rustc_resolve/
lib.rs

1//! This crate is responsible for the part of name resolution that doesn't require type checker.
2//!
3//! Module structure of the crate is built here.
4//! Paths in macros, imports, expressions, types, patterns are resolved here.
5//! Label and lifetime names are resolved here as well.
6//!
7//! Type-relative name resolution (methods, fields, associated items) happens in `rustc_hir_analysis`.
8
9// tidy-alphabetical-start
10#![allow(internal_features)]
11#![allow(rustc::diagnostic_outside_of_impl)]
12#![allow(rustc::untranslatable_diagnostic)]
13#![feature(arbitrary_self_types)]
14#![feature(assert_matches)]
15#![feature(box_patterns)]
16#![feature(decl_macro)]
17#![feature(default_field_values)]
18#![feature(if_let_guard)]
19#![feature(iter_intersperse)]
20#![feature(ptr_as_ref_unchecked)]
21#![feature(rustc_attrs)]
22#![feature(trim_prefix_suffix)]
23#![recursion_limit = "256"]
24// tidy-alphabetical-end
25
26use std::cell::Ref;
27use std::collections::BTreeSet;
28use std::fmt::{self};
29use std::sync::Arc;
30
31use diagnostics::{ImportSuggestion, LabelSuggestion, Suggestion};
32use effective_visibilities::EffectiveVisibilitiesVisitor;
33use errors::{ParamKindInEnumDiscriminant, ParamKindInNonTrivialAnonConst};
34use imports::{Import, ImportData, ImportKind, NameResolution, PendingBinding};
35use late::{
36    ForwardGenericParamBanReason, HasGenericParams, PathSource, PatternSource,
37    UnnecessaryQualification,
38};
39use macros::{MacroRulesBinding, MacroRulesScope, MacroRulesScopeRef};
40use rustc_arena::{DroplessArena, TypedArena};
41use rustc_ast::node_id::NodeMap;
42use rustc_ast::{
43    self as ast, AngleBracketedArg, CRATE_NODE_ID, Crate, Expr, ExprKind, GenericArg, GenericArgs,
44    LitKind, NodeId, Path, attr,
45};
46use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet};
47use rustc_data_structures::intern::Interned;
48use rustc_data_structures::steal::Steal;
49use rustc_data_structures::sync::{FreezeReadGuard, FreezeWriteGuard};
50use rustc_data_structures::unord::{UnordMap, UnordSet};
51use rustc_errors::{Applicability, Diag, ErrCode, ErrorGuaranteed, LintBuffer};
52use rustc_expand::base::{DeriveResolution, SyntaxExtension, SyntaxExtensionKind};
53use rustc_feature::BUILTIN_ATTRIBUTES;
54use rustc_hir::attrs::StrippedCfgItem;
55use rustc_hir::def::Namespace::{self, *};
56use rustc_hir::def::{
57    self, CtorOf, DefKind, DocLinkResMap, LifetimeRes, MacroKinds, NonMacroAttrKind, PartialRes,
58    PerNS,
59};
60use rustc_hir::def_id::{CRATE_DEF_ID, CrateNum, DefId, LOCAL_CRATE, LocalDefId, LocalDefIdMap};
61use rustc_hir::definitions::DisambiguatorState;
62use rustc_hir::{PrimTy, TraitCandidate};
63use rustc_index::bit_set::DenseBitSet;
64use rustc_metadata::creader::CStore;
65use rustc_middle::metadata::ModChild;
66use rustc_middle::middle::privacy::EffectiveVisibilities;
67use rustc_middle::query::Providers;
68use rustc_middle::span_bug;
69use rustc_middle::ty::{
70    self, DelegationFnSig, Feed, MainDefinition, RegisteredTools, ResolverAstLowering,
71    ResolverGlobalCtxt, TyCtxt, TyCtxtFeed, Visibility,
72};
73use rustc_query_system::ich::StableHashingContext;
74use rustc_session::lint::BuiltinLintDiag;
75use rustc_session::lint::builtin::PRIVATE_MACRO_USE;
76use rustc_span::hygiene::{ExpnId, LocalExpnId, MacroKind, SyntaxContext, Transparency};
77use rustc_span::{DUMMY_SP, Ident, Macros20NormalizedIdent, Span, Symbol, kw, sym};
78use smallvec::{SmallVec, smallvec};
79use tracing::debug;
80
81type Res = def::Res<NodeId>;
82
83mod build_reduced_graph;
84mod check_unused;
85mod def_collector;
86mod diagnostics;
87mod effective_visibilities;
88mod errors;
89mod ident;
90mod imports;
91mod late;
92mod macros;
93pub mod rustdoc;
94
95pub use macros::registered_tools_ast;
96
97use crate::ref_mut::{CmCell, CmRefCell};
98
99rustc_fluent_macro::fluent_messages! { "../messages.ftl" }
100
101#[derive(Debug)]
102enum Weak {
103    Yes,
104    No,
105}
106
107#[derive(Copy, Clone, PartialEq, Debug)]
108enum Determinacy {
109    Determined,
110    Undetermined,
111}
112
113impl Determinacy {
114    fn determined(determined: bool) -> Determinacy {
115        if determined { Determinacy::Determined } else { Determinacy::Undetermined }
116    }
117}
118
119/// A specific scope in which a name can be looked up.
120#[derive(Clone, Copy, Debug)]
121enum Scope<'ra> {
122    /// Inert attributes registered by derive macros.
123    DeriveHelpers(LocalExpnId),
124    /// Inert attributes registered by derive macros, but used before they are actually declared.
125    /// This scope will exist until the compatibility lint `LEGACY_DERIVE_HELPERS`
126    /// is turned into a hard error.
127    DeriveHelpersCompat,
128    /// Textual `let`-like scopes introduced by `macro_rules!` items.
129    MacroRules(MacroRulesScopeRef<'ra>),
130    /// Names declared in the given module.
131    /// The node ID is for reporting the `PROC_MACRO_DERIVE_RESOLUTION_FALLBACK`
132    /// lint if it should be reported.
133    Module(Module<'ra>, Option<NodeId>),
134    /// Names introduced by `#[macro_use]` attributes on `extern crate` items.
135    MacroUsePrelude,
136    /// Built-in attributes.
137    BuiltinAttrs,
138    /// Extern prelude names introduced by `extern crate` items.
139    ExternPreludeItems,
140    /// Extern prelude names introduced by `--extern` flags.
141    ExternPreludeFlags,
142    /// Tool modules introduced with `#![register_tool]`.
143    ToolPrelude,
144    /// Standard library prelude introduced with an internal `#[prelude_import]` import.
145    StdLibPrelude,
146    /// Built-in types.
147    BuiltinTypes,
148}
149
150/// Names from different contexts may want to visit different subsets of all specific scopes
151/// with different restrictions when looking up the resolution.
152#[derive(Clone, Copy, Debug)]
153enum ScopeSet<'ra> {
154    /// All scopes with the given namespace.
155    All(Namespace),
156    /// A module, then extern prelude (used for mixed 2015-2018 mode in macros).
157    ModuleAndExternPrelude(Namespace, Module<'ra>),
158    /// Just two extern prelude scopes.
159    ExternPrelude,
160    /// Same as `All(MacroNS)`, but with the given macro kind restriction.
161    Macro(MacroKind),
162}
163
164/// Everything you need to know about a name's location to resolve it.
165/// Serves as a starting point for the scope visitor.
166/// This struct is currently used only for early resolution (imports and macros),
167/// but not for late resolution yet.
168#[derive(Clone, Copy, Debug)]
169struct ParentScope<'ra> {
170    module: Module<'ra>,
171    expansion: LocalExpnId,
172    macro_rules: MacroRulesScopeRef<'ra>,
173    derives: &'ra [ast::Path],
174}
175
176impl<'ra> ParentScope<'ra> {
177    /// Creates a parent scope with the passed argument used as the module scope component,
178    /// and other scope components set to default empty values.
179    fn module(module: Module<'ra>, arenas: &'ra ResolverArenas<'ra>) -> ParentScope<'ra> {
180        ParentScope {
181            module,
182            expansion: LocalExpnId::ROOT,
183            macro_rules: arenas.alloc_macro_rules_scope(MacroRulesScope::Empty),
184            derives: &[],
185        }
186    }
187}
188
189#[derive(Copy, Debug, Clone)]
190struct InvocationParent {
191    parent_def: LocalDefId,
192    impl_trait_context: ImplTraitContext,
193    in_attr: bool,
194}
195
196impl InvocationParent {
197    const ROOT: Self = Self {
198        parent_def: CRATE_DEF_ID,
199        impl_trait_context: ImplTraitContext::Existential,
200        in_attr: false,
201    };
202}
203
204#[derive(Copy, Debug, Clone)]
205enum ImplTraitContext {
206    Existential,
207    Universal,
208    InBinding,
209}
210
211/// Used for tracking import use types which will be used for redundant import checking.
212///
213/// ### Used::Scope Example
214///
215/// ```rust,compile_fail
216/// #![deny(redundant_imports)]
217/// use std::mem::drop;
218/// fn main() {
219///     let s = Box::new(32);
220///     drop(s);
221/// }
222/// ```
223///
224/// Used::Other is for other situations like module-relative uses.
225#[derive(Clone, Copy, PartialEq, PartialOrd, Debug)]
226enum Used {
227    Scope,
228    Other,
229}
230
231#[derive(Debug)]
232struct BindingError {
233    name: Ident,
234    origin: Vec<(Span, ast::Pat)>,
235    target: Vec<ast::Pat>,
236    could_be_path: bool,
237}
238
239#[derive(Debug)]
240enum ResolutionError<'ra> {
241    /// Error E0401: can't use type or const parameters from outer item.
242    GenericParamsFromOuterItem {
243        outer_res: Res,
244        has_generic_params: HasGenericParams,
245        def_kind: DefKind,
246        inner_item: Option<(Span, ast::ItemKind)>,
247        current_self_ty: Option<String>,
248    },
249    /// Error E0403: the name is already used for a type or const parameter in this generic
250    /// parameter list.
251    NameAlreadyUsedInParameterList(Ident, Span),
252    /// Error E0407: method is not a member of trait.
253    MethodNotMemberOfTrait(Ident, String, Option<Symbol>),
254    /// Error E0437: type is not a member of trait.
255    TypeNotMemberOfTrait(Ident, String, Option<Symbol>),
256    /// Error E0438: const is not a member of trait.
257    ConstNotMemberOfTrait(Ident, String, Option<Symbol>),
258    /// Error E0408: variable `{}` is not bound in all patterns.
259    VariableNotBoundInPattern(BindingError, ParentScope<'ra>),
260    /// Error E0409: variable `{}` is bound in inconsistent ways within the same match arm.
261    VariableBoundWithDifferentMode(Ident, Span),
262    /// Error E0415: identifier is bound more than once in this parameter list.
263    IdentifierBoundMoreThanOnceInParameterList(Ident),
264    /// Error E0416: identifier is bound more than once in the same pattern.
265    IdentifierBoundMoreThanOnceInSamePattern(Ident),
266    /// Error E0426: use of undeclared label.
267    UndeclaredLabel { name: Symbol, suggestion: Option<LabelSuggestion> },
268    /// Error E0429: `self` imports are only allowed within a `{ }` list.
269    SelfImportsOnlyAllowedWithin { root: bool, span_with_rename: Span },
270    /// Error E0430: `self` import can only appear once in the list.
271    SelfImportCanOnlyAppearOnceInTheList,
272    /// Error E0431: `self` import can only appear in an import list with a non-empty prefix.
273    SelfImportOnlyInImportListWithNonEmptyPrefix,
274    /// Error E0433: failed to resolve.
275    FailedToResolve {
276        segment: Option<Symbol>,
277        label: String,
278        suggestion: Option<Suggestion>,
279        module: Option<ModuleOrUniformRoot<'ra>>,
280    },
281    /// Error E0434: can't capture dynamic environment in a fn item.
282    CannotCaptureDynamicEnvironmentInFnItem,
283    /// Error E0435: attempt to use a non-constant value in a constant.
284    AttemptToUseNonConstantValueInConstant {
285        ident: Ident,
286        suggestion: &'static str,
287        current: &'static str,
288        type_span: Option<Span>,
289    },
290    /// Error E0530: `X` bindings cannot shadow `Y`s.
291    BindingShadowsSomethingUnacceptable {
292        shadowing_binding: PatternSource,
293        name: Symbol,
294        participle: &'static str,
295        article: &'static str,
296        shadowed_binding: Res,
297        shadowed_binding_span: Span,
298    },
299    /// Error E0128: generic parameters with a default cannot use forward-declared identifiers.
300    ForwardDeclaredGenericParam(Symbol, ForwardGenericParamBanReason),
301    // FIXME(generic_const_parameter_types): This should give custom output specifying it's only
302    // problematic to use *forward declared* parameters when the feature is enabled.
303    /// ERROR E0770: the type of const parameters must not depend on other generic parameters.
304    ParamInTyOfConstParam { name: Symbol },
305    /// generic parameters must not be used inside const evaluations.
306    ///
307    /// This error is only emitted when using `min_const_generics`.
308    ParamInNonTrivialAnonConst { name: Symbol, param_kind: ParamKindInNonTrivialAnonConst },
309    /// generic parameters must not be used inside enum discriminants.
310    ///
311    /// This error is emitted even with `generic_const_exprs`.
312    ParamInEnumDiscriminant { name: Symbol, param_kind: ParamKindInEnumDiscriminant },
313    /// Error E0735: generic parameters with a default cannot use `Self`
314    ForwardDeclaredSelf(ForwardGenericParamBanReason),
315    /// Error E0767: use of unreachable label
316    UnreachableLabel { name: Symbol, definition_span: Span, suggestion: Option<LabelSuggestion> },
317    /// Error E0323, E0324, E0325: mismatch between trait item and impl item.
