rustc_trait_selection/traits/
dyn_compatibility.rs

1//! "Dyn-compatibility"[^1] refers to the ability for a trait to be converted
2//! to a trait object. In general, traits may only be converted to a trait
3//! object if certain criteria are met.
4//!
5//! [^1]: Formerly known as "object safety".
6
7use std::ops::ControlFlow;
8
9use rustc_errors::FatalError;
10use rustc_hir::def_id::DefId;
11use rustc_hir::{self as hir, LangItem};
12use rustc_middle::query::Providers;
13use rustc_middle::ty::{
14    self, EarlyBinder, GenericArgs, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable,
15    TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor, TypingMode, Upcast,
16    elaborate,
17};
18use rustc_span::{DUMMY_SP, Span};
19use smallvec::SmallVec;
20use tracing::{debug, instrument};
21
22use super::elaborate;
23use crate::infer::TyCtxtInferExt;
24pub use crate::traits::DynCompatibilityViolation;
25use crate::traits::query::evaluate_obligation::InferCtxtExt;
26use crate::traits::{
27    MethodViolationCode, Obligation, ObligationCause, normalize_param_env_or_error, util,
28};
29
30/// Returns the dyn-compatibility violations that affect HIR ty lowering.
31///
32/// Currently that is `Self` in supertraits. This is needed
33/// because `dyn_compatibility_violations` can't be used during
34/// type collection, as type collection is needed for `dyn_compatibility_violations` itself.
35#[instrument(level = "debug", skip(tcx), ret)]
36pub fn hir_ty_lowering_dyn_compatibility_violations(
37    tcx: TyCtxt<'_>,
38    trait_def_id: DefId,
39) -> Vec<DynCompatibilityViolation> {
40    debug_assert!(tcx.generics_of(trait_def_id).has_self);
41    elaborate::supertrait_def_ids(tcx, trait_def_id)
42        .map(|def_id| predicates_reference_self(tcx, def_id, true))
43        .filter(|spans| !spans.is_empty())
44        .map(DynCompatibilityViolation::SupertraitSelf)
45        .collect()
46}
47
48fn dyn_compatibility_violations(
49    tcx: TyCtxt<'_>,
50    trait_def_id: DefId,
51) -> &'_ [DynCompatibilityViolation] {
52    debug_assert!(tcx.generics_of(trait_def_id).has_self);
53    debug!("dyn_compatibility_violations: {:?}", trait_def_id);
54    tcx.arena.alloc_from_iter(
55        elaborate::supertrait_def_ids(tcx, trait_def_id)
56            .flat_map(|def_id| dyn_compatibility_violations_for_trait(tcx, def_id)),
57    )
58}
59
60fn is_dyn_compatible(tcx: TyCtxt<'_>, trait_def_id: DefId) -> bool {
61    tcx.dyn_compatibility_violations(trait_def_id).is_empty()
62}
63
64/// We say a method is *vtable safe* if it can be invoked on a trait
65/// object. Note that dyn-compatible traits can have some
66/// non-vtable-safe methods, so long as they require `Self: Sized` or
67/// otherwise ensure that they cannot be used when `Self = Trait`.
68pub fn is_vtable_safe_method(tcx: TyCtxt<'_>, trait_def_id: DefId, method: ty::AssocItem) -> bool {
69    debug_assert!(tcx.generics_of(trait_def_id).has_self);
70    debug!("is_vtable_safe_method({:?}, {:?})", trait_def_id, method);
71    // Any method that has a `Self: Sized` bound cannot be called.
72    if tcx.generics_require_sized_self(method.def_id) {
73        return false;
74    }
75
76    virtual_call_violations_for_method(tcx, trait_def_id, method).is_empty()
77}
78
79#[instrument(level = "debug", skip(tcx), ret)]
80fn dyn_compatibility_violations_for_trait(
81    tcx: TyCtxt<'_>,
82    trait_def_id: DefId,
83) -> Vec<DynCompatibilityViolation> {
84    // Check assoc items for violations.
85    let mut violations: Vec<_> = tcx
86        .associated_items(trait_def_id)
87        .in_definition_order()
88        .flat_map(|&item| dyn_compatibility_violations_for_assoc_item(tcx, trait_def_id, item))
89        .collect();
90
91    // Check the trait itself.
92    if trait_has_sized_self(tcx, trait_def_id) {
93        // We don't want to include the requirement from `Sized` itself to be `Sized` in the list.
