rustdoc/clean/
mod.rs

1//! This module defines the primary IR[^1] used in rustdoc together with the procedures that
2//! transform rustc data types into it.
3//!
4//! This IR — commonly referred to as the *cleaned AST* — is modeled after the [AST][ast].
5//!
6//! There are two kinds of transformation — *cleaning* — procedures:
7//!
8//! 1. Cleans [HIR][hir] types. Used for user-written code and inlined local re-exports
9//!    both found in the local crate.
10//! 2. Cleans [`rustc_middle::ty`] types. Used for inlined cross-crate re-exports and anything
11//!    output by the trait solver (e.g., when synthesizing blanket and auto-trait impls).
12//!    They usually have `ty` or `middle` in their name.
13//!
14//! Their name is prefixed by `clean_`.
15//!
16//! Both the HIR and the `rustc_middle::ty` IR are quite removed from the source code.
17//! The cleaned AST on the other hand is closer to it which simplifies the rendering process.
18//! Furthermore, operating on a single IR instead of two avoids duplicating efforts down the line.
19//!
20//! This IR is consumed by both the HTML and the JSON backend.
21//!
22//! [^1]: Intermediate representation.
23
24mod auto_trait;
25mod blanket_impl;
26pub(crate) mod cfg;
27pub(crate) mod inline;
28mod render_macro_matchers;
29mod simplify;
30pub(crate) mod types;
31pub(crate) mod utils;
32
33use std::borrow::Cow;
34use std::collections::BTreeMap;
35use std::mem;
36
37use rustc_ast::token::{Token, TokenKind};
38use rustc_ast::tokenstream::{TokenStream, TokenTree};
39use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet, IndexEntry};
40use rustc_errors::codes::*;
41use rustc_errors::{FatalError, struct_span_code_err};
42use rustc_hir::def::{CtorKind, DefKind, Res};
43use rustc_hir::def_id::{DefId, DefIdMap, DefIdSet, LOCAL_CRATE, LocalDefId};
44use rustc_hir::{LangItem, PredicateOrigin};
45use rustc_hir_analysis::hir_ty_lowering::FeedConstTy;
46use rustc_hir_analysis::{lower_const_arg_for_rustdoc, lower_ty};
47use rustc_middle::metadata::Reexport;
48use rustc_middle::middle::resolve_bound_vars as rbv;
49use rustc_middle::ty::{self, AdtKind, GenericArgsRef, Ty, TyCtxt, TypeVisitableExt, TypingMode};
50use rustc_middle::{bug, span_bug};
51use rustc_span::ExpnKind;
52use rustc_span::hygiene::{AstPass, MacroKind};
53use rustc_span::symbol::{Ident, Symbol, kw, sym};
54use rustc_trait_selection::traits::wf::object_region_bounds;
55use thin_vec::ThinVec;
56use tracing::{debug, instrument};
57use utils::*;
58use {rustc_ast as ast, rustc_hir as hir};
59
60pub(crate) use self::types::*;
61pub(crate) use self::utils::{krate, register_res, synthesize_auto_trait_and_blanket_impls};
62use crate::core::DocContext;
63use crate::formats::item_type::ItemType;
64use crate::visit_ast::Module as DocModule;
65
66pub(crate) fn clean_doc_module<'tcx>(doc: &DocModule<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
67    let mut items: Vec<Item> = vec![];
68    let mut inserted = FxHashSet::default();
69    items.extend(doc.foreigns.iter().map(|(item, renamed, import_id)| {
70        let item = clean_maybe_renamed_foreign_item(cx, item, *renamed, *import_id);
71        if let Some(name) = item.name
72            && (cx.render_options.document_hidden || !item.is_doc_hidden())
73        {
74            inserted.insert((item.type_(), name));
75        }
76        item
77    }));
78    items.extend(doc.mods.iter().filter_map(|x| {
79        if !inserted.insert((ItemType::Module, x.name)) {
80            return None;
81        }
82        let item = clean_doc_module(x, cx);
83        if !cx.render_options.document_hidden && item.is_doc_hidden() {
84            // Hidden modules are stripped at a later stage.