318    TraitImplMismatch {
319        name: Ident,
320        kind: &'static str,
321        trait_path: String,
322        trait_item_span: Span,
323        code: ErrCode,
324    },
325    /// Error E0201: multiple impl items for the same trait item.
326    TraitImplDuplicate { name: Ident, trait_item_span: Span, old_span: Span },
327    /// Inline asm `sym` operand must refer to a `fn` or `static`.
328    InvalidAsmSym,
329    /// `self` used instead of `Self` in a generic parameter
330    LowercaseSelf,
331    /// A never pattern has a binding.
332    BindingInNeverPattern,
333}
334
335enum VisResolutionError<'a> {
336    Relative2018(Span, &'a ast::Path),
337    AncestorOnly(Span),
338    FailedToResolve(Span, String, Option<Suggestion>),
339    ExpectedFound(Span, String, Res),
340    Indeterminate(Span),
341    ModuleOnly(Span),
342}
343
344/// A minimal representation of a path segment. We use this in resolve because we synthesize 'path
345/// segments' which don't have the rest of an AST or HIR `PathSegment`.
346#[derive(Clone, Copy, Debug)]
347struct Segment {
348    ident: Ident,
349    id: Option<NodeId>,
350    /// Signals whether this `PathSegment` has generic arguments. Used to avoid providing
351    /// nonsensical suggestions.
352    has_generic_args: bool,
353    /// Signals whether this `PathSegment` has lifetime arguments.
354    has_lifetime_args: bool,
355    args_span: Span,
356}
357
358impl Segment {
359    fn from_path(path: &Path) -> Vec<Segment> {
360        path.segments.iter().map(|s| s.into()).collect()
361    }
362
363    fn from_ident(ident: Ident) -> Segment {
364        Segment {
365            ident,
366            id: None,
367            has_generic_args: false,
368            has_lifetime_args: false,
369            args_span: DUMMY_SP,
370        }
371    }
372
373    fn from_ident_and_id(ident: Ident, id: NodeId) -> Segment {
374        Segment {
375            ident,
376            id: Some(id),
377            has_generic_args: false,
378            has_lifetime_args: false,
379            args_span: DUMMY_SP,
380        }
381    }
382
383    fn names_to_string(segments: &[Segment]) -> String {
384        names_to_string(segments.iter().map(|seg| seg.ident.name))
385    }
386}
387
388impl<'a> From<&'a ast::PathSegment> for Segment {
389    fn from(seg: &'a ast::PathSegment) -> Segment {
390        let has_generic_args = seg.args.is_some();
391        let (args_span, has_lifetime_args) = if let Some(args) = seg.args.as_deref() {
392            match args {
393                GenericArgs::AngleBracketed(args) => {
394                    let found_lifetimes = args
395                        .args
396                        .iter()
397                        .any(|arg| matches!(arg, AngleBracketedArg::Arg(GenericArg::Lifetime(_))));
398                    (args.span, found_lifetimes)
399                }
400                GenericArgs::Parenthesized(args) => (args.span, true),
401                GenericArgs::ParenthesizedElided(span) => (*span, true),
402            }
403        } else {
404            (DUMMY_SP, false)
405        };
406        Segment {
407            ident: seg.ident,
408            id: Some(seg.id),
409            has_generic_args,
410            has_lifetime_args,
411            args_span,
412        }
413    }
414}
415
416/// An intermediate resolution result.
417///
418/// This refers to the thing referred by a name. The difference between `Res` and `Item` is that
419/// items are visible in their whole block, while `Res`es only from the place they are defined
420/// forward.
421#[derive(Debug, Copy, Clone)]
422enum LexicalScopeBinding<'ra> {
423    Item(NameBinding<'ra>),
424    Res(Res),
425}
426
427impl<'ra> LexicalScopeBinding<'ra> {
428    fn res(self) -> Res {
429        match self {
430            LexicalScopeBinding::Item(binding) => binding.res(),
431            LexicalScopeBinding::Res(res) => res,
432        }
433    }
434}
435
436#[derive(Copy, Clone, PartialEq, Debug)]
437enum ModuleOrUniformRoot<'ra> {
438    /// Regular module.
439    Module(Module<'ra>),
440
441    /// Virtual module that denotes resolution in a module with fallback to extern prelude.
442    /// Used for paths starting with `::` coming from 2015 edition macros
443    /// used in 2018+ edition crates.
444    ModuleAndExternPrelude(Module<'ra>),
445
446    /// Virtual module that denotes resolution in extern prelude.
447    /// Used for paths starting with `::` on 2018 edition.
448    ExternPrelude,
449
450    /// Virtual module that denotes resolution in current scope.
451    /// Used only for resolving single-segment imports. The reason it exists is that import paths
452    /// are always split into two parts, the first of which should be some kind of module.
453    CurrentScope,
454}
455
456#[derive(Debug)]
457enum PathResult<'ra> {
458    Module(ModuleOrUniformRoot<'ra>),
459    NonModule(PartialRes),
460    Indeterminate,
461    Failed {
462        span: Span,
463        label: String,
464        suggestion: Option<Suggestion>,
465        is_error_from_last_segment: bool,
466        /// The final module being resolved, for instance:
467        ///
468        /// ```compile_fail
469        /// mod a {
470        ///     mod b {
471        ///         mod c {}
472        ///     }
473        /// }
474        ///
475        /// use a::not_exist::c;
476        /// ```
477        ///
478        /// In this case, `module` will point to `a`.
479        module: Option<ModuleOrUniformRoot<'ra>>,
480        /// The segment name of target
481        segment_name: Symbol,
482        error_implied_by_parse_error: bool,
483    },
484}
485
486impl<'ra> PathResult<'ra> {
487    fn failed(
488        ident: Ident,
489        is_error_from_last_segment: bool,
490        finalize: bool,
491        error_implied_by_parse_error: bool,
492        module: Option<ModuleOrUniformRoot<'ra>>,
493        label_and_suggestion: impl FnOnce() -> (String, Option<Suggestion>),
494    ) -> PathResult<'ra> {
495        let (label, suggestion) =
496            if finalize { label_and_suggestion() } else { (String::new(), None) };
497        PathResult::Failed {
498            span: ident.span,
499            segment_name: ident.name,
500            label,
501            suggestion,
502            is_error_from_last_segment,
503            module,
504            error_implied_by_parse_error,
505        }
506    }
507}
508
509#[derive(Debug)]
510enum ModuleKind {
511    /// An anonymous module; e.g., just a block.
512    ///
513    /// ```
514    /// fn main() {
515    ///     fn f() {} // (1)
516    ///     { // This is an anonymous module
517    ///         f(); // This resolves to (2) as we are inside the block.
518    ///         fn f() {} // (2)
519    ///     }
520    ///     f(); // Resolves to (1)
521    /// }
522    /// ```
523    Block,
524    /// Any module with a name.
525    ///
526    /// This could be:
527    ///
528    /// * A normal module – either `mod from_file;` or `mod from_block { }` –
529    ///   or the crate root (which is conceptually a top-level module).
530    ///   The crate root will have `None` for the symbol.
531    /// * A trait or an enum (it implicitly contains associated types, methods and variant
532    ///   constructors).
533    Def(DefKind, DefId, Option<Symbol>),
534}
535
536impl ModuleKind {
537    /// Get name of the module.
538    fn name(&self) -> Option<Symbol> {
539        match *self {
540            ModuleKind::Block => None,
541            ModuleKind::Def(.., name) => name,
542        }
543    }
544}
545
546/// A key that identifies a binding in a given `Module`.
547///
548/// Multiple bindings in the same module can have the same key (in a valid
549/// program) if all but one of them come from glob imports.
550#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
551struct BindingKey {
552    /// The identifier for the binding, always the `normalize_to_macros_2_0` version of the
553    /// identifier.
554    ident: Macros20NormalizedIdent,
555    ns: Namespace,
556    /// When we add an underscore binding (with ident `_`) to some module, this field has
557    /// a non-zero value that uniquely identifies this binding in that module.
558    /// For non-underscore bindings this field is zero.
559    /// When a key is constructed for name lookup (as opposed to name definition), this field is
560    /// also zero, even for underscore names, so for underscores the lookup will never succeed.
561    disambiguator: u32,
562}
563
564impl BindingKey {
565    fn new(ident: Ident, ns: Namespace) -> Self {
566        BindingKey { ident: Macros20NormalizedIdent::new(ident), ns, disambiguator: 0 }
567    }
568
569    fn new_disambiguated(
570        ident: Ident,
571        ns: Namespace,
572        disambiguator: impl FnOnce() -> u32,
573    ) -> BindingKey {
574        let disambiguator = if ident.name == kw::Underscore { disambiguator() } else { 0 };
575        BindingKey { ident: Macros20NormalizedIdent::new(ident), ns, disambiguator }
576    }
577}
578
579type Resolutions<'ra> = CmRefCell<FxIndexMap<BindingKey, &'ra CmRefCell<NameResolution<'ra>>>>;
580
581/// One node in the tree of modules.
582///
583/// Note that a "module" in resolve is broader than a `mod` that you declare in Rust code. It may be one of these:
584///
585/// * `mod`
586/// * crate root (aka, top-level anonymous module)
587/// * `enum`
588/// * `trait`
589/// * curly-braced block with statements
590///
591/// You can use [`ModuleData::kind`] to determine the kind of module this is.
592struct ModuleData<'ra> {
593    /// The direct parent module (it may not be a `mod`, however).
594    parent: Option<Module<'ra>>,
595    /// What kind of module this is, because this may not be a `mod`.
596    kind: ModuleKind,
597
598    /// Mapping between names and their (possibly in-progress) resolutions in this module.
599    /// Resolutions in modules from other crates are not populated until accessed.
600    lazy_resolutions: Resolutions<'ra>,
601    /// True if this is a module from other crate that needs to be populated on access.
602    populate_on_access: CacheCell<bool>,
603    /// Used to disambiguate underscore items (`const _: T = ...`) in the module.
604    underscore_disambiguator: CmCell<u32>,
605
606    /// Macro invocations that can expand into items in this module.
607    unexpanded_invocations: CmRefCell<FxHashSet<LocalExpnId>>,
608
609    /// Whether `#[no_implicit_prelude]` is active.
610    no_implicit_prelude: bool,
611
612    glob_importers: CmRefCell<Vec<Import<'ra>>>,
613    globs: CmRefCell<Vec<Import<'ra>>>,
614
615    /// Used to memoize the traits in this module for faster searches through all traits in scope.
616    traits:
617        CmRefCell<Option<Box<[(Macros20NormalizedIdent, NameBinding<'ra>, Option<Module<'ra>>)]>>>,
618
619    /// Span of the module itself. Used for error reporting.
620    span: Span,
621
622    expansion: ExpnId,
623
624    /// Binding for implicitly declared names that come with a module,
625    /// like `self` (not yet used), or `crate`/`$crate` (for root modules).
626    self_binding: Option<NameBinding<'ra>>,
627}
628
629/// All modules are unique and allocated on a same arena,
630/// so we can use referential equality to compare them.
631#[derive(Clone, Copy, PartialEq, Eq, Hash)]
632#[rustc_pass_by_value]
633struct Module<'ra>(Interned<'ra, ModuleData<'ra>>);
634
635// Allows us to use Interned without actually enforcing (via Hash/PartialEq/...) uniqueness of the
636// contained data.
637// FIXME: We may wish to actually have at least debug-level assertions that Interned's guarantees
638// are upheld.
639impl std::hash::Hash for ModuleData<'_> {
640    fn hash<H>(&self, _: &mut H)
641    where
642        H: std::hash::Hasher,
643    {
644        unreachable!()
645    }
646}
647
648impl<'ra> ModuleData<'ra> {
649    fn new(
650        parent: Option<Module<'ra>>,
651        kind: ModuleKind,
652        expansion: ExpnId,
653        span: Span,
654        no_implicit_prelude: bool,
655        self_binding: Option<NameBinding<'ra>>,
656    ) -> Self {
657        let is_foreign = match kind {
658            ModuleKind::Def(_, def_id, _) => !def_id.is_local(),
659            ModuleKind::Block => false,
660        };
661        ModuleData {
662            parent,
663            kind,
664            lazy_resolutions: Default::default(),
665            populate_on_access: CacheCell::new(is_foreign),
666            underscore_disambiguator: CmCell::new(0),
667            unexpanded_invocations: Default::default(),
668            no_implicit_prelude,
669            glob_importers: CmRefCell::new(Vec::new()),
670            globs: CmRefCell::new(Vec::new()),
671            traits: CmRefCell::new(None),
672            span,
673            expansion,
674            self_binding,
675        }
676    }
677}
678
679impl<'ra> Module<'ra> {
680    fn for_each_child<'tcx, R: AsRef<Resolver<'ra, 'tcx>>>(
681        self,
682        resolver: &R,
683        mut f: impl FnMut(&R, Macros20NormalizedIdent, Namespace, NameBinding<'ra>),
684    ) {
685        for (key, name_resolution) in resolver.as_ref().resolutions(self).borrow().iter() {
686            if let Some(binding) = name_resolution.borrow().best_binding() {
687                f(resolver, key.ident, key.ns, binding);
688            }
689        }
690    }
691
692    fn for_each_child_mut<'tcx, R: AsMut<Resolver<'ra, 'tcx>>>(
693        self,
694        resolver: &mut R,
695        mut f: impl FnMut(&mut R, Macros20NormalizedIdent, Namespace, NameBinding<'ra>),
696    ) {
697        for (key, name_resolution) in resolver.as_mut().resolutions(self).borrow().iter() {
698            if let Some(binding) = name_resolution.borrow().best_binding() {
699                f(resolver, key.ident, key.ns, binding);
700            }
701        }
702    }
703
704    /// This modifies `self` in place. The traits will be stored in `self.traits`.