94        let spans = get_sized_bounds(tcx, trait_def_id);
95        violations.push(DynCompatibilityViolation::SizedSelf(spans));
96    }
97    let spans = predicates_reference_self(tcx, trait_def_id, false);
98    if !spans.is_empty() {
99        violations.push(DynCompatibilityViolation::SupertraitSelf(spans));
100    }
101    let spans = bounds_reference_self(tcx, trait_def_id);
102    if !spans.is_empty() {
103        violations.push(DynCompatibilityViolation::SupertraitSelf(spans));
104    }
105    let spans = super_predicates_have_non_lifetime_binders(tcx, trait_def_id);
106    if !spans.is_empty() {
107        violations.push(DynCompatibilityViolation::SupertraitNonLifetimeBinder(spans));
108    }
109
110    violations
111}
112
113fn sized_trait_bound_spans<'tcx>(
114    tcx: TyCtxt<'tcx>,
115    bounds: hir::GenericBounds<'tcx>,
116) -> impl 'tcx + Iterator<Item = Span> {
117    bounds.iter().filter_map(move |b| match b {
118        hir::GenericBound::Trait(trait_ref)
119            if trait_has_sized_self(
120                tcx,
121                trait_ref.trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
122            ) =>
123        {
124            // Fetch spans for supertraits that are `Sized`: `trait T: Super`
125            Some(trait_ref.span)
126        }
127        _ => None,
128    })
129}
130
131fn get_sized_bounds(tcx: TyCtxt<'_>, trait_def_id: DefId) -> SmallVec<[Span; 1]> {
132    tcx.hir_get_if_local(trait_def_id)
133        .and_then(|node| match node {
134            hir::Node::Item(hir::Item {
135                kind: hir::ItemKind::Trait(.., generics, bounds, _),
136                ..
137            }) => Some(
138                generics
139                    .predicates
140                    .iter()
141                    .filter_map(|pred| {
142                        match pred.kind {
143                            hir::WherePredicateKind::BoundPredicate(pred)
144                                if pred.bounded_ty.hir_id.owner.to_def_id() == trait_def_id =>
145                            {
146                                // Fetch spans for trait bounds that are Sized:
147                                // `trait T where Self: Pred`
148                                Some(sized_trait_bound_spans(tcx, pred.bounds))
149                            }
150                            _ => None,
151                        }
152                    })
153                    .flatten()
154                    // Fetch spans for supertraits that are `Sized`: `trait T: Super`.
155                    .chain(sized_trait_bound_spans(tcx, bounds))
156                    .collect::<SmallVec<[Span; 1]>>(),
157            ),
158            _ => None,
159        })
160        .unwrap_or_else(SmallVec::new)
161}
162
163fn predicates_reference_self(
164    tcx: TyCtxt<'_>,
165    trait_def_id: DefId,
166    supertraits_only: bool,
167) -> SmallVec<[Span; 1]> {
168    let trait_ref = ty::Binder::dummy(ty::TraitRef::identity(tcx, trait_def_id));
169    let predicates = if supertraits_only {
170        tcx.explicit_super_predicates_of(trait_def_id).skip_binder()
171    } else {
172        tcx.predicates_of(trait_def_id).predicates
173    };
174    predicates
175        .iter()
176        .map(|&(predicate, sp)| (predicate.instantiate_supertrait(tcx, trait_ref), sp))
177        .filter_map(|(clause, sp)| {
178            // Super predicates cannot allow self projections, since they're
179            // impossible to make into existential bounds without eager resolution
180            // or something.
181            // e.g. `trait A: B<Item = Self::Assoc>`.
182            predicate_references_self(tcx, trait_def_id, clause, sp, AllowSelfProjections::No)
183        })
184        .collect()
185}
186
187fn bounds_reference_self(tcx: TyCtxt<'_>, trait_def_id: DefId) -> SmallVec<[Span; 1]> {
188    tcx.associated_items(trait_def_id)
189        .in_definition_order()
190        // We're only looking at associated type bounds
191        .filter(|item| item.is_type())
192        // Ignore GATs with `Self: Sized`
193        .filter(|item| !tcx.generics_require_sized_self(item.def_id))
194        .flat_map(|item| tcx.explicit_item_bounds(item.def_id).iter_identity_copied())
195        .filter_map(|(clause, sp)| {
196            // Item bounds *can* have self projections, since they never get
197            // their self type erased.
198            predicate_references_self(tcx, trait_def_id, clause, sp, AllowSelfProjections::Yes)
199        })
200        .collect()
201}
202
203fn predicate_references_self<'tcx>(
204    tcx: TyCtxt<'tcx>,
205    trait_def_id: DefId,
206    predicate: ty::Clause<'tcx>,
207    sp: Span,
208    allow_self_projections: AllowSelfProjections,
209) -> Option<Span> {
210    match predicate.kind().skip_binder() {
211        ty::ClauseKind::Trait(ref data) => {
212            // In the case of a trait predicate, we can skip the "self" type.