85            // If a hidden module has the same name as a visible one, we want
86            // to keep both of them around.
87            inserted.remove(&(ItemType::Module, x.name));
88        }
89        Some(item)
90    }));
91
92    // Split up glob imports from all other items.
93    //
94    // This covers the case where somebody does an import which should pull in an item,
95    // but there's already an item with the same namespace and same name. Rust gives
96    // priority to the not-imported one, so we should, too.
97    items.extend(doc.items.values().flat_map(|(item, renamed, import_id)| {
98        // First, lower everything other than glob imports.
99        if matches!(item.kind, hir::ItemKind::Use(_, hir::UseKind::Glob)) {
100            return Vec::new();
101        }
102        let v = clean_maybe_renamed_item(cx, item, *renamed, *import_id);
103        for item in &v {
104            if let Some(name) = item.name
105                && (cx.render_options.document_hidden || !item.is_doc_hidden())
106            {
107                inserted.insert((item.type_(), name));
108            }
109        }
110        v
111    }));
112    items.extend(doc.inlined_foreigns.iter().flat_map(|((_, renamed), (res, local_import_id))| {
113        let Some(def_id) = res.opt_def_id() else { return Vec::new() };
114        let name = renamed.unwrap_or_else(|| cx.tcx.item_name(def_id));
115        let import = cx.tcx.hir_expect_item(*local_import_id);
116        match import.kind {
117            hir::ItemKind::Use(path, kind) => {
118                let hir::UsePath { segments, span, .. } = *path;
119                let path = hir::Path { segments, res: *res, span };
120                clean_use_statement_inner(
121                    import,
122                    Some(name),
123                    &path,
124                    kind,
125                    cx,
126                    &mut Default::default(),
127                )
128            }
129            _ => unreachable!(),
130        }
131    }));
132    items.extend(doc.items.values().flat_map(|(item, renamed, _)| {
133        // Now we actually lower the imports, skipping everything else.
134        if let hir::ItemKind::Use(path, hir::UseKind::Glob) = item.kind {
135            clean_use_statement(item, *renamed, path, hir::UseKind::Glob, cx, &mut inserted)
136        } else {
137            // skip everything else
138            Vec::new()
139        }
140    }));
141
142    // determine if we should display the inner contents or
143    // the outer `mod` item for the source code.
144
145    let span = Span::new({
146        let where_outer = doc.where_outer(cx.tcx);
147        let sm = cx.sess().source_map();
148        let outer = sm.lookup_char_pos(where_outer.lo());
149        let inner = sm.lookup_char_pos(doc.where_inner.lo());
150        if outer.file.start_pos == inner.file.start_pos {
151            // mod foo { ... }
152            where_outer
153        } else {
154            // mod foo; (and a separate SourceFile for the contents)
155            doc.where_inner
156        }
157    });
158
159    let kind = ModuleItem(Module { items, span });
160    generate_item_with_correct_attrs(
161        cx,
162        kind,
163        doc.def_id.to_def_id(),
164        doc.name,
165        doc.import_id,
166        doc.renamed,
167    )
168}
169
170fn is_glob_import(tcx: TyCtxt<'_>, import_id: LocalDefId) -> bool {
171    if let hir::Node::Item(item) = tcx.hir_node_by_def_id(import_id)
172        && let hir::ItemKind::Use(_, use_kind) = item.kind
173    {
174        use_kind == hir::UseKind::Glob
175    } else {
176        false
177    }
178}
179
180fn generate_item_with_correct_attrs(
181    cx: &mut DocContext<'_>,
182    kind: ItemKind,
183    def_id: DefId,
184    name: Symbol,
185    import_id: Option<LocalDefId>,
186    renamed: Option<Symbol>,
187) -> Item {
188    let target_attrs = inline::load_attrs(cx, def_id);
189    let attrs = if let Some(import_id) = import_id {
190        // glob reexports are treated the same as `#[doc(inline)]` items.
191        //
192        // For glob re-exports the item may or may not exist to be re-exported (potentially the cfgs
193        // on the path up until the glob can be removed, and only cfgs on the globbed item itself
194        // matter), for non-inlined re-exports see #85043.