705    fn ensure_traits<'tcx>(self, resolver: &impl AsRef<Resolver<'ra, 'tcx>>) {
706        let mut traits = self.traits.borrow_mut(resolver.as_ref());
707        if traits.is_none() {
708            let mut collected_traits = Vec::new();
709            self.for_each_child(resolver, |r, name, ns, binding| {
710                if ns != TypeNS {
711                    return;
712                }
713                if let Res::Def(DefKind::Trait | DefKind::TraitAlias, def_id) = binding.res() {
714                    collected_traits.push((name, binding, r.as_ref().get_module(def_id)))
715                }
716            });
717            *traits = Some(collected_traits.into_boxed_slice());
718        }
719    }
720
721    fn res(self) -> Option<Res> {
722        match self.kind {
723            ModuleKind::Def(kind, def_id, _) => Some(Res::Def(kind, def_id)),
724            _ => None,
725        }
726    }
727
728    fn def_id(self) -> DefId {
729        self.opt_def_id().expect("`ModuleData::def_id` is called on a block module")
730    }
731
732    fn opt_def_id(self) -> Option<DefId> {
733        match self.kind {
734            ModuleKind::Def(_, def_id, _) => Some(def_id),
735            _ => None,
736        }
737    }
738
739    // `self` resolves to the first module ancestor that `is_normal`.
740    fn is_normal(self) -> bool {
741        matches!(self.kind, ModuleKind::Def(DefKind::Mod, _, _))
742    }
743
744    fn is_trait(self) -> bool {
745        matches!(self.kind, ModuleKind::Def(DefKind::Trait, _, _))
746    }
747
748    fn nearest_item_scope(self) -> Module<'ra> {
749        match self.kind {
750            ModuleKind::Def(DefKind::Enum | DefKind::Trait, ..) => {
751                self.parent.expect("enum or trait module without a parent")
752            }
753            _ => self,
754        }
755    }
756
757    /// The [`DefId`] of the nearest `mod` item ancestor (which may be this module).
758    /// This may be the crate root.
759    fn nearest_parent_mod(self) -> DefId {
760        match self.kind {
761            ModuleKind::Def(DefKind::Mod, def_id, _) => def_id,
762            _ => self.parent.expect("non-root module without parent").nearest_parent_mod(),
763        }
764    }
765
766    fn is_ancestor_of(self, mut other: Self) -> bool {
767        while self != other {
768            if let Some(parent) = other.parent {
769                other = parent;
770            } else {
771                return false;
772            }
773        }
774        true
775    }
776}
777
778impl<'ra> std::ops::Deref for Module<'ra> {
779    type Target = ModuleData<'ra>;
780
781    fn deref(&self) -> &Self::Target {
782        &self.0
783    }
784}
785
786impl<'ra> fmt::Debug for Module<'ra> {
787    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
788        match self.kind {
789            ModuleKind::Block => write!(f, "block"),
790            ModuleKind::Def(..) => write!(f, "{:?}", self.res()),
791        }
792    }
793}
794
795/// Records a possibly-private value, type, or module definition.
796#[derive(Clone, Copy, Debug)]
797struct NameBindingData<'ra> {
798    kind: NameBindingKind<'ra>,
799    ambiguity: Option<(NameBinding<'ra>, AmbiguityKind)>,
800    /// Produce a warning instead of an error when reporting ambiguities inside this binding.
801    /// May apply to indirect ambiguities under imports, so `ambiguity.is_some()` is not required.
802    warn_ambiguity: bool,
803    expansion: LocalExpnId,
804    span: Span,
805    vis: Visibility<DefId>,
806}
807
808/// All name bindings are unique and allocated on a same arena,
809/// so we can use referential equality to compare them.
810type NameBinding<'ra> = Interned<'ra, NameBindingData<'ra>>;
811
812// Allows us to use Interned without actually enforcing (via Hash/PartialEq/...) uniqueness of the
813// contained data.
814// FIXME: We may wish to actually have at least debug-level assertions that Interned's guarantees
815// are upheld.
816impl std::hash::Hash for NameBindingData<'_> {
817    fn hash<H>(&self, _: &mut H)
818    where
819        H: std::hash::Hasher,
820    {
821        unreachable!()
822    }
823}
824
825#[derive(Clone, Copy, Debug)]
826enum NameBindingKind<'ra> {
827    Res(Res),
828    Import { binding: NameBinding<'ra>, import: Import<'ra> },
829}
830
831impl<'ra> NameBindingKind<'ra> {
832    /// Is this a name binding of an import?
833    fn is_import(&self) -> bool {
834        matches!(*self, NameBindingKind::Import { .. })
835    }
836}
837
838#[derive(Debug)]
839struct PrivacyError<'ra> {
840    ident: Ident,
841    binding: NameBinding<'ra>,
842    dedup_span: Span,
843    outermost_res: Option<(Res, Ident)>,
844    parent_scope: ParentScope<'ra>,
845    /// Is the format `use a::{b,c}`?
846    single_nested: bool,
847    source: Option<ast::Expr>,
848}
849
850#[derive(Debug)]
851struct UseError<'a> {
852    err: Diag<'a>,
853    /// Candidates which user could `use` to access the missing type.
854    candidates: Vec<ImportSuggestion>,
855    /// The `DefId` of the module to place the use-statements in.
856    def_id: DefId,
857    /// Whether the diagnostic should say "instead" (as in `consider importing ... instead`).
858    instead: bool,
859    /// Extra free-form suggestion.
860    suggestion: Option<(Span, &'static str, String, Applicability)>,
861    /// Path `Segment`s at the place of use that failed. Used for accurate suggestion after telling
862    /// the user to import the item directly.
863    path: Vec<Segment>,
864    /// Whether the expected source is a call
865    is_call: bool,
866}
867
868#[derive(Clone, Copy, PartialEq, Debug)]
869enum AmbiguityKind {
870    BuiltinAttr,
871    DeriveHelper,
872    MacroRulesVsModularized,
873    GlobVsOuter,
874    GlobVsGlob,
875    GlobVsExpanded,
876    MoreExpandedVsOuter,
877}
878
879impl AmbiguityKind {
880    fn descr(self) -> &'static str {
881        match self {
882            AmbiguityKind::BuiltinAttr => "a name conflict with a builtin attribute",
883            AmbiguityKind::DeriveHelper => "a name conflict with a derive helper attribute",
884            AmbiguityKind::MacroRulesVsModularized => {
885                "a conflict between a `macro_rules` name and a non-`macro_rules` name from another module"
886            }
887            AmbiguityKind::GlobVsOuter => {
888                "a conflict between a name from a glob import and an outer scope during import or macro resolution"
889            }
890            AmbiguityKind::GlobVsGlob => "multiple glob imports of a name in the same module",
891            AmbiguityKind::GlobVsExpanded => {
892                "a conflict between a name from a glob import and a macro-expanded name in the same module during import or macro resolution"
893            }
894            AmbiguityKind::MoreExpandedVsOuter => {
895                "a conflict between a macro-expanded name and a less macro-expanded name from outer scope during import or macro resolution"
896            }
897        }
898    }
899}
900
901/// Miscellaneous bits of metadata for better ambiguity error reporting.
902#[derive(Clone, Copy, PartialEq)]
903enum AmbiguityErrorMisc {
904    SuggestCrate,
905    SuggestSelf,
906    FromPrelude,
907    None,
908}
909
910struct AmbiguityError<'ra> {
911    kind: AmbiguityKind,
912    ident: Ident,
913    b1: NameBinding<'ra>,
914    b2: NameBinding<'ra>,
915    misc1: AmbiguityErrorMisc,
916    misc2: AmbiguityErrorMisc,
917    warning: bool,
918}
919
920impl<'ra> NameBindingData<'ra> {
921    fn res(&self) -> Res {
922        match self.kind {
923            NameBindingKind::Res(res) => res,
924            NameBindingKind::Import { binding, .. } => binding.res(),
925        }
926    }
927
928    fn import_source(&self) -> NameBinding<'ra> {
929        match self.kind {
930            NameBindingKind::Import { binding, .. } => binding,
931            _ => unreachable!(),
932        }
933    }
934
935    fn is_ambiguity_recursive(&self) -> bool {
936        self.ambiguity.is_some()
937            || match self.kind {
938                NameBindingKind::Import { binding, .. } => binding.is_ambiguity_recursive(),
939                _ => false,
940            }
941    }
942
943    fn warn_ambiguity_recursive(&self) -> bool {
944        self.warn_ambiguity
945            || match self.kind {
946                NameBindingKind::Import { binding, .. } => binding.warn_ambiguity_recursive(),
947                _ => false,
948            }
949    }
950
951    fn is_possibly_imported_variant(&self) -> bool {
952        match self.kind {
953            NameBindingKind::Import { binding, .. } => binding.is_possibly_imported_variant(),
954            NameBindingKind::Res(Res::Def(
955                DefKind::Variant | DefKind::Ctor(CtorOf::Variant, ..),
956                _,
957            )) => true,
958            NameBindingKind::Res(..) => false,
959        }
960    }
961
962    fn is_extern_crate(&self) -> bool {
963        match self.kind {
964            NameBindingKind::Import { import, .. } => {
965                matches!(import.kind, ImportKind::ExternCrate { .. })
966            }
967            NameBindingKind::Res(Res::Def(_, def_id)) => def_id.is_crate_root(),
968            _ => false,
969        }
970    }
971
972    fn is_import(&self) -> bool {
973        matches!(self.kind, NameBindingKind::Import { .. })
974    }
975
976    /// The binding introduced by `#[macro_export] macro_rules` is a public import, but it might
977    /// not be perceived as such by users, so treat it as a non-import in some diagnostics.
978    fn is_import_user_facing(&self) -> bool {
979        matches!(self.kind, NameBindingKind::Import { import, .. }
980            if !matches!(import.kind, ImportKind::MacroExport))
981    }
982
983    fn is_glob_import(&self) -> bool {
984        match self.kind {
985            NameBindingKind::Import { import, .. } => import.is_glob(),
986            _ => false,
987        }
988    }
989
990    fn is_assoc_item(&self) -> bool {
991        matches!(self.res(), Res::Def(DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy, _))
992    }
993
994    fn macro_kinds(&self) -> Option<MacroKinds> {
995        self.res().macro_kinds()
996    }
997
998    // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding`
999    // at some expansion round `max(invoc, binding)` when they both emerged from macros.
1000    // Then this function returns `true` if `self` may emerge from a macro *after* that
1001    // in some later round and screw up our previously found resolution.
1002    // See more detailed explanation in
1003    // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049
1004    fn may_appear_after(
1005        &self,
1006        invoc_parent_expansion: LocalExpnId,
1007        binding: NameBinding<'_>,
1008    ) -> bool {
1009        // self > max(invoc, binding) => !(self <= invoc || self <= binding)
1010        // Expansions are partially ordered, so "may appear after" is an inversion of
1011        // "certainly appears before or simultaneously" and includes unordered cases.
1012        let self_parent_expansion = self.expansion;
1013        let other_parent_expansion = binding.expansion;
1014        let certainly_before_other_or_simultaneously =
1015            other_parent_expansion.is_descendant_of(self_parent_expansion);
1016        let certainly_before_invoc_or_simultaneously =
1017            invoc_parent_expansion.is_descendant_of(self_parent_expansion);
1018        !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously)
1019    }
1020
1021    // Its purpose is to postpone the determination of a single binding because
1022    // we can't predict whether it will be overwritten by recently expanded macros.
1023    // FIXME: How can we integrate it with the `update_resolution`?
1024    fn determined(&self) -> bool {
1025        match &self.kind {
1026            NameBindingKind::Import { binding, import, .. } if import.is_glob() => {
1027                import.parent_scope.module.unexpanded_invocations.borrow().is_empty()
1028                    && binding.determined()
1029            }
1030            _ => true,
1031        }
1032    }
1033}
1034
1035struct ExternPreludeEntry<'ra> {
1036    /// Binding from an `extern crate` item.
1037    /// The boolean flag is true is `item_binding` is non-redundant, happens either when
1038    /// `flag_binding` is `None`, or when `extern crate` introducing `item_binding` used renaming.
1039    item_binding: Option<(NameBinding<'ra>, /* introduced by item */ bool)>,
1040    /// Binding from an `--extern` flag, lazily populated on first use.
1041    flag_binding: Option<CacheCell<(PendingBinding<'ra>, /* finalized */ bool)>>,
1042}
1043
1044impl ExternPreludeEntry<'_> {
1045    fn introduced_by_item(&self) -> bool {
1046        matches!(self.item_binding, Some((_, true)))
1047    }
1048
1049    fn flag() -> Self {
1050        ExternPreludeEntry {
1051            item_binding: None,
1052            flag_binding: Some(CacheCell::new((PendingBinding::Pending, false))),
1053        }
1054    }
1055}
1056
1057struct DeriveData {
1058    resolutions: Vec<DeriveResolution>,
1059    helper_attrs: Vec<(usize, Ident)>,
1060    has_derive_copy: bool,
1061}
1062
1063struct MacroData {
1064    ext: Arc<SyntaxExtension>,
1065    nrules: usize,
1066    macro_rules: bool,
1067}
1068
1069impl MacroData {
1070    fn new(ext: Arc<SyntaxExtension>) -> MacroData {
1071        MacroData { ext, nrules: 0, macro_rules: false }
1072    }
1073}
1074
1075pub struct ResolverOutputs {
1076    pub global_ctxt: ResolverGlobalCtxt,
1077    pub ast_lowering: ResolverAstLowering,
1078}
1079
1080/// The main resolver class.
1081///
1082/// This is the visitor that walks the whole crate.
1083pub struct Resolver<'ra, 'tcx> {
1084    tcx: TyCtxt<'tcx>,
1085
1086    /// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`.
1087    expn_that_defined: UnordMap<LocalDefId, ExpnId>,
1088
1089    graph_root: Module<'ra>,
1090
1091    /// Assert that we are in speculative resolution mode.