213            data.trait_ref.args[1..].iter().any(|&arg| contains_illegal_self_type_reference(tcx, trait_def_id, arg, allow_self_projections)).then_some(sp)
214        }
215        ty::ClauseKind::Projection(ref data) => {
216            // And similarly for projections. This should be redundant with
217            // the previous check because any projection should have a
218            // matching `Trait` predicate with the same inputs, but we do
219            // the check to be safe.
220            //
221            // It's also won't be redundant if we allow type-generic associated
222            // types for trait objects.
223            //
224            // Note that we *do* allow projection *outputs* to contain
225            // `self` (i.e., `trait Foo: Bar<Output=Self::Result> { type Result; }`),
226            // we just require the user to specify *both* outputs
227            // in the object type (i.e., `dyn Foo<Output=(), Result=()>`).
228            //
229            // This is ALT2 in issue #56288, see that for discussion of the
230            // possible alternatives.
231            data.projection_term.args[1..].iter().any(|&arg| contains_illegal_self_type_reference(tcx, trait_def_id, arg, allow_self_projections)).then_some(sp)
232        }
233        ty::ClauseKind::ConstArgHasType(_ct, ty) => contains_illegal_self_type_reference(tcx, trait_def_id, ty, allow_self_projections).then_some(sp),
234
235        ty::ClauseKind::WellFormed(..)
236        | ty::ClauseKind::TypeOutlives(..)
237        | ty::ClauseKind::RegionOutlives(..)
238        // FIXME(generic_const_exprs): this can mention `Self`
239        | ty::ClauseKind::ConstEvaluatable(..)
240        | ty::ClauseKind::HostEffect(..)
241        | ty::ClauseKind::UnstableFeature(_)
242         => None,
243    }
244}
245
246fn super_predicates_have_non_lifetime_binders(
247    tcx: TyCtxt<'_>,
248    trait_def_id: DefId,
249) -> SmallVec<[Span; 1]> {
250    // If non_lifetime_binders is disabled, then exit early
251    if !tcx.features().non_lifetime_binders() {
252        return SmallVec::new();
253    }
254    tcx.explicit_super_predicates_of(trait_def_id)
255        .iter_identity_copied()
256        .filter_map(|(pred, span)| pred.has_non_region_bound_vars().then_some(span))
257        .collect()
258}
259
260fn trait_has_sized_self(tcx: TyCtxt<'_>, trait_def_id: DefId) -> bool {
261    tcx.generics_require_sized_self(trait_def_id)
262}
263
264fn generics_require_sized_self(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
265    let Some(sized_def_id) = tcx.lang_items().sized_trait() else {
266        return false; /* No Sized trait, can't require it! */
267    };
268
269    // Search for a predicate like `Self : Sized` amongst the trait bounds.
270    let predicates = tcx.predicates_of(def_id);
271    let predicates = predicates.instantiate_identity(tcx).predicates;
272    elaborate(tcx, predicates).any(|pred| match pred.kind().skip_binder() {
273        ty::ClauseKind::Trait(ref trait_pred) => {
274            trait_pred.def_id() == sized_def_id && trait_pred.self_ty().is_param(0)
275        }
276        ty::ClauseKind::RegionOutlives(_)
277        | ty::ClauseKind::TypeOutlives(_)
278        | ty::ClauseKind::Projection(_)
279        | ty::ClauseKind::ConstArgHasType(_, _)
280        | ty::ClauseKind::WellFormed(_)
281        | ty::ClauseKind::ConstEvaluatable(_)
282        | ty::ClauseKind::UnstableFeature(_)
283        | ty::ClauseKind::HostEffect(..) => false,
284    })
285}
286
287/// Returns `Some(_)` if this item makes the containing trait dyn-incompatible.
288#[instrument(level = "debug", skip(tcx), ret)]
289pub fn dyn_compatibility_violations_for_assoc_item(
290    tcx: TyCtxt<'_>,
291    trait_def_id: DefId,
292    item: ty::AssocItem,
293) -> Vec<DynCompatibilityViolation> {
294    // Any item that has a `Self : Sized` requisite is otherwise
295    // exempt from the regulations.
296    if tcx.generics_require_sized_self(item.def_id) {
297        return Vec::new();
298    }
299
300    match item.kind {
301        // Associated consts are never dyn-compatible, as they can't have `where` bounds yet at all,
302        // and associated const bounds in trait objects aren't a thing yet either.
303        ty::AssocKind::Const { name } => {
304            vec![DynCompatibilityViolation::AssocConst(name, item.ident(tcx).span)]
305        }
306        ty::AssocKind::Fn { name, .. } => {
307            virtual_call_violations_for_method(tcx, trait_def_id, item)
308                .into_iter()
309                .map(|v| {
310                    let node = tcx.hir_get_if_local(item.def_id);
311                    // Get an accurate span depending on the violation.