195        let is_inline = hir_attr_lists(inline::load_attrs(cx, import_id.to_def_id()), sym::doc)
196            .get_word_attr(sym::inline)
197            .is_some()
198            || (is_glob_import(cx.tcx, import_id)
199                && (cx.render_options.document_hidden || !cx.tcx.is_doc_hidden(def_id)));
200        let mut attrs = get_all_import_attributes(cx, import_id, def_id, is_inline);
201        add_without_unwanted_attributes(&mut attrs, target_attrs, is_inline, None);
202        attrs
203    } else {
204        // We only keep the item's attributes.
205        target_attrs.iter().map(|attr| (Cow::Borrowed(attr), None)).collect()
206    };
207    let cfg = extract_cfg_from_attrs(
208        attrs.iter().map(move |(attr, _)| match attr {
209            Cow::Borrowed(attr) => *attr,
210            Cow::Owned(attr) => attr,
211        }),
212        cx.tcx,
213        &cx.cache.hidden_cfg,
214    );
215    let attrs = Attributes::from_hir_iter(attrs.iter().map(|(attr, did)| (&**attr, *did)), false);
216
217    let name = renamed.or(Some(name));
218    let mut item = Item::from_def_id_and_attrs_and_parts(def_id, name, kind, attrs, cfg);
219    item.inner.inline_stmt_id = import_id;
220    item
221}
222
223fn clean_generic_bound<'tcx>(
224    bound: &hir::GenericBound<'tcx>,
225    cx: &mut DocContext<'tcx>,
226) -> Option<GenericBound> {
227    Some(match bound {
228        hir::GenericBound::Outlives(lt) => GenericBound::Outlives(clean_lifetime(lt, cx)),
229        hir::GenericBound::Trait(t) => {
230            // `T: [const] Destruct` is hidden because `T: Destruct` is a no-op.
231            if let hir::BoundConstness::Maybe(_) = t.modifiers.constness
232                && cx.tcx.lang_items().destruct_trait() == Some(t.trait_ref.trait_def_id().unwrap())
233            {
234                return None;
235            }
236
237            GenericBound::TraitBound(clean_poly_trait_ref(t, cx), t.modifiers)
238        }
239        hir::GenericBound::Use(args, ..) => {
240            GenericBound::Use(args.iter().map(|arg| clean_precise_capturing_arg(arg, cx)).collect())
241        }
242    })
243}
244
245pub(crate) fn clean_trait_ref_with_constraints<'tcx>(
246    cx: &mut DocContext<'tcx>,
247    trait_ref: ty::PolyTraitRef<'tcx>,
248    constraints: ThinVec<AssocItemConstraint>,
249) -> Path {
250    let kind = cx.tcx.def_kind(trait_ref.def_id()).into();
251    if !matches!(kind, ItemType::Trait | ItemType::TraitAlias) {
252        span_bug!(cx.tcx.def_span(trait_ref.def_id()), "`TraitRef` had unexpected kind {kind:?}");
253    }
254    inline::record_extern_fqn(cx, trait_ref.def_id(), kind);
255    let path = clean_middle_path(
256        cx,
257        trait_ref.def_id(),
258        true,
259        constraints,
260        trait_ref.map_bound(|tr| tr.args),
261    );
262
263    debug!(?trait_ref);
264
265    path
266}
267
268fn clean_poly_trait_ref_with_constraints<'tcx>(
269    cx: &mut DocContext<'tcx>,
270    poly_trait_ref: ty::PolyTraitRef<'tcx>,
271    constraints: ThinVec<AssocItemConstraint>,
272) -> GenericBound {
273    GenericBound::TraitBound(
274        PolyTrait {
275            trait_: clean_trait_ref_with_constraints(cx, poly_trait_ref, constraints),
276            generic_params: clean_bound_vars(poly_trait_ref.bound_vars(), cx),
277        },
278        hir::TraitBoundModifiers::NONE,
279    )
280}
281
282fn clean_lifetime(lifetime: &hir::Lifetime, cx: &DocContext<'_>) -> Lifetime {
283    if let Some(
284        rbv::ResolvedArg::EarlyBound(did)
285        | rbv::ResolvedArg::LateBound(_, _, did)
286        | rbv::ResolvedArg::Free(_, did),
287    ) = cx.tcx.named_bound_var(lifetime.hir_id)