1092    assert_speculative: bool,
1093
1094    prelude: Option<Module<'ra>> = None,
1095    extern_prelude: FxIndexMap<Macros20NormalizedIdent, ExternPreludeEntry<'ra>>,
1096
1097    /// N.B., this is used only for better diagnostics, not name resolution itself.
1098    field_names: LocalDefIdMap<Vec<Ident>>,
1099    field_defaults: LocalDefIdMap<Vec<Symbol>>,
1100
1101    /// Span of the privacy modifier in fields of an item `DefId` accessible with dot syntax.
1102    /// Used for hints during error reporting.
1103    field_visibility_spans: FxHashMap<DefId, Vec<Span>>,
1104
1105    /// All imports known to succeed or fail.
1106    determined_imports: Vec<Import<'ra>> = Vec::new(),
1107
1108    /// All non-determined imports.
1109    indeterminate_imports: Vec<Import<'ra>> = Vec::new(),
1110
1111    // Spans for local variables found during pattern resolution.
1112    // Used for suggestions during error reporting.
1113    pat_span_map: NodeMap<Span>,
1114
1115    /// Resolutions for nodes that have a single resolution.
1116    partial_res_map: NodeMap<PartialRes>,
1117    /// Resolutions for import nodes, which have multiple resolutions in different namespaces.
1118    import_res_map: NodeMap<PerNS<Option<Res>>>,
1119    /// An import will be inserted into this map if it has been used.
1120    import_use_map: FxHashMap<Import<'ra>, Used>,
1121    /// Resolutions for labels (node IDs of their corresponding blocks or loops).
1122    label_res_map: NodeMap<NodeId>,
1123    /// Resolutions for lifetimes.
1124    lifetimes_res_map: NodeMap<LifetimeRes>,
1125    /// Lifetime parameters that lowering will have to introduce.
1126    extra_lifetime_params_map: NodeMap<Vec<(Ident, NodeId, LifetimeRes)>>,
1127
1128    /// `CrateNum` resolutions of `extern crate` items.
1129    extern_crate_map: UnordMap<LocalDefId, CrateNum>,
1130    module_children: LocalDefIdMap<Vec<ModChild>>,
1131    trait_map: NodeMap<Vec<TraitCandidate>>,
1132
1133    /// A map from nodes to anonymous modules.
1134    /// Anonymous modules are pseudo-modules that are implicitly created around items
1135    /// contained within blocks.
1136    ///
1137    /// For example, if we have this:
1138    ///
1139    ///  fn f() {
1140    ///      fn g() {
1141    ///          ...
1142    ///      }
1143    ///  }
1144    ///
1145    /// There will be an anonymous module created around `g` with the ID of the
1146    /// entry block for `f`.
1147    block_map: NodeMap<Module<'ra>>,
1148    /// A fake module that contains no definition and no prelude. Used so that
1149    /// some AST passes can generate identifiers that only resolve to local or
1150    /// lang items.
1151    empty_module: Module<'ra>,
1152    /// All local modules, including blocks.
1153    local_modules: Vec<Module<'ra>>,
1154    /// Eagerly populated map of all local non-block modules.
1155    local_module_map: FxIndexMap<LocalDefId, Module<'ra>>,
1156    /// Lazily populated cache of modules loaded from external crates.
1157    extern_module_map: CacheRefCell<FxIndexMap<DefId, Module<'ra>>>,
1158    binding_parent_modules: FxHashMap<NameBinding<'ra>, Module<'ra>>,
1159
1160    /// Maps glob imports to the names of items actually imported.
1161    glob_map: FxIndexMap<LocalDefId, FxIndexSet<Symbol>>,
1162    glob_error: Option<ErrorGuaranteed> = None,
1163    visibilities_for_hashing: Vec<(LocalDefId, Visibility)> = Vec::new(),
1164    used_imports: FxHashSet<NodeId>,
1165    maybe_unused_trait_imports: FxIndexSet<LocalDefId>,
1166
1167    /// Privacy errors are delayed until the end in order to deduplicate them.
1168    privacy_errors: Vec<PrivacyError<'ra>> = Vec::new(),
1169    /// Ambiguity errors are delayed for deduplication.
1170    ambiguity_errors: Vec<AmbiguityError<'ra>> = Vec::new(),
1171    /// `use` injections are delayed for better placement and deduplication.
1172    use_injections: Vec<UseError<'tcx>> = Vec::new(),
1173    /// Crate-local macro expanded `macro_export` referred to by a module-relative path.
1174    macro_expanded_macro_export_errors: BTreeSet<(Span, Span)> = BTreeSet::new(),
1175
1176    /// When a type is re-exported that has an inaccessible constructor because it has fields that
1177    /// are inaccessible from the import's scope, we mark that as the type won't be able to be built
1178    /// through the re-export. We use this information to extend the existing diagnostic.
1179    inaccessible_ctor_reexport: FxHashMap<Span, Span>,
1180
1181    arenas: &'ra ResolverArenas<'ra>,
1182    dummy_binding: NameBinding<'ra>,
1183    builtin_types_bindings: FxHashMap<Symbol, NameBinding<'ra>>,
1184    builtin_attrs_bindings: FxHashMap<Symbol, NameBinding<'ra>>,
1185    registered_tool_bindings: FxHashMap<Ident, NameBinding<'ra>>,
1186    macro_names: FxHashSet<Ident>,
1187    builtin_macros: FxHashMap<Symbol, SyntaxExtensionKind>,
1188    registered_tools: &'tcx RegisteredTools,
1189    macro_use_prelude: FxIndexMap<Symbol, NameBinding<'ra>>,
1190    /// Eagerly populated map of all local macro definitions.
1191    local_macro_map: FxHashMap<LocalDefId, &'ra MacroData>,
1192    /// Lazily populated cache of macro definitions loaded from external crates.
1193    extern_macro_map: CacheRefCell<FxHashMap<DefId, &'ra MacroData>>,
1194    dummy_ext_bang: Arc<SyntaxExtension>,
1195    dummy_ext_derive: Arc<SyntaxExtension>,
1196    non_macro_attr: &'ra MacroData,
1197    local_macro_def_scopes: FxHashMap<LocalDefId, Module<'ra>>,
1198    ast_transform_scopes: FxHashMap<LocalExpnId, Module<'ra>>,
1199    unused_macros: FxIndexMap<LocalDefId, (NodeId, Ident)>,
1200    /// A map from the macro to all its potentially unused arms.
1201    unused_macro_rules: FxIndexMap<NodeId, DenseBitSet<usize>>,
1202    proc_macro_stubs: FxHashSet<LocalDefId>,
1203    /// Traces collected during macro resolution and validated when it's complete.
1204    single_segment_macro_resolutions:
1205        CmRefCell<Vec<(Ident, MacroKind, ParentScope<'ra>, Option<NameBinding<'ra>>, Option<Span>)>>,
1206    multi_segment_macro_resolutions:
1207        CmRefCell<Vec<(Vec<Segment>, Span, MacroKind, ParentScope<'ra>, Option<Res>, Namespace)>>,
1208    builtin_attrs: Vec<(Ident, ParentScope<'ra>)>,
1209    /// `derive(Copy)` marks items they are applied to so they are treated specially later.
1210    /// Derive macros cannot modify the item themselves and have to store the markers in the global
1211    /// context, so they attach the markers to derive container IDs using this resolver table.
1212    containers_deriving_copy: FxHashSet<LocalExpnId>,
1213    /// Parent scopes in which the macros were invoked.
1214    /// FIXME: `derives` are missing in these parent scopes and need to be taken from elsewhere.
1215    invocation_parent_scopes: FxHashMap<LocalExpnId, ParentScope<'ra>>,
1216    /// `macro_rules` scopes *produced* by expanding the macro invocations,
1217    /// include all the `macro_rules` items and other invocations generated by them.
1218    output_macro_rules_scopes: FxHashMap<LocalExpnId, MacroRulesScopeRef<'ra>>,
1219    /// `macro_rules` scopes produced by `macro_rules` item definitions.
1220    macro_rules_scopes: FxHashMap<LocalDefId, MacroRulesScopeRef<'ra>>,
1221    /// Helper attributes that are in scope for the given expansion.
1222    helper_attrs: FxHashMap<LocalExpnId, Vec<(Ident, NameBinding<'ra>)>>,
1223    /// Ready or in-progress results of resolving paths inside the `#[derive(...)]` attribute
1224    /// with the given `ExpnId`.
1225    derive_data: FxHashMap<LocalExpnId, DeriveData>,
1226
1227    /// Avoid duplicated errors for "name already defined".
1228    name_already_seen: FxHashMap<Symbol, Span>,
1229
1230    potentially_unused_imports: Vec<Import<'ra>> = Vec::new(),
1231
1232    potentially_unnecessary_qualifications: Vec<UnnecessaryQualification<'ra>> = Vec::new(),
1233
1234    /// Table for mapping struct IDs into struct constructor IDs,
1235    /// it's not used during normal resolution, only for better error reporting.
1236    /// Also includes of list of each fields visibility
1237    struct_constructors: LocalDefIdMap<(Res, Visibility<DefId>, Vec<Visibility<DefId>>)>,
1238
1239    lint_buffer: LintBuffer,
1240
1241    next_node_id: NodeId = CRATE_NODE_ID,
1242
1243    node_id_to_def_id: NodeMap<Feed<'tcx, LocalDefId>>,
1244
1245    disambiguator: DisambiguatorState,
1246
1247    /// Indices of unnamed struct or variant fields with unresolved attributes.
1248    placeholder_field_indices: FxHashMap<NodeId, usize>,
1249    /// When collecting definitions from an AST fragment produced by a macro invocation `ExpnId`
1250    /// we know what parent node that fragment should be attached to thanks to this table,
1251    /// and how the `impl Trait` fragments were introduced.
1252    invocation_parents: FxHashMap<LocalExpnId, InvocationParent>,
1253
1254    legacy_const_generic_args: FxHashMap<DefId, Option<Vec<usize>>>,
1255    /// Amount of lifetime parameters for each item in the crate.
1256    item_generics_num_lifetimes: FxHashMap<LocalDefId, usize>,
1257    delegation_fn_sigs: LocalDefIdMap<DelegationFnSig>,
1258
1259    main_def: Option<MainDefinition> = None,
1260    trait_impls: FxIndexMap<DefId, Vec<LocalDefId>>,
1261    /// A list of proc macro LocalDefIds, written out in the order in which
1262    /// they are declared in the static array generated by proc_macro_harness.
1263    proc_macros: Vec<LocalDefId> = Vec::new(),
1264    confused_type_with_std_module: FxIndexMap<Span, Span>,
1265    /// Whether lifetime elision was successful.
1266    lifetime_elision_allowed: FxHashSet<NodeId>,
1267
1268    /// Names of items that were stripped out via cfg with their corresponding cfg meta item.
1269    stripped_cfg_items: Vec<StrippedCfgItem<NodeId>> = Vec::new(),
1270
1271    effective_visibilities: EffectiveVisibilities,
1272    doc_link_resolutions: FxIndexMap<LocalDefId, DocLinkResMap>,
1273    doc_link_traits_in_scope: FxIndexMap<LocalDefId, Vec<DefId>>,
1274    all_macro_rules: UnordSet<Symbol>,
1275
1276    /// Invocation ids of all glob delegations.
1277    glob_delegation_invoc_ids: FxHashSet<LocalExpnId>,
1278    /// Analogue of module `unexpanded_invocations` but in trait impls, excluding glob delegations.
1279    /// Needed because glob delegations wait for all other neighboring macros to expand.
1280    impl_unexpanded_invocations: FxHashMap<LocalDefId, FxHashSet<LocalExpnId>>,
1281    /// Simplified analogue of module `resolutions` but in trait impls, excluding glob delegations.
1282    /// Needed because glob delegations exclude explicitly defined names.
1283    impl_binding_keys: FxHashMap<LocalDefId, FxHashSet<BindingKey>>,
1284
1285    /// This is the `Span` where an `extern crate foo;` suggestion would be inserted, if `foo`
1286    /// could be a crate that wasn't imported. For diagnostics use only.
1287    current_crate_outer_attr_insert_span: Span,
1288
1289    mods_with_parse_errors: FxHashSet<DefId>,
1290
1291    /// Whether `Resolver::register_macros_for_all_crates` has been called once already, as we
1292    /// don't need to run it more than once.
1293    all_crate_macros_already_registered: bool = false,
1294
1295    // Stores pre-expansion and pre-placeholder-fragment-insertion names for `impl Trait` types
1296    // that were encountered during resolution. These names are used to generate item names
1297    // for APITs, so we don't want to leak details of resolution into these names.
1298    impl_trait_names: FxHashMap<NodeId, Symbol>,
1299}
1300
1301/// This provides memory for the rest of the crate. The `'ra` lifetime that is
1302/// used by many types in this crate is an abbreviation of `ResolverArenas`.