312                    let span = match (&v, node) {
313                        (MethodViolationCode::ReferencesSelfInput(Some(span)), _) => *span,
314                        (MethodViolationCode::UndispatchableReceiver(Some(span)), _) => *span,
315                        (MethodViolationCode::ReferencesImplTraitInTrait(span), _) => *span,
316                        (MethodViolationCode::ReferencesSelfOutput, Some(node)) => {
317                            node.fn_decl().map_or(item.ident(tcx).span, |decl| decl.output.span())
318                        }
319                        _ => item.ident(tcx).span,
320                    };
321
322                    DynCompatibilityViolation::Method(name, v, span)
323                })
324                .collect()
325        }
326        // Associated types can only be dyn-compatible if they have `Self: Sized` bounds.
327        ty::AssocKind::Type { .. } => {
328            if !tcx.generics_of(item.def_id).is_own_empty() && !item.is_impl_trait_in_trait() {
329                vec![DynCompatibilityViolation::GAT(item.name(), item.ident(tcx).span)]
330            } else {
331                // We will permit associated types if they are explicitly mentioned in the trait object.
332                // We can't check this here, as here we only check if it is guaranteed to not be possible.
333                Vec::new()
334            }
335        }
336    }
337}
338
339/// Returns `Some(_)` if this method cannot be called on a trait
340/// object; this does not necessarily imply that the enclosing trait
341/// is dyn-incompatible, because the method might have a where clause
342/// `Self: Sized`.
343fn virtual_call_violations_for_method<'tcx>(
344    tcx: TyCtxt<'tcx>,
345    trait_def_id: DefId,
346    method: ty::AssocItem,
347) -> Vec<MethodViolationCode> {
348    let sig = tcx.fn_sig(method.def_id).instantiate_identity();
349
350    // The method's first parameter must be named `self`
351    if !method.is_method() {
352        let sugg = if let Some(hir::Node::TraitItem(hir::TraitItem {
353            generics,
354            kind: hir::TraitItemKind::Fn(sig, _),
355            ..
356        })) = tcx.hir_get_if_local(method.def_id).as_ref()
357        {
358            let sm = tcx.sess.source_map();
359            Some((
360                (
361                    format!("&self{}", if sig.decl.inputs.is_empty() { "" } else { ", " }),
362                    sm.span_through_char(sig.span, '(').shrink_to_hi(),
363                ),
364                (
365                    format!("{} Self: Sized", generics.add_where_or_trailing_comma()),
366                    generics.tail_span_for_predicate_suggestion(),
367                ),
368            ))
369        } else {
370            None
371        };
372
373        // Not having `self` parameter messes up the later checks,
374        // so we need to return instead of pushing
375        return vec![MethodViolationCode::StaticMethod(sugg)];
376    }
377
378    let mut errors = Vec::new();
379
380    for (i, &input_ty) in sig.skip_binder().inputs().iter().enumerate().skip(1) {
381        if contains_illegal_self_type_reference(
382            tcx,
383            trait_def_id,
384            sig.rebind(input_ty),
385            AllowSelfProjections::Yes,
386        ) {
387            let span = if let Some(hir::Node::TraitItem(hir::TraitItem {
388                kind: hir::TraitItemKind::Fn(sig, _),
389                ..
390            })) = tcx.hir_get_if_local(method.def_id).as_ref()
391            {
392                Some(sig.decl.inputs[i].span)
393            } else {
394                None
395            };
396            errors.push(MethodViolationCode::ReferencesSelfInput(span));
397        }
398    }
399    if contains_illegal_self_type_reference(
400        tcx,
401        trait_def_id,
402        sig.output(),
403        AllowSelfProjections::Yes,
404    ) {
405        errors.push(MethodViolationCode::ReferencesSelfOutput);
406    }
407    if let Some(code) = contains_illegal_impl_trait_in_trait(tcx, method.def_id, sig.output()) {
408        errors.push(code);
409    }
410
411    // We can't monomorphize things like `fn foo<A>(...)`.
412    let own_counts = tcx.generics_of(method.def_id).own_counts();
413    if own_counts.types > 0 || own_counts.consts > 0 {
414        errors.push(MethodViolationCode::Generic);
415    }
416
417    let receiver_ty = tcx.liberate_late_bound_regions(method.def_id, sig.input(0));
418
419    // `self: Self` can't be dispatched on.
420    // However, this is considered dyn compatible. We allow it as a special case here.
421    // FIXME(mikeyhew) get rid of this `if` statement once `receiver_is_dispatchable` allows
422    // `Receiver: Unsize<Receiver[Self => dyn Trait]>`.