288        && let Some(lt) = cx.args.get(&did.to_def_id()).and_then(|arg| arg.as_lt())
289    {
290        return *lt;
291    }
292    Lifetime(lifetime.ident.name)
293}
294
295pub(crate) fn clean_precise_capturing_arg(
296    arg: &hir::PreciseCapturingArg<'_>,
297    cx: &DocContext<'_>,
298) -> PreciseCapturingArg {
299    match arg {
300        hir::PreciseCapturingArg::Lifetime(lt) => {
301            PreciseCapturingArg::Lifetime(clean_lifetime(lt, cx))
302        }
303        hir::PreciseCapturingArg::Param(param) => PreciseCapturingArg::Param(param.ident.name),
304    }
305}
306
307pub(crate) fn clean_const<'tcx>(
308    constant: &hir::ConstArg<'tcx>,
309    _cx: &mut DocContext<'tcx>,
310) -> ConstantKind {
311    match &constant.kind {
312        hir::ConstArgKind::Path(qpath) => {
313            ConstantKind::Path { path: qpath_to_string(qpath).into() }
314        }
315        hir::ConstArgKind::Anon(anon) => ConstantKind::Anonymous { body: anon.body },
316        hir::ConstArgKind::Infer(..) => ConstantKind::Infer,
317    }
318}
319
320pub(crate) fn clean_middle_const<'tcx>(
321    constant: ty::Binder<'tcx, ty::Const<'tcx>>,
322    _cx: &mut DocContext<'tcx>,
323) -> ConstantKind {
324    // FIXME: instead of storing the stringified expression, store `self` directly instead.
325    ConstantKind::TyConst { expr: constant.skip_binder().to_string().into() }
326}
327
328pub(crate) fn clean_middle_region<'tcx>(
329    region: ty::Region<'tcx>,
330    cx: &mut DocContext<'tcx>,
331) -> Option<Lifetime> {
332    region.get_name(cx.tcx).map(Lifetime)
333}
334
335fn clean_where_predicate<'tcx>(
336    predicate: &hir::WherePredicate<'tcx>,
337    cx: &mut DocContext<'tcx>,
338) -> Option<WherePredicate> {
339    if !predicate.kind.in_where_clause() {
340        return None;
341    }
342    Some(match predicate.kind {
343        hir::WherePredicateKind::BoundPredicate(wbp) => {
344            let bound_params = wbp
345                .bound_generic_params
346                .iter()
347                .map(|param| clean_generic_param(cx, None, param))
348                .collect();
349            WherePredicate::BoundPredicate {
350                ty: clean_ty(wbp.bounded_ty, cx),
351                bounds: wbp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
352                bound_params,
353            }
354        }
355
356        hir::WherePredicateKind::RegionPredicate(wrp) => WherePredicate::RegionPredicate {
357            lifetime: clean_lifetime(wrp.lifetime, cx),
358            bounds: wrp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
359        },
360
361        // We should never actually reach this case because these predicates should've already been
362        // rejected in an earlier compiler pass. This feature isn't fully implemented (#20041).
363        hir::WherePredicateKind::EqPredicate(_) => bug!("EqPredicate"),
364    })
365}
366
367pub(crate) fn clean_predicate<'tcx>(
368    predicate: ty::Clause<'tcx>,
369    cx: &mut DocContext<'tcx>,
370) -> Option<WherePredicate> {
371    let bound_predicate = predicate.kind();
372    match bound_predicate.skip_binder() {
373        ty::ClauseKind::Trait(pred) => clean_poly_trait_predicate(bound_predicate.rebind(pred), cx),
374        ty::ClauseKind::RegionOutlives(pred) => Some(clean_region_outlives_predicate(pred, cx)),
375        ty::ClauseKind::TypeOutlives(pred) => {
376            Some(clean_type_outlives_predicate(bound_predicate.rebind(pred), cx))
377        }
378        ty::ClauseKind::Projection(pred) => {
379            Some(clean_projection_predicate(bound_predicate.rebind(pred), cx))
380        }
381        // FIXME(generic_const_exprs): should this do something?