1303#[derive(Default)]
1304pub struct ResolverArenas<'ra> {
1305    modules: TypedArena<ModuleData<'ra>>,
1306    imports: TypedArena<ImportData<'ra>>,
1307    name_resolutions: TypedArena<CmRefCell<NameResolution<'ra>>>,
1308    ast_paths: TypedArena<ast::Path>,
1309    macros: TypedArena<MacroData>,
1310    dropless: DroplessArena,
1311}
1312
1313impl<'ra> ResolverArenas<'ra> {
1314    fn new_res_binding(
1315        &'ra self,
1316        res: Res,
1317        vis: Visibility<DefId>,
1318        span: Span,
1319        expansion: LocalExpnId,
1320    ) -> NameBinding<'ra> {
1321        self.alloc_name_binding(NameBindingData {
1322            kind: NameBindingKind::Res(res),
1323            ambiguity: None,
1324            warn_ambiguity: false,
1325            vis,
1326            span,
1327            expansion,
1328        })
1329    }
1330
1331    fn new_pub_res_binding(
1332        &'ra self,
1333        res: Res,
1334        span: Span,
1335        expn_id: LocalExpnId,
1336    ) -> NameBinding<'ra> {
1337        self.new_res_binding(res, Visibility::Public, span, expn_id)
1338    }
1339
1340    fn new_module(
1341        &'ra self,
1342        parent: Option<Module<'ra>>,
1343        kind: ModuleKind,
1344        expn_id: ExpnId,
1345        span: Span,
1346        no_implicit_prelude: bool,
1347    ) -> Module<'ra> {
1348        let self_binding = match kind {
1349            ModuleKind::Def(def_kind, def_id, _) => {
1350                Some(self.new_pub_res_binding(Res::Def(def_kind, def_id), span, LocalExpnId::ROOT))
1351            }
1352            ModuleKind::Block => None,
1353        };
1354        Module(Interned::new_unchecked(self.modules.alloc(ModuleData::new(
1355            parent,
1356            kind,
1357            expn_id,
1358            span,
1359            no_implicit_prelude,
1360            self_binding,
1361        ))))
1362    }
1363    fn alloc_name_binding(&'ra self, name_binding: NameBindingData<'ra>) -> NameBinding<'ra> {
1364        Interned::new_unchecked(self.dropless.alloc(name_binding))
1365    }
1366    fn alloc_import(&'ra self, import: ImportData<'ra>) -> Import<'ra> {
1367        Interned::new_unchecked(self.imports.alloc(import))
1368    }
1369    fn alloc_name_resolution(&'ra self) -> &'ra CmRefCell<NameResolution<'ra>> {
1370        self.name_resolutions.alloc(Default::default())
1371    }
1372    fn alloc_macro_rules_scope(&'ra self, scope: MacroRulesScope<'ra>) -> MacroRulesScopeRef<'ra> {
1373        self.dropless.alloc(CacheCell::new(scope))
1374    }
1375    fn alloc_macro_rules_binding(
1376        &'ra self,
1377        binding: MacroRulesBinding<'ra>,
1378    ) -> &'ra MacroRulesBinding<'ra> {
1379        self.dropless.alloc(binding)
1380    }
1381    fn alloc_ast_paths(&'ra self, paths: &[ast::Path]) -> &'ra [ast::Path] {
1382        self.ast_paths.alloc_from_iter(paths.iter().cloned())
1383    }
1384    fn alloc_macro(&'ra self, macro_data: MacroData) -> &'ra MacroData {
1385        self.macros.alloc(macro_data)
1386    }
1387    fn alloc_pattern_spans(&'ra self, spans: impl Iterator<Item = Span>) -> &'ra [Span] {
1388        self.dropless.alloc_from_iter(spans)
1389    }
1390}
1391
1392impl<'ra, 'tcx> AsMut<Resolver<'ra, 'tcx>> for Resolver<'ra, 'tcx> {
1393    fn as_mut(&mut self) -> &mut Resolver<'ra, 'tcx> {
1394        self
1395    }
1396}
1397
1398impl<'ra, 'tcx> AsRef<Resolver<'ra, 'tcx>> for Resolver<'ra, 'tcx> {
1399    fn as_ref(&self) -> &Resolver<'ra, 'tcx> {
1400        self
1401    }
1402}
1403
1404impl<'tcx> Resolver<'_, 'tcx> {
1405    fn opt_local_def_id(&self, node: NodeId) -> Option<LocalDefId> {
1406        self.opt_feed(node).map(|f| f.key())
1407    }
1408
1409    fn local_def_id(&self, node: NodeId) -> LocalDefId {
1410        self.feed(node).key()
1411    }
1412
1413    fn opt_feed(&self, node: NodeId) -> Option<Feed<'tcx, LocalDefId>> {
1414        self.node_id_to_def_id.get(&node).copied()
1415    }
1416
1417    fn feed(&self, node: NodeId) -> Feed<'tcx, LocalDefId> {
1418        self.opt_feed(node).unwrap_or_else(|| panic!("no entry for node id: `{node:?}`"))
1419    }
1420
1421    fn local_def_kind(&self, node: NodeId) -> DefKind {
1422        self.tcx.def_kind(self.local_def_id(node))
1423    }
1424
1425    /// Adds a definition with a parent definition.
1426    fn create_def(
1427        &mut self,
1428        parent: LocalDefId,
1429        node_id: ast::NodeId,
1430        name: Option<Symbol>,
1431        def_kind: DefKind,
1432        expn_id: ExpnId,
1433        span: Span,
1434    ) -> TyCtxtFeed<'tcx, LocalDefId> {
1435        assert!(
1436            !self.node_id_to_def_id.contains_key(&node_id),
1437            "adding a def for node-id {:?}, name {:?}, data {:?} but a previous def exists: {:?}",
1438            node_id,
1439            name,
1440            def_kind,
1441            self.tcx.definitions_untracked().def_key(self.node_id_to_def_id[&node_id].key()),
1442        );
1443
1444        // FIXME: remove `def_span` body, pass in the right spans here and call `tcx.at().create_def()`
1445        let feed = self.tcx.create_def(parent, name, def_kind, None, &mut self.disambiguator);
1446        let def_id = feed.def_id();
1447
1448        // Create the definition.
1449        if expn_id != ExpnId::root() {
1450            self.expn_that_defined.insert(def_id, expn_id);
1451        }
1452
1453        // A relative span's parent must be an absolute span.
1454        debug_assert_eq!(span.data_untracked().parent, None);
1455        let _id = self.tcx.untracked().source_span.push(span);
1456        debug_assert_eq!(_id, def_id);
1457
1458        // Some things for which we allocate `LocalDefId`s don't correspond to
1459        // anything in the AST, so they don't have a `NodeId`. For these cases
1460        // we don't need a mapping from `NodeId` to `LocalDefId`.
1461        if node_id != ast::DUMMY_NODE_ID {
1462            debug!("create_def: def_id_to_node_id[{:?}] <-> {:?}", def_id, node_id);
1463            self.node_id_to_def_id.insert(node_id, feed.downgrade());
1464        }
1465
1466        feed
1467    }
1468
1469    fn item_generics_num_lifetimes(&self, def_id: DefId) -> usize {
1470        if let Some(def_id) = def_id.as_local() {
1471            self.item_generics_num_lifetimes[&def_id]
1472        } else {
1473            self.tcx.generics_of(def_id).own_counts().lifetimes
1474        }
1475    }
1476
1477    pub fn tcx(&self) -> TyCtxt<'tcx> {
1478        self.tcx
1479    }
1480
1481    /// This function is very slow, as it iterates over the entire
1482    /// [Resolver::node_id_to_def_id] map just to find the [NodeId]
1483    /// that corresponds to the given [LocalDefId]. Only use this in
1484    /// diagnostics code paths.
1485    fn def_id_to_node_id(&self, def_id: LocalDefId) -> NodeId {
1486        self.node_id_to_def_id
1487            .items()
1488            .filter(|(_, v)| v.key() == def_id)
1489            .map(|(k, _)| *k)
1490            .get_only()
1491            .unwrap()
1492    }
1493}
1494
1495impl<'ra, 'tcx> Resolver<'ra, 'tcx> {
1496    pub fn new(
1497        tcx: TyCtxt<'tcx>,
1498        attrs: &[ast::Attribute],
1499        crate_span: Span,
1500        current_crate_outer_attr_insert_span: Span,
1501        arenas: &'ra ResolverArenas<'ra>,
1502    ) -> Resolver<'ra, 'tcx> {
1503        let root_def_id = CRATE_DEF_ID.to_def_id();
1504        let graph_root = arenas.new_module(
1505            None,
1506            ModuleKind::Def(DefKind::Mod, root_def_id, None),
1507            ExpnId::root(),
1508            crate_span,
1509            attr::contains_name(attrs, sym::no_implicit_prelude),
1510        );
1511        let local_modules = vec![graph_root];
1512        let local_module_map = FxIndexMap::from_iter([(CRATE_DEF_ID, graph_root)]);
1513        let empty_module = arenas.new_module(
1514            None,
1515            ModuleKind::Def(DefKind::Mod, root_def_id, None),
1516            ExpnId::root(),
1517            DUMMY_SP,
1518            true,
1519        );
1520
1521        let mut node_id_to_def_id = NodeMap::default();
1522        let crate_feed = tcx.create_local_crate_def_id(crate_span);
1523
1524        crate_feed.def_kind(DefKind::Mod);
1525        let crate_feed = crate_feed.downgrade();
1526        node_id_to_def_id.insert(CRATE_NODE_ID, crate_feed);
1527
1528        let mut invocation_parents = FxHashMap::default();
1529        invocation_parents.insert(LocalExpnId::ROOT, InvocationParent::ROOT);
1530
1531        let mut extern_prelude: FxIndexMap<_, _> = tcx
1532            .sess
1533            .opts
1534            .externs
1535            .iter()
1536            .filter_map(|(name, entry)| {
1537                // Make sure `self`, `super`, `_` etc do not get into extern prelude.
1538                // FIXME: reject `--extern self` and similar in option parsing instead.
1539                if entry.add_prelude
1540                    && let name = Symbol::intern(name)
1541                    && name.can_be_raw()
1542                {
1543                    let ident = Macros20NormalizedIdent::with_dummy_span(name);
1544                    Some((ident, ExternPreludeEntry::flag()))
1545                } else {
1546                    None
1547                }
1548            })
1549            .collect();
1550
1551        if !attr::contains_name(attrs, sym::no_core) {
1552            let ident = Macros20NormalizedIdent::with_dummy_span(sym::core);
1553            extern_prelude.insert(ident, ExternPreludeEntry::flag());
1554            if !attr::contains_name(attrs, sym::no_std) {
1555                let ident = Macros20NormalizedIdent::with_dummy_span(sym::std);
1556                extern_prelude.insert(ident, ExternPreludeEntry::flag());
1557            }
1558        }
1559
1560        let registered_tools = tcx.registered_tools(());
1561        let edition = tcx.sess.edition();
1562
1563        let mut resolver = Resolver {
1564            tcx,
1565
1566            expn_that_defined: Default::default(),
1567
1568            // The outermost module has def ID 0; this is not reflected in the
1569            // AST.
1570            graph_root,
1571            assert_speculative: false, // Only set/cleared in Resolver::resolve_imports for now
1572            prelude: None,
1573            extern_prelude,
1574
1575            field_names: Default::default(),
1576            field_defaults: Default::default(),
1577            field_visibility_spans: FxHashMap::default(),
1578
1579            pat_span_map: Default::default(),
1580            partial_res_map: Default::default(),
1581            import_res_map: Default::default(),
1582            import_use_map: Default::default(),
1583            label_res_map: Default::default(),
1584            lifetimes_res_map: Default::default(),
1585            extra_lifetime_params_map: Default::default(),
1586            extern_crate_map: Default::default(),
1587            module_children: Default::default(),
1588            trait_map: NodeMap::default(),
1589            empty_module,
1590            local_modules,
1591            local_module_map,
1592            extern_module_map: Default::default(),
1593            block_map: Default::default(),
1594            binding_parent_modules: FxHashMap::default(),
1595            ast_transform_scopes: FxHashMap::default(),
1596
1597            glob_map: Default::default(),
1598            used_imports: FxHashSet::default(),
1599            maybe_unused_trait_imports: Default::default(),
1600            inaccessible_ctor_reexport: Default::default(),
1601
1602            arenas,
1603            dummy_binding: arenas.new_pub_res_binding(Res::Err, DUMMY_SP, LocalExpnId::ROOT),
1604            builtin_types_bindings: PrimTy::ALL
1605                .iter()
1606                .map(|prim_ty| {
1607                    let res = Res::PrimTy(*prim_ty);
1608                    let binding = arenas.new_pub_res_binding(res, DUMMY_SP, LocalExpnId::ROOT);
1609                    (prim_ty.name(), binding)
1610                })
1611                .collect(),
1612            builtin_attrs_bindings: BUILTIN_ATTRIBUTES
1613                .iter()
1614                .map(|builtin_attr| {
1615                    let res = Res::NonMacroAttr(NonMacroAttrKind::Builtin(builtin_attr.name));
1616                    let binding = arenas.new_pub_res_binding(res, DUMMY_SP, LocalExpnId::ROOT);
1617                    (builtin_attr.name, binding)
1618                })
1619                .collect(),
1620            registered_tool_bindings: registered_tools
1621                .iter()
1622                .map(|ident| {
1623                    let res = Res::ToolMod;
1624                    let binding = arenas.new_pub_res_binding(res, ident.span, LocalExpnId::ROOT);
1625                    (*ident, binding)
1626                })
1627                .collect(),
1628            macro_names: FxHashSet::default(),
1629            builtin_macros: Default::default(),
1630            registered_tools,
1631            macro_use_prelude: Default::default(),
1632            local_macro_map: Default::default(),
1633            extern_macro_map: Default::default(),
1634            dummy_ext_bang: Arc::new(SyntaxExtension::dummy_bang(edition)),
1635            dummy_ext_derive: Arc::new(SyntaxExtension::dummy_derive(edition)),
1636            non_macro_attr: arenas
1637                .alloc_macro(MacroData::new(Arc::new(SyntaxExtension::non_macro_attr(edition)))),
1638            invocation_parent_scopes: Default::default(),
1639            output_macro_rules_scopes: Default::default(),
1640            macro_rules_scopes: Default::default(),
1641            helper_attrs: Default::default(),
1642            derive_data: Default::default(),
1643            local_macro_def_scopes: FxHashMap::default(),
1644            name_already_seen: FxHashMap::default(),
1645            struct_constructors: Default::default(),
1646            unused_macros: Default::default(),
1647            unused_macro_rules: Default::default(),
1648            proc_macro_stubs: Default::default(),
1649            single_segment_macro_resolutions: Default::default(),
1650            multi_segment_macro_resolutions: Default::default(),
1651            builtin_attrs: Default::default(),
1652            containers_deriving_copy: Default::default(),
1653            lint_buffer: LintBuffer::default(),
1654            node_id_to_def_id,
1655            disambiguator: DisambiguatorState::new(),
1656            placeholder_field_indices: Default::default(),
1657            invocation_parents,
1658            legacy_const_generic_args: Default::default(),
1659            item_generics_num_lifetimes: Default::default(),
1660            trait_impls: Default::default(),
1661            confused_type_with_std_module: Default::default(),
1662            lifetime_elision_allowed: Default::default(),
1663            stripped_cfg_items: Default::default(),
1664            effective_visibilities: Default::default(),
1665            doc_link_resolutions: Default::default(),
1666            doc_link_traits_in_scope: Default::default(),
1667            all_macro_rules: Default::default(),
1668            delegation_fn_sigs: Default::default(),
1669            glob_delegation_invoc_ids: Default::default(),
1670            impl_unexpanded_invocations: Default::default(),
1671            impl_binding_keys: Default::default(),
1672            current_crate_outer_attr_insert_span,
1673            mods_with_parse_errors: Default::default(),
1674            impl_trait_names: Default::default(),
1675            ..