423    if receiver_ty != tcx.types.self_param {
424        if !receiver_is_dispatchable(tcx, method, receiver_ty) {
425            let span = if let Some(hir::Node::TraitItem(hir::TraitItem {
426                kind: hir::TraitItemKind::Fn(sig, _),
427                ..
428            })) = tcx.hir_get_if_local(method.def_id).as_ref()
429            {
430                Some(sig.decl.inputs[0].span)
431            } else {
432                None
433            };
434            errors.push(MethodViolationCode::UndispatchableReceiver(span));
435        } else {
436            // We confirm that the `receiver_is_dispatchable` is accurate later,
437            // see `check_receiver_correct`. It should be kept in sync with this code.
438        }
439    }
440
441    // NOTE: This check happens last, because it results in a lint, and not a
442    // hard error.
443    if tcx.predicates_of(method.def_id).predicates.iter().any(|&(pred, _span)| {
444        // dyn Trait is okay:
445        //
446        //     trait Trait {
447        //         fn f(&self) where Self: 'static;
448        //     }
449        //
450        // because a trait object can't claim to live longer than the concrete
451        // type. If the lifetime bound holds on dyn Trait then it's guaranteed
452        // to hold as well on the concrete type.
453        if pred.as_type_outlives_clause().is_some() {
454            return false;
455        }
456
457        // dyn Trait is okay:
458        //
459        //     auto trait AutoTrait {}
460        //
461        //     trait Trait {
462        //         fn f(&self) where Self: AutoTrait;
463        //     }
464        //
465        // because `impl AutoTrait for dyn Trait` is disallowed by coherence.
466        // Traits with a default impl are implemented for a trait object if and
467        // only if the autotrait is one of the trait object's trait bounds, like
468        // in `dyn Trait + AutoTrait`. This guarantees that trait objects only
469        // implement auto traits if the underlying type does as well.
470        if let ty::ClauseKind::Trait(ty::TraitPredicate {
471            trait_ref: pred_trait_ref,
472            polarity: ty::PredicatePolarity::Positive,
473        }) = pred.kind().skip_binder()
474            && pred_trait_ref.self_ty() == tcx.types.self_param
475            && tcx.trait_is_auto(pred_trait_ref.def_id)
476        {
477            // Consider bounds like `Self: Bound<Self>`. Auto traits are not
478            // allowed to have generic parameters so `auto trait Bound<T> {}`
479            // would already have reported an error at the definition of the
480            // auto trait.
481            if pred_trait_ref.args.len() != 1 {
482                assert!(
483                    tcx.dcx().has_errors().is_some(),
484                    "auto traits cannot have generic parameters"
485                );
486            }
487            return false;
488        }
489
490        contains_illegal_self_type_reference(tcx, trait_def_id, pred, AllowSelfProjections::Yes)
491    }) {
492        errors.push(MethodViolationCode::WhereClauseReferencesSelf);
493    }
494
495    errors
496}
497
498/// Performs a type instantiation to produce the version of `receiver_ty` when `Self = self_ty`.
499/// For example, for `receiver_ty = Rc<Self>` and `self_ty = Foo`, returns `Rc<Foo>`.
500fn receiver_for_self_ty<'tcx>(
501    tcx: TyCtxt<'tcx>,
502    receiver_ty: Ty<'tcx>,
503    self_ty: Ty<'tcx>,
504    method_def_id: DefId,
505) -> Ty<'tcx> {
506    debug!("receiver_for_self_ty({:?}, {:?}, {:?})", receiver_ty, self_ty, method_def_id);
507    let args = GenericArgs::for_item(tcx, method_def_id, |param, _| {
508        if param.index == 0 { self_ty.into() } else { tcx.mk_param_from_def(param) }
509    });
510
511    let result = EarlyBinder::bind(receiver_ty).instantiate(tcx, args);
512    debug!(
513        "receiver_for_self_ty({:?}, {:?}, {:?}) = {:?}",
514        receiver_ty, self_ty, method_def_id, result
515    );
516    result
517}
518
519/// Checks the method's receiver (the `self` argument) can be dispatched on when `Self` is a
520/// trait object. We require that `DispatchableFromDyn` be implemented for the receiver type
521/// in the following way:
522/// - let `Receiver` be the type of the `self` argument, i.e `Self`, `&Self`, `Rc<Self>`,
523/// - require the following bound:
524///
525///   ```ignore (not-rust)
526///   Receiver[Self => T]: DispatchFromDyn<Receiver[Self => dyn Trait]>
527///   ```
528///
529///   where `Foo[X => Y]` means "the same type as `Foo`, but with `X` replaced with `Y`"
530///   (instantiation notation).