382        ty::ClauseKind::ConstEvaluatable(..)
383        | ty::ClauseKind::WellFormed(..)
384        | ty::ClauseKind::ConstArgHasType(..)
385        // FIXME(const_trait_impl): We can probably use this `HostEffect` pred to render `[const]`.
386        | ty::ClauseKind::HostEffect(_) => None,
387    }
388}
389
390fn clean_poly_trait_predicate<'tcx>(
391    pred: ty::PolyTraitPredicate<'tcx>,
392    cx: &mut DocContext<'tcx>,
393) -> Option<WherePredicate> {
394    // `T: [const] Destruct` is hidden because `T: Destruct` is a no-op.
395    // FIXME(const_trait_impl) check constness
396    if Some(pred.skip_binder().def_id()) == cx.tcx.lang_items().destruct_trait() {
397        return None;
398    }
399
400    let poly_trait_ref = pred.map_bound(|pred| pred.trait_ref);
401    Some(WherePredicate::BoundPredicate {
402        ty: clean_middle_ty(poly_trait_ref.self_ty(), cx, None, None),
403        bounds: vec![clean_poly_trait_ref_with_constraints(cx, poly_trait_ref, ThinVec::new())],
404        bound_params: Vec::new(),
405    })
406}
407
408fn clean_region_outlives_predicate<'tcx>(
409    pred: ty::RegionOutlivesPredicate<'tcx>,
410    cx: &mut DocContext<'tcx>,
411) -> WherePredicate {
412    let ty::OutlivesPredicate(a, b) = pred;
413
414    WherePredicate::RegionPredicate {
415        lifetime: clean_middle_region(a, cx).expect("failed to clean lifetime"),
416        bounds: vec![GenericBound::Outlives(
417            clean_middle_region(b, cx).expect("failed to clean bounds"),
418        )],
419    }
420}
421
422fn clean_type_outlives_predicate<'tcx>(
423    pred: ty::Binder<'tcx, ty::TypeOutlivesPredicate<'tcx>>,
424    cx: &mut DocContext<'tcx>,
425) -> WherePredicate {
426    let ty::OutlivesPredicate(ty, lt) = pred.skip_binder();
427
428    WherePredicate::BoundPredicate {
429        ty: clean_middle_ty(pred.rebind(ty), cx, None, None),
430        bounds: vec![GenericBound::Outlives(
431            clean_middle_region(lt, cx).expect("failed to clean lifetimes"),
432        )],
433        bound_params: Vec::new(),
434    }
435}
436
437fn clean_middle_term<'tcx>(
438    term: ty::Binder<'tcx, ty::Term<'tcx>>,
439    cx: &mut DocContext<'tcx>,
440) -> Term {
441    match term.skip_binder().kind() {
442        ty::TermKind::Ty(ty) => Term::Type(clean_middle_ty(term.rebind(ty), cx, None, None)),
443        ty::TermKind::Const(c) => Term::Constant(clean_middle_const(term.rebind(c), cx)),
444    }
445}
446
447fn clean_hir_term<'tcx>(term: &hir::Term<'tcx>, cx: &mut DocContext<'tcx>) -> Term {
448    match term {
449        hir::Term::Ty(ty) => Term::Type(clean_ty(ty, cx)),
450        hir::Term::Const(c) => {
451            let ct = lower_const_arg_for_rustdoc(cx.tcx, c, FeedConstTy::No);
452            Term::Constant(clean_middle_const(ty::Binder::dummy(ct), cx))
453        }
454    }
455}
456
457fn clean_projection_predicate<'tcx>(
458    pred: ty::Binder<'tcx, ty::ProjectionPredicate<'tcx>>,
459    cx: &mut DocContext<'tcx>,
460) -> WherePredicate {
461    WherePredicate::EqPredicate {
462        lhs: clean_projection(pred.map_bound(|p| p.projection_term), cx, None),
463        rhs: clean_middle_term(pred.map_bound(|p| p.term), cx),
464    }
465}
466
467fn clean_projection<'tcx>(
468    proj: ty::Binder<'tcx, ty::AliasTerm<'tcx>>,
469    cx: &mut DocContext<'tcx>,
470    parent_def_id: Option<DefId>,
471) -> QPathData {
472    let trait_ = clean_trait_ref_with_constraints(
473        cx,
474        proj.map_bound(|proj| proj.trait_ref(cx.tcx)),
475        ThinVec::new(),
476    );
477    let self_type = clean_middle_ty(proj.map_bound(|proj| proj.self_ty()), cx, None, None);
478    let self_def_id = match parent_def_id {