1676        };
1677
1678        let root_parent_scope = ParentScope::module(graph_root, resolver.arenas);
1679        resolver.invocation_parent_scopes.insert(LocalExpnId::ROOT, root_parent_scope);
1680        resolver.feed_visibility(crate_feed, Visibility::Public);
1681
1682        resolver
1683    }
1684
1685    fn new_local_module(
1686        &mut self,
1687        parent: Option<Module<'ra>>,
1688        kind: ModuleKind,
1689        expn_id: ExpnId,
1690        span: Span,
1691        no_implicit_prelude: bool,
1692    ) -> Module<'ra> {
1693        let module = self.arenas.new_module(parent, kind, expn_id, span, no_implicit_prelude);
1694        self.local_modules.push(module);
1695        if let Some(def_id) = module.opt_def_id() {
1696            self.local_module_map.insert(def_id.expect_local(), module);
1697        }
1698        module
1699    }
1700
1701    fn new_extern_module(
1702        &self,
1703        parent: Option<Module<'ra>>,
1704        kind: ModuleKind,
1705        expn_id: ExpnId,
1706        span: Span,
1707        no_implicit_prelude: bool,
1708    ) -> Module<'ra> {
1709        let module = self.arenas.new_module(parent, kind, expn_id, span, no_implicit_prelude);
1710        self.extern_module_map.borrow_mut().insert(module.def_id(), module);
1711        module
1712    }
1713
1714    fn new_local_macro(&mut self, def_id: LocalDefId, macro_data: MacroData) -> &'ra MacroData {
1715        let mac = self.arenas.alloc_macro(macro_data);
1716        self.local_macro_map.insert(def_id, mac);
1717        mac
1718    }
1719
1720    fn next_node_id(&mut self) -> NodeId {
1721        let start = self.next_node_id;
1722        let next = start.as_u32().checked_add(1).expect("input too large; ran out of NodeIds");
1723        self.next_node_id = ast::NodeId::from_u32(next);
1724        start
1725    }
1726
1727    fn next_node_ids(&mut self, count: usize) -> std::ops::Range<NodeId> {
1728        let start = self.next_node_id;
1729        let end = start.as_usize().checked_add(count).expect("input too large; ran out of NodeIds");
1730        self.next_node_id = ast::NodeId::from_usize(end);
1731        start..self.next_node_id
1732    }
1733
1734    pub fn lint_buffer(&mut self) -> &mut LintBuffer {
1735        &mut self.lint_buffer
1736    }
1737
1738    pub fn arenas() -> ResolverArenas<'ra> {
1739        Default::default()
1740    }
1741
1742    fn feed_visibility(&mut self, feed: Feed<'tcx, LocalDefId>, vis: Visibility) {
1743        let feed = feed.upgrade(self.tcx);
1744        feed.visibility(vis.to_def_id());
1745        self.visibilities_for_hashing.push((feed.def_id(), vis));
1746    }
1747
1748    pub fn into_outputs(self) -> ResolverOutputs {
1749        let proc_macros = self.proc_macros;
1750        let expn_that_defined = self.expn_that_defined;
1751        let extern_crate_map = self.extern_crate_map;
1752        let maybe_unused_trait_imports = self.maybe_unused_trait_imports;
1753        let glob_map = self.glob_map;
1754        let main_def = self.main_def;
1755        let confused_type_with_std_module = self.confused_type_with_std_module;
1756        let effective_visibilities = self.effective_visibilities;
1757
1758        let stripped_cfg_items = self
1759            .stripped_cfg_items
1760            .into_iter()
1761            .filter_map(|item| {
1762                let parent_module =
1763                    self.node_id_to_def_id.get(&item.parent_module)?.key().to_def_id();
1764                Some(StrippedCfgItem { parent_module, ident: item.ident, cfg: item.cfg })
1765            })
1766            .collect();
1767
1768        let global_ctxt = ResolverGlobalCtxt {
1769            expn_that_defined,
1770            visibilities_for_hashing: self.visibilities_for_hashing,
1771            effective_visibilities,
1772            extern_crate_map,
1773            module_children: self.module_children,
1774            glob_map,
1775            maybe_unused_trait_imports,
1776            main_def,
1777            trait_impls: self.trait_impls,
1778            proc_macros,
1779            confused_type_with_std_module,
1780            doc_link_resolutions: self.doc_link_resolutions,
1781            doc_link_traits_in_scope: self.doc_link_traits_in_scope,
1782            all_macro_rules: self.all_macro_rules,
1783            stripped_cfg_items,
1784        };
1785        let ast_lowering = ty::ResolverAstLowering {
1786            legacy_const_generic_args: self.legacy_const_generic_args,
1787            partial_res_map: self.partial_res_map,
1788            import_res_map: self.import_res_map,
1789            label_res_map: self.label_res_map,
1790            lifetimes_res_map: self.lifetimes_res_map,
1791            extra_lifetime_params_map: self.extra_lifetime_params_map,
1792            next_node_id: self.next_node_id,
1793            node_id_to_def_id: self
1794                .node_id_to_def_id
1795                .into_items()
1796                .map(|(k, f)| (k, f.key()))
1797                .collect(),
1798            trait_map: self.trait_map,
1799            lifetime_elision_allowed: self.lifetime_elision_allowed,
1800            lint_buffer: Steal::new(self.lint_buffer),
1801            delegation_fn_sigs: self.delegation_fn_sigs,
1802        };
1803        ResolverOutputs { global_ctxt, ast_lowering }
1804    }
1805
1806    fn create_stable_hashing_context(&self) -> StableHashingContext<'_> {
1807        StableHashingContext::new(self.tcx.sess, self.tcx.untracked())
1808    }
1809
1810    fn cstore(&self) -> FreezeReadGuard<'_, CStore> {
1811        CStore::from_tcx(self.tcx)
1812    }
1813
1814    fn cstore_mut(&self) -> FreezeWriteGuard<'_, CStore> {
1815        CStore::from_tcx_mut(self.tcx)
1816    }
1817
1818    fn dummy_ext(&self, macro_kind: MacroKind) -> Arc<SyntaxExtension> {
1819        match macro_kind {
1820            MacroKind::Bang => Arc::clone(&self.dummy_ext_bang),
1821            MacroKind::Derive => Arc::clone(&self.dummy_ext_derive),
1822            MacroKind::Attr => Arc::clone(&self.non_macro_attr.ext),
1823        }
1824    }
1825
1826    /// Returns a conditionally mutable resolver.
1827    ///
1828    /// Currently only dependent on `assert_speculative`, if `assert_speculative` is false,
1829    /// the resolver will allow mutation; otherwise, it will be immutable.
1830    fn cm(&mut self) -> CmResolver<'_, 'ra, 'tcx> {
1831        CmResolver::new(self, !self.assert_speculative)
1832    }
1833
1834    /// Runs the function on each namespace.
1835    fn per_ns<F: FnMut(&mut Self, Namespace)>(&mut self, mut f: F) {
1836        f(self, TypeNS);
1837        f(self, ValueNS);
1838        f(self, MacroNS);
1839    }
1840
1841    fn per_ns_cm<'r, F: FnMut(&mut CmResolver<'r, 'ra, 'tcx>, Namespace)>(
1842        mut self: CmResolver<'r, 'ra, 'tcx>,
1843        mut f: F,
1844    ) {
1845        f(&mut self, TypeNS);
1846        f(&mut self, ValueNS);
1847        f(&mut self, MacroNS);
1848    }
1849
1850    fn is_builtin_macro(&self, res: Res) -> bool {
1851        self.get_macro(res).is_some_and(|macro_data| macro_data.ext.builtin_name.is_some())
1852    }
1853
1854    fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId {
1855        loop {
1856            match ctxt.outer_expn_data().macro_def_id {
1857                Some(def_id) => return def_id,
1858                None => ctxt.remove_mark(),
1859            };
1860        }
1861    }
1862
1863    /// Entry point to crate resolution.
1864    pub fn resolve_crate(&mut self, krate: &Crate) {
1865        self.tcx.sess.time("resolve_crate", || {
1866            self.tcx.sess.time("finalize_imports", || self.finalize_imports());
1867            let exported_ambiguities = self.tcx.sess.time("compute_effective_visibilities", || {
1868                EffectiveVisibilitiesVisitor::compute_effective_visibilities(self, krate)
1869            });
1870            self.tcx.sess.time("lint_reexports", || self.lint_reexports(exported_ambiguities));
1871            self.tcx
1872                .sess
1873                .time("finalize_macro_resolutions", || self.finalize_macro_resolutions(krate));
1874            self.tcx.sess.time("late_resolve_crate", || self.late_resolve_crate(krate));
1875            self.tcx.sess.time("resolve_main", || self.resolve_main());
1876            self.tcx.sess.time("resolve_check_unused", || self.check_unused(krate));
1877            self.tcx.sess.time("resolve_report_errors", || self.report_errors(krate));
1878            self.tcx
1879                .sess
1880                .time("resolve_postprocess", || self.cstore_mut().postprocess(self.tcx, krate));
1881        });
1882
1883        // Make sure we don't mutate the cstore from here on.
1884        self.tcx.untracked().cstore.freeze();
1885    }
1886
1887    fn traits_in_scope(
1888        &mut self,
1889        current_trait: Option<Module<'ra>>,
1890        parent_scope: &ParentScope<'ra>,
1891        ctxt: SyntaxContext,
1892        assoc_item: Option<(Symbol, Namespace)>,
1893    ) -> Vec<TraitCandidate> {
1894        let mut found_traits = Vec::new();
1895
1896        if let Some(module) = current_trait {
1897            if self.trait_may_have_item(Some(module), assoc_item) {
1898                let def_id = module.def_id();
1899                found_traits.push(TraitCandidate { def_id, import_ids: smallvec![] });
1900            }
1901        }
1902
1903        let scope_set = ScopeSet::All(TypeNS);
1904        self.cm().visit_scopes(scope_set, parent_scope, ctxt, None, |this, scope, _, _| {
1905            match scope {
1906                Scope::Module(module, _) => {
1907                    this.get_mut().traits_in_module(module, assoc_item, &mut found_traits);
1908                }
1909                Scope::StdLibPrelude => {
1910                    if let Some(module) = this.prelude {
1911                        this.get_mut().traits_in_module(module, assoc_item, &mut found_traits);
1912                    }
1913                }
1914                Scope::ExternPreludeItems
1915                | Scope::ExternPreludeFlags
1916                | Scope::ToolPrelude
1917                | Scope::BuiltinTypes => {}
1918                _ => unreachable!(),
1919            }
1920            None::<()>
1921        });
1922
1923        found_traits
1924    }
1925
1926    fn traits_in_module(
1927        &mut self,
1928        module: Module<'ra>,
1929        assoc_item: Option<(Symbol, Namespace)>,
1930        found_traits: &mut Vec<TraitCandidate>,
1931    ) {
1932        module.ensure_traits(self);
1933        let traits = module.traits.borrow();
1934        for &(trait_name, trait_binding, trait_module) in traits.as_ref().unwrap().iter() {
1935            if self.trait_may_have_item(trait_module, assoc_item) {
1936                let def_id = trait_binding.res().def_id();
1937                let import_ids = self.find_transitive_imports(&trait_binding.kind, trait_name.0);
1938                found_traits.push(TraitCandidate { def_id, import_ids });
1939            }
1940        }
1941    }
1942
1943    // List of traits in scope is pruned on best effort basis. We reject traits not having an
1944    // associated item with the given name and namespace (if specified). This is a conservative
1945    // optimization, proper hygienic type-based resolution of associated items is done in typeck.
1946    // We don't reject trait aliases (`trait_module == None`) because we don't have access to their
1947    // associated items.
