctor(), *pat.ty()),
810                };
811
812                let subpatterns = pat
813                    .iter_fields()
814                    .enumerate()
815                    .map(|(i, pat)| print::FieldPat {
816                        field: FieldIdx::new(i),
817                        pattern: print(pat),
818                        is_wildcard: would_print_as_wildcard(cx.tcx, pat),
819                    })
820                    .collect::<Vec<_>>();
821
822                let mut s = String::new();
823                print::write_struct_like(
824                    &mut s,
825                    self.tcx,
826                    pat.ty().inner(),
827                    &enum_info,
828                    &subpatterns,
829                )
830                .unwrap();
831                s
832            }
833            Ref => {
834                let mut s = String::new();
835                print::write_ref_like(&mut s, pat.ty().inner(), &print(&pat.fields[0])).unwrap();
836                s
837            }
838            DerefPattern(_) if pat.ty().is_box() && !self.tcx.features().deref_patterns() => {
839                // FIXME(deref_patterns): Remove this special handling once `box_patterns` is gone.
840                // HACK(@dianne): `box _` syntax is exposed on stable in diagnostics, e.g. to
841                // witness non-exhaustiveness of `match Box::new(0) { Box { .. } if false => {} }`.
842                // To avoid changing diagnostics before deref pattern syntax is finalized, let's use
843                // `box _` syntax unless `deref_patterns` is enabled.
844                format!("box {}", print(&pat.fields[0]))
845            }
846            DerefPattern(_) => format!("deref!({})", print(&pat.fields[0])),
847            Slice(slice) => {
848                let (prefix_len, has_dot_dot) = match slice.kind {
849                    SliceKind::FixedLen(len) => (len, false),
850                    SliceKind::VarLen(prefix_len, _) => (prefix_len, true),
851                };
852
853                let (mut prefix, mut suffix) = pat.fields.split_at(prefix_len);
854
855                // If the pattern contains a `..`, but is applied to values of statically-known
856                // length (arrays), then we can slightly simplify diagnostics by merging any
857                // adjacent wildcard patterns into the `..`: `[x, _, .., _, y]` => `[x, .., y]`.
858                // (This simplification isn't allowed for slice values, because in that case
859                // `[x, .., y]` would match some slices that `[x, _, .., _, y]` would not.)
860                if has_dot_dot && slice.array_len.is_some() {
861                    while let [rest @ .., last] = prefix
862                        && would_print_as_wildcard(cx.tcx, last)
863                    {
864                        prefix = rest;
865                    }
866                    while let [first, rest @ ..] = suffix
867                        && would_print_as_wildcard(cx.tcx, first)
868                    {
869                        suffix = rest;
870                    }
871                }
872
873                let prefix = prefix.iter().map(print).collect::<Vec<_>>();
874                let suffix = suffix.iter().map(print).collect::<Vec<_>>();
875
876                let mut s = String::new();
877                print::write_slice_like(&mut s, &prefix, has_dot_dot, &suffix).unwrap();
878                s
879            }
880            Never if self.tcx.features().never_patterns() => "!".to_string(),
881            Never | Wildcard | NonExhaustive | Hidden | PrivateUninhabited => "_".to_string(),
882            Missing { .. } => bug!(
883                "trying to convert a `Missing` constructor into a `Pat`; this is probably a bug,
884                `Missing` should have been processed in `apply_constructors`"
885            ),
886            F16Range(..) | F32Range(..) | F64Range(..) | F128Range(..) | Opaque(..) | Or => {
887                bug!("can't convert to pattern: {:?}", pat)
888            }
889        }
890    }
891}
892
893/// Returns `true` if the given pattern would be printed as a wildcard (`_`).