531///
532/// Some examples of receiver types and their required obligation:
533/// - `&'a mut self` requires `&'a mut Self: DispatchFromDyn<&'a mut dyn Trait>`,
534/// - `self: Rc<Self>` requires `Rc<Self>: DispatchFromDyn<Rc<dyn Trait>>`,
535/// - `self: Pin<Box<Self>>` requires `Pin<Box<Self>>: DispatchFromDyn<Pin<Box<dyn Trait>>>`.
536///
537/// The only case where the receiver is not dispatchable, but is still a valid receiver
538/// type (just not dyn compatible), is when there is more than one level of pointer indirection.
539/// E.g., `self: &&Self`, `self: &Rc<Self>`, `self: Box<Box<Self>>`. In these cases, there
540/// is no way, or at least no inexpensive way, to coerce the receiver from the version where
541/// `Self = dyn Trait` to the version where `Self = T`, where `T` is the unknown erased type
542/// contained by the trait object, because the object that needs to be coerced is behind
543/// a pointer.
544///
545/// In practice, we cannot use `dyn Trait` explicitly in the obligation because it would result in
546/// a new check that `Trait` is dyn-compatible, creating a cycle.
547/// Instead, we emulate a placeholder by introducing a new type parameter `U` such that
548/// `Self: Unsize<U>` and `U: Trait + MetaSized`, and use `U` in place of `dyn Trait`.
549///
550/// Written as a chalk-style query:
551/// ```ignore (not-rust)
552/// forall (U: Trait + MetaSized) {
553///     if (Self: Unsize<U>) {
554///         Receiver: DispatchFromDyn<Receiver[Self => U]>
555///     }
556/// }
557/// ```
558/// for `self: &'a mut Self`, this means `&'a mut Self: DispatchFromDyn<&'a mut U>`
559/// for `self: Rc<Self>`, this means `Rc<Self>: DispatchFromDyn<Rc<U>>`
560/// for `self: Pin<Box<Self>>`, this means `Pin<Box<Self>>: DispatchFromDyn<Pin<Box<U>>>`
561//
562// FIXME(mikeyhew) when unsized receivers are implemented as part of unsized rvalues, add this
563// fallback query: `Receiver: Unsize<Receiver[Self => U]>` to support receivers like
564// `self: Wrapper<Self>`.
565fn receiver_is_dispatchable<'tcx>(
566    tcx: TyCtxt<'tcx>,
567    method: ty::AssocItem,
568    receiver_ty: Ty<'tcx>,
569) -> bool {
570    debug!("receiver_is_dispatchable: method = {:?}, receiver_ty = {:?}", method, receiver_ty);
571
572    let (Some(unsize_did), Some(dispatch_from_dyn_did)) =
573        (tcx.lang_items().unsize_trait(), tcx.lang_items().dispatch_from_dyn_trait())
574    else {
575        debug!("receiver_is_dispatchable: Missing `Unsize` or `DispatchFromDyn` traits");
576        return false;
577    };
578
579    // the type `U` in the query
580    // use a bogus type parameter to mimic a forall(U) query using u32::MAX for now.
581    let unsized_self_ty: Ty<'tcx> =
582        Ty::new_param(tcx, u32::MAX, rustc_span::sym::RustaceansAreAwesome);
583
584    // `Receiver[Self => U]`
585    let unsized_receiver_ty =
586        receiver_for_self_ty(tcx, receiver_ty, unsized_self_ty, method.def_id);
587
588    // create a modified param env, with `Self: Unsize<U>` and `U: Trait` (and all of
589    // its supertraits) added to caller bounds. `U: MetaSized` is already implied here.
590    let param_env = {
591        // N.B. We generally want to emulate the construction of the `unnormalized_param_env`
592        // in the param-env query here. The fact that we don't just start with the clauses
593        // in the param-env of the method is because those are already normalized, and mixing
594        // normalized and unnormalized copies of predicates in `normalize_param_env_or_error`
595        // will cause ambiguity that the user can't really avoid.
596        //
597        // We leave out certain complexities of the param-env query here. Specifically, we:
598        // 1. Do not add `[const]` bounds since there are no `dyn const Trait`s.
599        // 2. Do not add RPITIT self projection bounds for defaulted methods, since we
600        //    are not constructing a param-env for "inside" of the body of the defaulted
601        //    method, so we don't really care about projecting to a specific RPIT type,
602        //    and because RPITITs are not dyn compatible (yet).