479        Some(parent_def_id) => cx.tcx.opt_parent(parent_def_id).or(Some(parent_def_id)),
480        None => self_type.def_id(&cx.cache),
481    };
482    let should_fully_qualify = should_fully_qualify_path(self_def_id, &trait_, &self_type);
483
484    QPathData {
485        assoc: projection_to_path_segment(proj, cx),
486        self_type,
487        should_fully_qualify,
488        trait_: Some(trait_),
489    }
490}
491
492fn should_fully_qualify_path(self_def_id: Option<DefId>, trait_: &Path, self_type: &Type) -> bool {
493    !trait_.segments.is_empty()
494        && self_def_id
495            .zip(Some(trait_.def_id()))
496            .map_or(!self_type.is_self_type(), |(id, trait_)| id != trait_)
497}
498
499fn projection_to_path_segment<'tcx>(
500    proj: ty::Binder<'tcx, ty::AliasTerm<'tcx>>,
501    cx: &mut DocContext<'tcx>,
502) -> PathSegment {
503    let def_id = proj.skip_binder().def_id;
504    let generics = cx.tcx.generics_of(def_id);
505    PathSegment {
506        name: cx.tcx.item_name(def_id),
507        args: GenericArgs::AngleBracketed {
508            args: clean_middle_generic_args(
509                cx,
510                proj.map_bound(|ty| &ty.args[generics.parent_count..]),
511                false,
512                def_id,
513            ),
514            constraints: Default::default(),
515        },
516    }
517}
518
519fn clean_generic_param_def(
520    def: &ty::GenericParamDef,
521    defaults: ParamDefaults,
522    cx: &mut DocContext<'_>,
523) -> GenericParamDef {
524    let (name, kind) = match def.kind {
525        ty::GenericParamDefKind::Lifetime => {
526            (def.name, GenericParamDefKind::Lifetime { outlives: ThinVec::new() })
527        }
528        ty::GenericParamDefKind::Type { has_default, synthetic, .. } => {
529            let default = if let ParamDefaults::Yes = defaults
530                && has_default
531            {
532                Some(clean_middle_ty(
533                    ty::Binder::dummy(cx.tcx.type_of(def.def_id).instantiate_identity()),
534                    cx,
535                    Some(def.def_id),
536                    None,
537                ))
538            } else {
539                None
540            };
541            (
542                def.name,
543                GenericParamDefKind::Type {
544                    bounds: ThinVec::new(), // These are filled in from the where-clauses.
545                    default: default.map(Box::new),
546                    synthetic,
547                },
548            )
549        }
550        ty::GenericParamDefKind::Const { has_default, synthetic } => (
551            def.name,
552            GenericParamDefKind::Const {
553                ty: Box::new(clean_middle_ty(
554                    ty::Binder::dummy(
555                        cx.tcx
556                            .type_of(def.def_id)
557                            .no_bound_vars()
558                            .expect("const parameter types cannot be generic"),
559                    ),
560                    cx,
561                    Some(def.def_id),
562                    None,
563                )),
564                default: if let ParamDefaults::Yes = defaults
565                    && has_default
566                {
567                    Some(Box::new(
568                        cx.tcx.const_param_default(def.def_id).instantiate_identity().to_string(),
569                    ))
570                } else {
571                    None
572                },
573                synthetic,
574            },
575        ),
576    };
577
578    GenericParamDef { name, def_id: def.def_id, kind }
579}
580
581/// Whether to clean generic parameter defaults or not.