1948    fn trait_may_have_item(
1949        &self,
1950        trait_module: Option<Module<'ra>>,
1951        assoc_item: Option<(Symbol, Namespace)>,
1952    ) -> bool {
1953        match (trait_module, assoc_item) {
1954            (Some(trait_module), Some((name, ns))) => self
1955                .resolutions(trait_module)
1956                .borrow()
1957                .iter()
1958                .any(|(key, _name_resolution)| key.ns == ns && key.ident.name == name),
1959            _ => true,
1960        }
1961    }
1962
1963    fn find_transitive_imports(
1964        &mut self,
1965        mut kind: &NameBindingKind<'_>,
1966        trait_name: Ident,
1967    ) -> SmallVec<[LocalDefId; 1]> {
1968        let mut import_ids = smallvec![];
1969        while let NameBindingKind::Import { import, binding, .. } = kind {
1970            if let Some(node_id) = import.id() {
1971                let def_id = self.local_def_id(node_id);
1972                self.maybe_unused_trait_imports.insert(def_id);
1973                import_ids.push(def_id);
1974            }
1975            self.add_to_glob_map(*import, trait_name);
1976            kind = &binding.kind;
1977        }
1978        import_ids
1979    }
1980
1981    fn resolutions(&self, module: Module<'ra>) -> &'ra Resolutions<'ra> {
1982        if module.populate_on_access.get() {
1983            module.populate_on_access.set(false);
1984            self.build_reduced_graph_external(module);
1985        }
1986        &module.0.0.lazy_resolutions
1987    }
1988
1989    fn resolution(
1990        &self,
1991        module: Module<'ra>,
1992        key: BindingKey,
1993    ) -> Option<Ref<'ra, NameResolution<'ra>>> {
1994        self.resolutions(module).borrow().get(&key).map(|resolution| resolution.borrow())
1995    }
1996
1997    fn resolution_or_default(
1998        &self,
1999        module: Module<'ra>,
2000        key: BindingKey,
2001    ) -> &'ra CmRefCell<NameResolution<'ra>> {
2002        self.resolutions(module)
2003            .borrow_mut_unchecked()
2004            .entry(key)
2005            .or_insert_with(|| self.arenas.alloc_name_resolution())
2006    }
2007
2008    /// Test if AmbiguityError ambi is any identical to any one inside ambiguity_errors
2009    fn matches_previous_ambiguity_error(&self, ambi: &AmbiguityError<'_>) -> bool {
2010        for ambiguity_error in &self.ambiguity_errors {
2011            // if the span location and ident as well as its span are the same
2012            if ambiguity_error.kind == ambi.kind
2013                && ambiguity_error.ident == ambi.ident
2014                && ambiguity_error.ident.span == ambi.ident.span
2015                && ambiguity_error.b1.span == ambi.b1.span
2016                && ambiguity_error.b2.span == ambi.b2.span
2017                && ambiguity_error.misc1 == ambi.misc1
2018                && ambiguity_error.misc2 == ambi.misc2
2019            {
2020                return true;
2021            }
2022        }
2023        false
2024    }
2025
2026    fn record_use(&mut self, ident: Ident, used_binding: NameBinding<'ra>, used: Used) {
2027        self.record_use_inner(ident, used_binding, used, used_binding.warn_ambiguity);
2028    }
2029
2030    fn record_use_inner(
2031        &mut self,
2032        ident: Ident,
2033        used_binding: NameBinding<'ra>,
2034        used: Used,
2035        warn_ambiguity: bool,
2036    ) {
2037        if let Some((b2, kind)) = used_binding.ambiguity {
2038            let ambiguity_error = AmbiguityError {
2039                kind,
2040                ident,
2041                b1: used_binding,
2042                b2,
2043                misc1: AmbiguityErrorMisc::None,
2044                misc2: AmbiguityErrorMisc::None,
2045                warning: warn_ambiguity,
2046            };
2047            if !self.matches_previous_ambiguity_error(&ambiguity_error) {
2048                // avoid duplicated span information to be emit out
2049                self.ambiguity_errors.push(ambiguity_error);
2050            }
2051        }
2052        if let NameBindingKind::Import { import, binding } = used_binding.kind {
2053            if let ImportKind::MacroUse { warn_private: true } = import.kind {
2054                // Do not report the lint if the macro name resolves in stdlib prelude
2055                // even without the problematic `macro_use` import.
2056                let found_in_stdlib_prelude = self.prelude.is_some_and(|prelude| {
2057                    let empty_module = self.empty_module;
2058                    let arenas = self.arenas;
2059                    self.cm()
2060                        .maybe_resolve_ident_in_module(
2061                            ModuleOrUniformRoot::Module(prelude),
2062                            ident,
2063                            MacroNS,
2064                            &ParentScope::module(empty_module, arenas),
2065                            None,
2066                        )
2067                        .is_ok()
2068                });
2069                if !found_in_stdlib_prelude {
2070                    self.lint_buffer().buffer_lint(
2071                        PRIVATE_MACRO_USE,
2072                        import.root_id,
2073                        ident.span,
2074                        BuiltinLintDiag::MacroIsPrivate(ident),
2075                    );
2076                }
2077            }
2078            // Avoid marking `extern crate` items that refer to a name from extern prelude,
2079            // but not introduce it, as used if they are accessed from lexical scope.
2080            if used == Used::Scope
2081                && let Some(entry) = self.extern_prelude.get(&Macros20NormalizedIdent::new(ident))
2082                && entry.item_binding == Some((used_binding, false))
2083            {
2084                return;
2085            }
2086            let old_used = self.import_use_map.entry(import).or_insert(used);
2087            if *old_used < used {
2088                *old_used = used;
2089            }
2090            if let Some(id) = import.id() {
2091                self.used_imports.insert(id);
2092            }
2093            self.add_to_glob_map(import, ident);
2094            self.record_use_inner(
2095                ident,
2096                binding,
2097                Used::Other,
2098                warn_ambiguity || binding.warn_ambiguity,
2099            );
2100        }
2101    }
2102
2103    #[inline]
2104    fn add_to_glob_map(&mut self, import: Import<'_>, ident: Ident) {
2105        if let ImportKind::Glob { id, .. } = import.kind {
2106            let def_id = self.local_def_id(id);
2107            self.glob_map.entry(def_id).or_default().insert(ident.name);
2108        }
2109    }
2110
2111    fn resolve_crate_root(&self, ident: Ident) -> Module<'ra> {
2112        debug!("resolve_crate_root({:?})", ident);
2113        let mut ctxt = ident.span.ctxt();
2114        let mark = if ident.name == kw::DollarCrate {
2115            // When resolving `$crate` from a `macro_rules!` invoked in a `macro`,
2116            // we don't want to pretend that the `macro_rules!` definition is in the `macro`
2117            // as described in `SyntaxContext::apply_mark`, so we ignore prepended opaque marks.
2118            // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!`
2119            // definitions actually produced by `macro` and `macro` definitions produced by
2120            // `macro_rules!`, but at least such configurations are not stable yet.
2121            ctxt = ctxt.normalize_to_macro_rules();
2122            debug!(
2123                "resolve_crate_root: marks={:?}",
2124                ctxt.marks().into_iter().map(|(i, t)| (i.expn_data(), t)).collect::<Vec<_>>()
2125            );
2126            let mut iter = ctxt.marks().into_iter().rev().peekable();
2127            let mut result = None;
2128            // Find the last opaque mark from the end if it exists.
2129            while let Some(&(mark, transparency)) = iter.peek() {
2130                if transparency == Transparency::Opaque {
2131                    result = Some(mark);
2132                    iter.next();
2133                } else {
2134                    break;
2135                }
2136            }
2137            debug!(
2138                "resolve_crate_root: found opaque mark {:?} {:?}",
2139                result,
2140                result.map(|r| r.expn_data())
2141            );
2142            // Then find the last semi-opaque mark from the end if it exists.
2143            for (mark, transparency) in iter {
2144                if transparency == Transparency::SemiOpaque {
2145                    result = Some(mark);
2146                } else {
2147                    break;
2148                }
2149            }
2150            debug!(
2151                "resolve_crate_root: found semi-opaque mark {:?} {:?}",
2152                result,
2153                result.map(|r| r.expn_data())
2154            );
2155            result
2156        } else {
2157            debug!("resolve_crate_root: not DollarCrate");
2158            ctxt = ctxt.normalize_to_macros_2_0();
2159            ctxt.adjust(ExpnId::root())
2160        };
2161        let module = match mark {
2162            Some(def) => self.expn_def_scope(def),
2163            None => {
2164                debug!(
2165                    "resolve_crate_root({:?}): found no mark (ident.span = {:?})",
2166                    ident, ident.span
2167                );
2168                return self.graph_root;
2169            }
2170        };
2171        let module = self.expect_module(
2172            module.opt_def_id().map_or(LOCAL_CRATE, |def_id| def_id.krate).as_def_id(),
2173        );
2174        debug!(
2175            "resolve_crate_root({:?}): got module {:?} ({:?}) (ident.span = {:?})",
2176            ident,
2177            module,
2178            module.kind.name(),
2179            ident.span
2180        );
2181        module
2182    }
2183
2184    fn resolve_self(&self, ctxt: &mut SyntaxContext, module: Module<'ra>) -> Module<'ra> {
2185        let mut module = self.expect_module(module.nearest_parent_mod());
2186        while module.span.ctxt().normalize_to_macros_2_0() != *ctxt {
2187            let parent = module.parent.unwrap_or_else(|| self.expn_def_scope(ctxt.remove_mark()));
2188            module = self.expect_module(parent.nearest_parent_mod());
2189        }
2190        module
2191    }
2192
2193    fn record_partial_res(&mut self, node_id: NodeId, resolution: PartialRes) {
2194        debug!("(recording res) recording {:?} for {}", resolution, node_id);
2195        if let Some(prev_res) = self.partial_res_map.insert(node_id, resolution) {
2196            panic!("path resolved multiple times ({prev_res:?} before, {resolution:?} now)");
2197        }
2198    }
2199
2200    fn record_pat_span(&mut self, node: NodeId, span: Span) {
2201        debug!("(recording pat) recording {:?} for {:?}", node, span);
2202        self.pat_span_map.insert(node, span);
2203    }
2204
2205    fn is_accessible_from(&self, vis: Visibility<impl Into<DefId>>, module: Module<'ra>) -> bool {
2206        vis.is_accessible_from(module.nearest_parent_mod(), self.tcx)
2207    }
2208
2209    fn set_binding_parent_module(&mut self, binding: NameBinding<'ra>, module: Module<'ra>) {
2210        if let Some(old_module) = self.binding_parent_modules.insert(binding, module) {
2211            if module != old_module {
2212                span_bug!(binding.span, "parent module is reset for binding");
2213            }
2214        }
2215    }
2216
2217    fn disambiguate_macro_rules_vs_modularized(
2218        &self,
2219        macro_rules: NameBinding<'ra>,
2220        modularized: NameBinding<'ra>,
2221    ) -> bool {
2222        // Some non-controversial subset of ambiguities "modularized macro name" vs "macro_rules"
2223        // is disambiguated to mitigate regressions from macro modularization.
2224        // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general.
2225        //
2226        // panic on index should be impossible, the only name_bindings passed in should be from
2227        // `resolve_ident_in_scope_set` which will always refer to a local binding from an
2228        // import or macro definition
2229        let macro_rules = &self.binding_parent_modules[&macro_rules];
2230        let modularized = &self.binding_parent_modules[&modularized];
2231        macro_rules.nearest_parent_mod() == modularized.nearest_parent_mod()
2232            && modularized.is_ancestor_of(*macro_rules)
2233    }
2234
2235    fn extern_prelude_get_item<'r>(
2236        mut self: CmResolver<'r, 'ra, 'tcx>,
2237        ident: Ident,
2238        finalize: bool,
2239    ) -> Option<NameBinding<'ra>> {
2240        let entry = self.extern_prelude.get(&Macros20NormalizedIdent::new(ident));
2241        entry.and_then(|entry| entry.item_binding).map(|(binding, _)| {
2242            if finalize {
2243                self.get_mut().record_use(ident, binding, Used::Scope);
2244            }
2245            binding
2246        })
2247    }
2248
2249    fn extern_prelude_get_flag(&self, ident: Ident, finalize: bool) -> Option<NameBinding<'ra>> {
2250        let entry = self.extern_prelude.get(&Macros20NormalizedIdent::new(ident));
2251        entry.and_then(|entry| entry.flag_binding.as_ref()).and_then(|flag_binding| {
2252            let (pending_binding, finalized) = flag_binding.get();
2253            let binding = match pending_binding {
2254                PendingBinding::Ready(binding) => {
2255                    if finalize && !finalized {
2256                        self.cstore_mut().process_path_extern(self.tcx, ident.name, ident.span);
2257                    }
2258                    binding
2259                }
2260                PendingBinding::Pending => {
2261                    debug_assert!(!finalized);
2262                    let crate_id = if finalize {
2263                        self.cstore_mut().process_path_extern(self.tcx, ident.name, ident.span)
2264                    } else {
2265                        self.cstore_mut().maybe_process_path_extern(self.tcx, ident.name)
2266                    };
2267                    crate_id.map(|crate_id| {
2268                        let res = Res::Def(DefKind::Mod, crate_id.as_def_id());
2269                        self.arenas.new_pub_res_binding(res, DUMMY_SP, LocalExpnId::ROOT)
2270                    })
2271                }
2272            };
2273            flag_binding.set((PendingBinding::Ready(binding), finalize || finalized));
2274            binding.or_else(|| finalize.then_some(self.dummy_binding))
2275        })
2276    }
2277
2278    /// Rustdoc uses this to resolve doc link paths in a recoverable way. `PathResult<'a>`
2279    /// isn't something that can be returned because it can't be made to live that long,
2280    /// and also it's a private type. Fortunately rustdoc doesn't need to know the error,
2281    /// just that an error occurred.
2282    fn resolve_rustdoc_path(
2283        &mut self,
2284        path_str: &str,
2285        ns: Namespace,
2286        parent_scope: ParentScope<'ra>,
2287    ) -> Option<Res> {
2288        let segments: Result<Vec<_>, ()> = path_str
2289            .split("::")
2290            .enumerate()
2291            .map(|(i, s)| {
2292                let sym = if s.is_empty() {
2293                    if i == 0 {
2294                        // For a path like `::a::b`, use `kw::PathRoot` as the leading segment.