603        let mut predicates = tcx.predicates_of(method.def_id).instantiate_identity(tcx).predicates;
604
605        // Self: Unsize<U>
606        let unsize_predicate =
607            ty::TraitRef::new(tcx, unsize_did, [tcx.types.self_param, unsized_self_ty]);
608        predicates.push(unsize_predicate.upcast(tcx));
609
610        // U: Trait<Arg1, ..., ArgN>
611        let trait_def_id = method.trait_container(tcx).unwrap();
612        let args = GenericArgs::for_item(tcx, trait_def_id, |param, _| {
613            if param.index == 0 { unsized_self_ty.into() } else { tcx.mk_param_from_def(param) }
614        });
615        let trait_predicate = ty::TraitRef::new_from_args(tcx, trait_def_id, args);
616        predicates.push(trait_predicate.upcast(tcx));
617
618        let meta_sized_predicate = {
619            let meta_sized_did = tcx.require_lang_item(LangItem::MetaSized, DUMMY_SP);
620            ty::TraitRef::new(tcx, meta_sized_did, [unsized_self_ty]).upcast(tcx)
621        };
622        predicates.push(meta_sized_predicate);
623
624        normalize_param_env_or_error(
625            tcx,
626            ty::ParamEnv::new(tcx.mk_clauses(&predicates)),
627            ObligationCause::dummy_with_span(tcx.def_span(method.def_id)),
628        )
629    };
630
631    // Receiver: DispatchFromDyn<Receiver[Self => U]>
632    let obligation = {
633        let predicate =
634            ty::TraitRef::new(tcx, dispatch_from_dyn_did, [receiver_ty, unsized_receiver_ty]);
635
636        Obligation::new(tcx, ObligationCause::dummy(), param_env, predicate)
637    };
638
639    let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
640    // the receiver is dispatchable iff the obligation holds
641    infcx.predicate_must_hold_modulo_regions(&obligation)
642}
643
644#[derive(Copy, Clone)]
645enum AllowSelfProjections {
646    Yes,
647    No,
648}
649
650/// This is somewhat subtle. In general, we want to forbid
651/// references to `Self` in the argument and return types,
652/// since the value of `Self` is erased. However, there is one
653/// exception: it is ok to reference `Self` in order to access
654/// an associated type of the current trait, since we retain
655/// the value of those associated types in the object type
656/// itself.
657///
658/// ```rust,ignore (example)
659/// trait SuperTrait {
660///     type X;
661/// }
662///
663/// trait Trait : SuperTrait {
664///     type Y;
665///     fn foo(&self, x: Self) // bad
666///     fn foo(&self) -> Self // bad
667///     fn foo(&self) -> Option<Self> // bad
668///     fn foo(&self) -> Self::Y // OK, desugars to next example
669///     fn foo(&self) -> <Self as Trait>::Y // OK
670///     fn foo(&self) -> Self::X // OK, desugars to next example
671///     fn foo(&self) -> <Self as SuperTrait>::X // OK
672/// }
673/// ```
674///
675/// However, it is not as simple as allowing `Self` in a projected
676/// type, because there are illegal ways to use `Self` as well:
677///
678/// ```rust,ignore (example)
679/// trait Trait : SuperTrait {
680///     ...
681///     fn foo(&self) -> <Self as SomeOtherTrait>::X;
682/// }
683/// ```
684///
685/// Here we will not have the type of `X` recorded in the
686/// object type, and we cannot resolve `Self as SomeOtherTrait`
687/// without knowing what `Self` is.
688fn contains_illegal_self_type_reference<'tcx, T: TypeVisitable<TyCtxt<'tcx>>>(
689    tcx: TyCtxt<'tcx>,
690    trait_def_id: DefId,
691    value: T,
692    allow_self_projections: AllowSelfProjections,
693) -> bool {
694    value
695        .visit_with(&mut IllegalSelfTypeVisitor {
696            tcx,
697            trait_def_id,
698            supertraits: None,
699            allow_self_projections,
700        })
701        .is_break()
702}
703
704struct IllegalSelfTypeVisitor<'tcx> {
705    tcx: TyCtxt<'tcx>,
706    trait_def_id: DefId,
707    supertraits: Option<Vec<ty::TraitRef<'tcx>>>,
708    allow_self_projections: AllowSelfProjections,
709}
710
711impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for IllegalSelfTypeVisitor<'tcx> {
712    type Result = ControlFlow<()>;
713
714    fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
715        match t.kind() {
716            ty::Param(_) => {
717                if t == self.tcx.types.self_param {
718                    ControlFlow::Break(())
719                } else {
720                    ControlFlow::Continue(())
721                }
722            }
723            ty::Alias(ty::Projection, data) if self.tcx.is_impl_trait_in_trait(data.def_id) => {
724                // We'll deny these later in their own pass
725                ControlFlow::Continue(())
726            }
727            ty::Alias(ty::Projection, data) => {
728                match self.allow_self_projections {
729                    AllowSelfProjections::Yes => {
730                        // This is a projected type `<Foo as SomeTrait>::X`.