894fn would_print_as_wildcard(tcx: TyCtxt<'_>, p: &WitnessPat<'_, '_>) -> bool {
895    match p.ctor() {
896        Constructor::IntRange(IntRange {
897            lo: MaybeInfiniteInt::NegInfinity,
898            hi: MaybeInfiniteInt::PosInfinity,
899        })
900        | Constructor::Wildcard
901        | Constructor::NonExhaustive
902        | Constructor::Hidden
903        | Constructor::PrivateUninhabited => true,
904        Constructor::Never if !tcx.features().never_patterns() => true,
905        _ => false,
906    }
907}
908
909impl<'p, 'tcx: 'p> PatCx for RustcPatCtxt<'p, 'tcx> {
910    type Ty = RevealedTy<'tcx>;
911    type Error = ErrorGuaranteed;
912    type VariantIdx = VariantIdx;
913    type StrLit = Const<'tcx>;
914    type ArmData = HirId;
915    type PatData = &'p Pat<'tcx>;
916
917    fn is_exhaustive_patterns_feature_on(&self) -> bool {
918        self.tcx.features().exhaustive_patterns()
919    }
920
921    fn ctor_arity(&self, ctor: &crate::constructor::Constructor<Self>, ty: &Self::Ty) -> usize {
922        self.ctor_arity(ctor, *ty)
923    }
924    fn ctor_sub_tys(
925        &self,
926        ctor: &crate::constructor::Constructor<Self>,
927        ty: &Self::Ty,
928    ) -> impl Iterator<Item = (Self::Ty, PrivateUninhabitedField)> + ExactSizeIterator {
929        self.ctor_sub_tys(ctor, *ty)
930    }
931    fn ctors_for_ty(
932        &self,
933        ty: &Self::Ty,
934    ) -> Result<crate::constructor::ConstructorSet<Self>, Self::Error> {
935        self.ctors_for_ty(*ty)
936    }
937
938    fn write_variant_name(
939        f: &mut fmt::Formatter<'_>,
940        ctor: &crate::constructor::Constructor<Self>,
941        ty: &Self::Ty,
942    ) -> fmt::Result {
943        if let ty::Adt(adt, _) = ty.kind() {
944            let variant = adt.variant(Self::variant_index_for_adt(ctor, *adt));
945            write!(f, "{}", variant.name)?;
946        }
947        Ok(())
948    }
949
950    fn bug(&self, fmt: fmt::Arguments<'_>) -> Self::Error {
951        span_bug!(self.scrut_span, "{}", fmt)
952    }
953
954    fn lint_overlapping_range_endpoints(
955        &self,
956        pat: &crate::pat::DeconstructedPat<Self>,
957        overlaps_on: IntRange,
958        overlaps_with: &[&crate::pat::DeconstructedPat<Self>],
959    ) {
960        let overlap_as_pat = self.print_pat_range(&overlaps_on, *pat.ty());
961        let overlaps: Vec<_> = overlaps_with
962            .iter()
963            .map(|pat| pat.data().span)
964            .map(|span| errors::Overlap { range: overlap_as_pat.to_string(), span })
965            .collect();
966        let pat_span = pat.data().span;
967        self.tcx.emit_node_span_lint(
968            lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
969            self.match_lint_level,
970            pat_span,
971            errors::OverlappingRangeEndpoints { overlap: overlaps, range: pat_span },
972        );
973    }
974
975    fn complexity_exceeded(&self) -> Result<(), Self::Error> {
976        let span = self.whole_match_span.unwrap_or(self.scrut_span);
977        Err(self.tcx.dcx().span_err(span, "reached pattern complexity limit"))
978    }
979
980    fn lint_non_contiguous_range_endpoints(
981        &self,
982        pat: &crate::pat::DeconstructedPat<Self>,
983        gap: IntRange,
984        gapped_with: &[&crate::pat::DeconstructedPat<Self>],
985    ) {
986        let &thir_pat = pat.data();
987        let thir::PatKind::Range(range) = &thir_pat.kind else { return };
988        // Only lint when the left range is an exclusive range.
989        if range.end != rustc_hir::RangeEnd::Excluded {
990            return;
991        }
992        // `pat` is an exclusive range like `lo..gap`. `gapped_with` contains ranges that start with
993        // `gap+1`.
994        let suggested_range: String = {
995            // Suggest `lo..=gap` instead.
996            let mut suggested_range = PatRange::clone(range);
997            suggested_range.end = rustc_hir::RangeEnd::Included;
998            suggested_range.to_string()
999        };
1000        let gap_as_pat = self.print_pat_range(&gap, *pat.ty());
1001        if gapped_with.is_empty() {
1002            // If `gapped_with` is empty, `gap == T::MAX`.
1003            self.tcx.emit_node_span_lint(
1004                lint::builtin::NON_CONTIGUOUS_RANGE_ENDPOINTS,
1005                self.match_lint_level,
1006                thir_pat.span,
1007                errors::ExclusiveRangeMissingMax {
1008                    // Point at this range.