2295                        kw::PathRoot
2296                    } else {
2297                        return Err(()); // occurs in cases like `String::`
2298                    }
2299                } else {
2300                    Symbol::intern(s)
2301                };
2302                Ok(Segment::from_ident(Ident::with_dummy_span(sym)))
2303            })
2304            .collect();
2305        let Ok(segments) = segments else { return None };
2306
2307        match self.cm().maybe_resolve_path(&segments, Some(ns), &parent_scope, None) {
2308            PathResult::Module(ModuleOrUniformRoot::Module(module)) => Some(module.res().unwrap()),
2309            PathResult::NonModule(path_res) => {
2310                path_res.full_res().filter(|res| !matches!(res, Res::Def(DefKind::Ctor(..), _)))
2311            }
2312            PathResult::Module(ModuleOrUniformRoot::ExternPrelude) | PathResult::Failed { .. } => {
2313                None
2314            }
2315            PathResult::Module(..) | PathResult::Indeterminate => unreachable!(),
2316        }
2317    }
2318
2319    /// Retrieves definition span of the given `DefId`.
2320    fn def_span(&self, def_id: DefId) -> Span {
2321        match def_id.as_local() {
2322            Some(def_id) => self.tcx.source_span(def_id),
2323            // Query `def_span` is not used because hashing its result span is expensive.
2324            None => self.cstore().def_span_untracked(def_id, self.tcx.sess),
2325        }
2326    }
2327
2328    fn field_idents(&self, def_id: DefId) -> Option<Vec<Ident>> {
2329        match def_id.as_local() {
2330            Some(def_id) => self.field_names.get(&def_id).cloned(),
2331            None if matches!(
2332                self.tcx.def_kind(def_id),
2333                DefKind::Struct | DefKind::Union | DefKind::Variant
2334            ) =>
2335            {
2336                Some(
2337                    self.tcx
2338                        .associated_item_def_ids(def_id)
2339                        .iter()
2340                        .map(|&def_id| {
2341                            Ident::new(self.tcx.item_name(def_id), self.tcx.def_span(def_id))
2342                        })
2343                        .collect(),
2344                )
2345            }
2346            _ => None,
2347        }
2348    }
2349
2350    fn field_defaults(&self, def_id: DefId) -> Option<Vec<Symbol>> {
2351        match def_id.as_local() {
2352            Some(def_id) => self.field_defaults.get(&def_id).cloned(),
2353            None if matches!(
2354                self.tcx.def_kind(def_id),
2355                DefKind::Struct | DefKind::Union | DefKind::Variant
2356            ) =>
2357            {
2358                Some(
2359                    self.tcx
2360                        .associated_item_def_ids(def_id)
2361                        .iter()
2362                        .filter_map(|&def_id| {
2363                            self.tcx.default_field(def_id).map(|_| self.tcx.item_name(def_id))
2364                        })
2365                        .collect(),
2366                )
2367            }
2368            _ => None,
2369        }
2370    }
2371
2372    /// Checks if an expression refers to a function marked with
2373    /// `#[rustc_legacy_const_generics]` and returns the argument index list
2374    /// from the attribute.
2375    fn legacy_const_generic_args(&mut self, expr: &Expr) -> Option<Vec<usize>> {
2376        if let ExprKind::Path(None, path) = &expr.kind {
2377            // Don't perform legacy const generics rewriting if the path already
2378            // has generic arguments.
2379            if path.segments.last().unwrap().args.is_some() {
2380                return None;
2381            }
2382
2383            let res = self.partial_res_map.get(&expr.id)?.full_res()?;
2384            if let Res::Def(def::DefKind::Fn, def_id) = res {
2385                // We only support cross-crate argument rewriting. Uses
2386                // within the same crate should be updated to use the new
2387                // const generics style.
2388                if def_id.is_local() {
2389                    return None;
2390                }
2391
2392                if let Some(v) = self.legacy_const_generic_args.get(&def_id) {
2393                    return v.clone();
2394                }
2395
2396                let attr = self.tcx.get_attr(def_id, sym::rustc_legacy_const_generics)?;
2397                let mut ret = Vec::new();
2398                for meta in attr.meta_item_list()? {
2399                    match meta.lit()?.kind {
2400                        LitKind::Int(a, _) => ret.push(a.get() as usize),
2401                        _ => panic!("invalid arg index"),
2402                    }
2403                }
2404                // Cache the lookup to avoid parsing attributes for an item multiple times.
2405                self.legacy_const_generic_args.insert(def_id, Some(ret.clone()));
2406                return Some(ret);
2407            }
2408        }
2409        None
2410    }
2411
2412    fn resolve_main(&mut self) {
2413        let module = self.graph_root;
2414        let ident = Ident::with_dummy_span(sym::main);
2415        let parent_scope = &ParentScope::module(module, self.arenas);
2416
2417        let Ok(name_binding) = self.cm().maybe_resolve_ident_in_module(
2418            ModuleOrUniformRoot::Module(module),
2419            ident,
2420            ValueNS,
2421            parent_scope,
2422            None,
2423        ) else {
2424            return;
2425        };
2426
2427        let res = name_binding.res();
2428        let is_import = name_binding.is_import();
2429        let span = name_binding.span;
2430        if let Res::Def(DefKind::Fn, _) = res {
2431            self.record_use(ident, name_binding, Used::Other);
2432        }
2433        self.main_def = Some(MainDefinition { res, is_import, span });
2434    }
2435}
2436
2437fn names_to_string(names: impl Iterator<Item = Symbol>) -> String {
2438    let mut result = String::new();
2439    for (i, name) in names.filter(|name| *name != kw::PathRoot).enumerate() {
2440        if i > 0 {
2441            result.push_str("::");
2442        }
2443        if Ident::with_dummy_span(name).is_raw_guess() {
2444            result.push_str("r#");
2445        }
2446        result.push_str(name.as_str());
2447    }
2448    result
2449}
2450
2451fn path_names_to_string(path: &Path) -> String {
2452    names_to_string(path.segments.iter().map(|seg| seg.ident.name))
2453}
2454
2455/// A somewhat inefficient routine to obtain the name of a module.
2456fn module_to_string(mut module: Module<'_>) -> Option<String> {
2457    let mut names = Vec::new();
2458    loop {
2459        if let ModuleKind::Def(.., name) = module.kind {
2460            if let Some(parent) = module.parent {
2461                // `unwrap` is safe: the presence of a parent means it's not the crate root.
2462                names.push(name.unwrap());
2463                module = parent
2464            } else {
2465                break;
2466            }
2467        } else {
2468            names.push(sym::opaque_module_name_placeholder);
2469            let Some(parent) = module.parent else {
2470                return None;
2471            };
2472            module = parent;
2473        }
2474    }
2475    if names.is_empty() {
2476        return None;
2477    }
2478    Some(names_to_string(names.iter().rev().copied()))
2479}
2480
2481#[derive(Copy, Clone, PartialEq, Debug)]
2482enum Stage {
2483    /// Resolving an import or a macro.
2484    /// Used when macro expansion is either not yet finished, or we are finalizing its results.
2485    /// Used by default as a more restrictive variant that can produce additional errors.
2486    Early,
2487    /// Resolving something in late resolution when all imports are resolved
2488    /// and all macros are expanded.
2489    Late,
2490}
2491
2492#[derive(Copy, Clone, Debug)]
2493struct Finalize {
2494    /// Node ID for linting.
2495    node_id: NodeId,
2496    /// Span of the whole path or some its characteristic fragment.
2497    /// E.g. span of `b` in `foo::{a, b, c}`, or full span for regular paths.
2498    path_span: Span,
2499    /// Span of the path start, suitable for prepending something to it.
2500    /// E.g. span of `foo` in `foo::{a, b, c}`, or full span for regular paths.
2501    root_span: Span,
2502    /// Whether to report privacy errors or silently return "no resolution" for them,
2503    /// similarly to speculative resolution.
2504    report_private: bool = true,
2505    /// Tracks whether an item is used in scope or used relatively to a module.
2506    used: Used = Used::Other,
2507    /// Finalizing early or late resolution.
2508    stage: Stage = Stage::Early,
2509}
2510
2511impl Finalize {
2512    fn new(node_id: NodeId, path_span: Span) -> Finalize {
2513        Finalize::with_root_span(node_id, path_span, path_span)
2514    }
2515
2516    fn with_root_span(node_id: NodeId, path_span: Span, root_span: Span) -> Finalize {
2517        Finalize { node_id, path_span, root_span, .. }
2518    }
2519}
2520
2521pub fn provide(providers: &mut Providers) {
2522    providers.registered_tools = macros::registered_tools;
2523}
2524
2525/// A wrapper around `&mut Resolver` that may be mutable or immutable, depending on a conditions.
2526///
2527/// `Cm` stands for "conditionally mutable".
2528///
2529/// Prefer constructing it through [`Resolver::cm`] to ensure correctness.
2530type CmResolver<'r, 'ra, 'tcx> = ref_mut::RefOrMut<'r, Resolver<'ra, 'tcx>>;
2531
2532// FIXME: These are cells for caches that can be populated even during speculative resolution,
2533// and should be replaced with mutexes, atomics, or other synchronized data when migrating to
2534// parallel name resolution.
2535use std::cell::{Cell as CacheCell, RefCell as CacheRefCell};
2536
2537// FIXME: `*_unchecked` methods in the module below should be eliminated in the process
2538// of migration to parallel name resolution.
2539mod ref_mut {
2540    use std::cell::{BorrowMutError, Cell, Ref, RefCell, RefMut};
2541    use std::fmt;
2542    use std::ops::Deref;
2543
2544    use crate::Resolver;
2545
2546    /// A wrapper around a mutable reference that conditionally allows mutable access.
2547    pub(crate) struct RefOrMut<'a, T> {
2548        p: &'a mut T,
2549        mutable: bool,
2550    }
2551
2552    impl<'a, T> Deref for RefOrMut<'a, T> {
2553        type Target = T;
2554
2555        fn deref(&self) -> &Self::Target {
2556            self.p
2557        }
2558    }
2559
2560    impl<'a, T> AsRef<T> for RefOrMut<'a, T> {
2561        fn as_ref(&self) -> &T {
2562            self.p
2563        }
2564    }
2565
2566    impl<'a, T> RefOrMut<'a, T> {
2567        pub(crate) fn new(p: &'a mut T, mutable: bool) -> Self {
2568            RefOrMut { p, mutable }
2569        }
2570
2571        /// This is needed because this wraps a `&mut T` and is therefore not `Copy`.
2572        pub(crate) fn reborrow(&mut self) -> RefOrMut<'_, T> {
2573            RefOrMut { p: self.p, mutable: self.mutable }
2574        }
2575
2576        /// Returns a mutable reference to the inner value if allowed.
2577        ///
2578        /// # Panics
2579        /// Panics if the `mutable` flag is false.
2580        #[track_caller]
2581        pub(crate) fn get_mut(&mut self) -> &mut T {
2582            match self.mutable {
2583                false => panic!("Can't mutably borrow speculative resolver"),
2584                true => self.p,
2585            }
2586        }
2587
2588        /// Returns a mutable reference to the inner value without checking if
2589        /// it's in a mutable state.
2590        pub(crate) fn get_mut_unchecked(&mut self) -> &mut T {
2591            self.p
2592        }
2593    }
2594
2595    /// A wrapper around a [`Cell`] that only allows mutation based on a condition in the resolver.
2596    #[derive(Default)]
2597    pub(crate) struct CmCell<T>(Cell<T>);
2598
2599    impl<T: Copy + fmt::Debug> fmt::Debug for CmCell<T> {
2600        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2601            f.debug_tuple("CmCell").field(&self.get()).finish()
2602        }
2603    }
2604
2605    impl<T: Copy> Clone for CmCell<T> {
2606        fn clone(&self) -> CmCell<T> {
2607            CmCell::new(self.get())
2608        }
2609    }
2610
2611    impl<T: Copy> CmCell<T> {
2612        pub(crate) const fn get(&self) -> T {
2613            self.0.get()
2614        }
2615
2616        pub(crate) fn update_unchecked(&self, f: impl FnOnce(T) -> T)
2617        where
2618            T: Copy,
2619        {
2620            let old = self.get();
2621            self.set_unchecked(f(old));
2622        }
2623    }
2624
2625    impl<T> CmCell<T> {
2626        pub(crate) const fn new(value: T) -> CmCell<T> {
2627            CmCell(Cell::new(value))
2628        }
2629
2630        pub(crate) fn set_unchecked(&self, val: T) {
2631            self.0.set(val);
2632        }
2633
2634        pub(crate) fn into_inner(self) -> T {
2635            self.0.into_inner()
2636        }
2637    }
2638
2639    /// A wrapper around a [`RefCell`] that only allows mutable borrows based on a condition in the resolver.
2640    #[derive(Default)]
2641    pub(crate) struct CmRefCell<T>(RefCell<T>);
2642
2643    impl<T> CmRefCell<T> {
2644        pub(crate) const fn new(value: T) -> CmRefCell<T> {
2645            CmRefCell(RefCell::new(value))
2646        }
2647
2648        #[track_caller]
2649        pub(crate) fn borrow_mut_unchecked(&self) -> RefMut<'_, T> {
2650            self.0.borrow_mut()
2651        }
2652
2653        #[track_caller]
2654        pub(crate) fn borrow_mut<'ra, 'tcx>(&self, r: &Resolver<'ra, 'tcx>) -> RefMut<'_, T> {
2655            if r.assert_speculative {
2656                panic!("Not allowed to mutably borrow a CmRefCell during speculative resolution");
2657            }
2658            self.borrow_mut_unchecked()
2659        }
2660
2661        #[track_caller]
2662        pub(crate) fn try_borrow_mut_unchecked(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
2663            self.0.try_borrow_mut()
2664        }
2665
2666        #[track_caller]
2667        pub(crate) fn borrow(&self) -> Ref<'_, T> {
2668            self.0.borrow()
2669        }
2670    }
2671
2672    impl<T: Default> CmRefCell<T> {
2673        pub(crate) fn take<'ra, 'tcx>(&self, r: &Resolver<'ra, 'tcx>) -> T {
2674            if r.assert_speculative {
2675                panic!("Not allowed to mutate a CmRefCell during speculative resolution");
2676            }
2677            self.0.take()
2678        }
2679    }
2680}