731
732                        // Compute supertraits of current trait lazily.
733                        if self.supertraits.is_none() {
734                            self.supertraits = Some(
735                                util::supertraits(
736                                    self.tcx,
737                                    ty::Binder::dummy(ty::TraitRef::identity(
738                                        self.tcx,
739                                        self.trait_def_id,
740                                    )),
741                                )
742                                .map(|trait_ref| {
743                                    self.tcx.erase_regions(
744                                        self.tcx.instantiate_bound_regions_with_erased(trait_ref),
745                                    )
746                                })
747                                .collect(),
748                            );
749                        }
750
751                        // Determine whether the trait reference `Foo as
752                        // SomeTrait` is in fact a supertrait of the
753                        // current trait. In that case, this type is
754                        // legal, because the type `X` will be specified
755                        // in the object type. Note that we can just use
756                        // direct equality here because all of these types
757                        // are part of the formal parameter listing, and
758                        // hence there should be no inference variables.
759                        let is_supertrait_of_current_trait =
760                            self.supertraits.as_ref().unwrap().contains(
761                                &data.trait_ref(self.tcx).fold_with(
762                                    &mut EraseEscapingBoundRegions {
763                                        tcx: self.tcx,
764                                        binder: ty::INNERMOST,
765                                    },
766                                ),
767                            );
768
769                        // only walk contained types if it's not a super trait
770                        if is_supertrait_of_current_trait {
771                            ControlFlow::Continue(())
772                        } else {
773                            t.super_visit_with(self) // POSSIBLY reporting an error
774                        }
775                    }
776                    AllowSelfProjections::No => t.super_visit_with(self),
777                }
778            }
779            _ => t.super_visit_with(self),
780        }
781    }
782
783    fn visit_const(&mut self, ct: ty::Const<'tcx>) -> Self::Result {
784        // Constants can only influence dyn-compatibility if they are generic and reference `Self`.
785        // This is only possible for unevaluated constants, so we walk these here.
786        self.tcx.expand_abstract_consts(ct).super_visit_with(self)
787    }
788}
789
790struct EraseEscapingBoundRegions<'tcx> {
791    tcx: TyCtxt<'tcx>,
792    binder: ty::DebruijnIndex,
793}
794
795impl<'tcx> TypeFolder<TyCtxt<'tcx>> for EraseEscapingBoundRegions<'tcx> {
796    fn cx(&self) -> TyCtxt<'tcx> {
797        self.tcx
798    }
799
800    fn fold_binder<T>(&mut self, t: ty::Binder<'tcx, T>) -> ty::Binder<'tcx, T>
801    where
802        T: TypeFoldable<TyCtxt<'tcx>>,
803    {
804        self.binder.shift_in(1);
805        let result = t.super_fold_with(self);
806        self.binder.shift_out(1);
807        result
808    }
809
810    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
811        if let ty::ReBound(debruijn, _) = r.kind()
812            && debruijn < self.binder
813        {
814            r
815        } else {
816            self.tcx.lifetimes.re_erased
817        }
818    }
819}
820
821fn contains_illegal_impl_trait_in_trait<'tcx>(
822    tcx: TyCtxt<'tcx>,
823    fn_def_id: DefId,
824    ty: ty::Binder<'tcx, Ty<'tcx>>,
825) -> Option<MethodViolationCode> {
826    let ty = tcx.liberate_late_bound_regions(fn_def_id, ty);
827
828    if tcx.asyncness(fn_def_id).is_async() {
829        // Rendering the error as a separate `async-specific` message is better.
830        Some(MethodViolationCode::AsyncFn)
831    } else {
832        ty.visit_with(&mut IllegalRpititVisitor { tcx, allowed: None }).break_value()
833    }
834}
835
836struct IllegalRpititVisitor<'tcx> {
837    tcx: TyCtxt<'tcx>,
838    allowed: Option<ty::AliasTy<'tcx>>,
839}
840
841impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for IllegalRpititVisitor<'tcx> {
842    type Result = ControlFlow<MethodViolationCode>;
843
844    fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result {
845        if let ty::Alias(ty::Projection, proj) = *ty.kind()
846            && Some(proj) != self.allowed
847            && self.tcx.is_impl_trait_in_trait(proj.def_id)
848        {
849            ControlFlow::Break(MethodViolationCode::ReferencesImplTraitInTrait(
850                self.tcx.def_span(proj.def_id),
851            ))
852        } else {
853            ty.super_visit_with(self)
854        }
855    }
856}
857
858pub(crate) fn provide(providers: &mut Providers) {
859    *providers = Providers {
860        dyn_compatibility_violations,
861        is_dyn_compatible,
862        generics_require_sized_self,
863        ..*providers
864    };
865}