1009                    first_range: thir_pat.span,
1010                    // That's the gap that isn't covered.
1011                    max: gap_as_pat,
1012                    // Suggest `lo..=max` instead.
1013                    suggestion: suggested_range,
1014                },
1015            );
1016        } else {
1017            self.tcx.emit_node_span_lint(
1018                lint::builtin::NON_CONTIGUOUS_RANGE_ENDPOINTS,
1019                self.match_lint_level,
1020                thir_pat.span,
1021                errors::ExclusiveRangeMissingGap {
1022                    // Point at this range.
1023                    first_range: thir_pat.span,
1024                    // That's the gap that isn't covered.
1025                    gap: gap_as_pat.to_string(),
1026                    // Suggest `lo..=gap` instead.
1027                    suggestion: suggested_range,
1028                    // All these ranges skipped over `gap` which we think is probably a
1029                    // mistake.
1030                    gap_with: gapped_with
1031                        .iter()
1032                        .map(|pat| errors::GappedRange {
1033                            span: pat.data().span,
1034                            gap: gap_as_pat.to_string(),
1035                            first_range: range.to_string(),
1036                        })
1037                        .collect(),
1038                },
1039            );
1040        }
1041    }
1042
1043    fn match_may_contain_deref_pats(&self) -> bool {
1044        self.internal_state.has_lowered_deref_pat.get()
1045    }
1046
1047    fn report_mixed_deref_pat_ctors(
1048        &self,
1049        deref_pat: &crate::pat::DeconstructedPat<Self>,
1050        normal_pat: &crate::pat::DeconstructedPat<Self>,
1051    ) -> Self::Error {
1052        let deref_pattern_label = deref_pat.data().span;
1053        let normal_constructor_label = normal_pat.data().span;
1054        self.tcx.dcx().emit_err(errors::MixedDerefPatternConstructors {
1055            spans: vec![deref_pattern_label, normal_constructor_label],
1056            smart_pointer_ty: deref_pat.ty().inner(),
1057            deref_pattern_label,
1058            normal_constructor_label,
1059        })
1060    }
1061}
1062
1063/// Recursively expand this pattern into its subpatterns. Only useful for or-patterns.
1064fn expand_or_pat<'p, 'tcx>(pat: &'p Pat<'tcx>) -> Vec<&'p Pat<'tcx>> {
1065    fn expand<'p, 'tcx>(pat: &'p Pat<'tcx>, vec: &mut Vec<&'p Pat<'tcx>>) {
1066        if let PatKind::Or { pats } = &pat.kind {
1067            for pat in pats.iter() {
1068                expand(pat, vec);
1069            }
1070        } else {
1071            vec.push(pat)
1072        }
1073    }
1074
1075    let mut pats = Vec::new();
1076    expand(pat, &mut pats);
1077    pats
1078}
1079
1080/// The entrypoint for this crate. Computes whether a match is exhaustive and which of its arms are
1081/// useful, and runs some lints.
1082pub fn analyze_match<'p, 'tcx>(
1083    tycx: &RustcPatCtxt<'p, 'tcx>,
1084    arms: &[MatchArm<'p, 'tcx>],
1085    scrut_ty: Ty<'tcx>,
1086) -> Result<UsefulnessReport<'p, 'tcx>, ErrorGuaranteed> {
1087    let scrut_ty = tycx.reveal_opaque_ty(scrut_ty);
1088
1089    let scrut_validity = PlaceValidity::from_bool(tycx.known_valid_scrutinee);
1090    let report = compute_match_usefulness(
1091        tycx,
1092        arms,
1093        scrut_ty,
1094        scrut_validity,
1095        tycx.tcx.pattern_complexity_limit().0,
1096    )?;
1097
1098    // Run the non_exhaustive_omitted_patterns lint. Only run on refutable patterns to avoid hitting
1099    // `if let`s. Only run if the match is exhaustive otherwise the error is redundant.
1100    if tycx.refutable && report.non_exhaustiveness_witnesses.is_empty() {
1101        let pat_column = PatternColumn::new(arms);
1102        lint_nonexhaustive_missing_variants(tycx, arms, &pat_column, scrut_ty)?;
1103    }
1104
1105    Ok(report)
1106}