582enum ParamDefaults {
583    Yes,
584    No,
585}
586
587fn clean_generic_param<'tcx>(
588    cx: &mut DocContext<'tcx>,
589    generics: Option<&hir::Generics<'tcx>>,
590    param: &hir::GenericParam<'tcx>,
591) -> GenericParamDef {
592    let (name, kind) = match param.kind {
593        hir::GenericParamKind::Lifetime { .. } => {
594            let outlives = if let Some(generics) = generics {
595                generics
596                    .outlives_for_param(param.def_id)
597                    .filter(|bp| !bp.in_where_clause)
598                    .flat_map(|bp| bp.bounds)
599                    .map(|bound| match bound {
600                        hir::GenericBound::Outlives(lt) => clean_lifetime(lt, cx),
601                        _ => panic!(),
602                    })
603                    .collect()
604            } else {
605                ThinVec::new()
606            };
607            (param.name.ident().name, GenericParamDefKind::Lifetime { outlives })
608        }
609        hir::GenericParamKind::Type { ref default, synthetic } => {
610            let bounds = if let Some(generics) = generics {
611                generics
612                    .bounds_for_param(param.def_id)
613                    .filter(|bp| bp.origin != PredicateOrigin::WhereClause)
614                    .flat_map(|bp| bp.bounds)
615                    .filter_map(|x| clean_generic_bound(x, cx))
616                    .collect()
617            } else {
618                ThinVec::new()
619            };
620            (
621                param.name.ident().name,
622                GenericParamDefKind::Type {
623                    bounds,
624                    default: default.map(|t| clean_ty(t, cx)).map(Box::new),
625                    synthetic,
626                },
627            )
628        }
629        hir::GenericParamKind::Const { ty, default, synthetic } => (
630            param.name.ident().name,
631            GenericParamDefKind::Const {
632                ty: Box::new(clean_ty(ty, cx)),
633                default: default.map(|ct| {
634                    Box::new(lower_const_arg_for_rustdoc(cx.tcx, ct, FeedConstTy::No).to_string())
635                }),
636                synthetic,
637            },
638        ),
639    };
640
641    GenericParamDef { name, def_id: param.def_id.to_def_id(), kind }
642}
643
644/// Synthetic type-parameters are inserted after normal ones.
645/// In order for normal parameters to be able to refer to synthetic ones,
646/// scans them first.
647fn is_impl_trait(param: &hir::GenericParam<'_>) -> bool {
648    match param.kind {
649        hir::GenericParamKind::Type { synthetic, .. } => synthetic,
650        _ => false,
651    }
652}
653
654/// This can happen for `async fn`, e.g. `async fn f<'_>(&'_ self)`.
655///
656/// See `lifetime_to_generic_param` in `rustc_ast_lowering` for more information.
657fn is_elided_lifetime(param: &hir::GenericParam<'_>) -> bool {
658    matches!(
659        param.kind,
660        hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Elided(_) }
661    )
662}
663
664pub(crate) fn clean_generics<'tcx>(
665    gens: &hir::Generics<'tcx>,
666    cx: &mut DocContext<'tcx>,
667) -> Generics {
668    let impl_trait_params = gens
669        .params
670        .iter()
671        .filter(|param| is_impl_trait(param))
672        .map(|param| {
673            let param = clean_generic_param(cx, Some(gens), param);
674            match param.kind {
675                GenericParamDefKind::Lifetime { .. } => unreachable!(),
676                GenericParamDefKind::Type { ref bounds, .. } => {
677                    cx.impl_trait_bounds.insert(param.def_id.into(), bounds.to_vec());
678                }
679                GenericParamDefKind::Const { .. } => unreachable!(),
680            }
681            param
682        })
683        .collect::<Vec<_>>();
684
685    let mut bound_predicates = FxIndexMap::default();
686    let mut region_predicates = FxIndexMap::default();
687    let mut eq_predicates = ThinVec::default();
688    for pred in gens.predicates.iter().filter_map(|x| clean_where_predicate(x, cx)) {
689        match pred {
690            WherePredicate::BoundPredicate { ty, bounds, bound_params } => {
691                match bound_predicates.entry(ty) {
692                    IndexEntry::Vacant(v) => {
693                        v.insert((bounds, bound_params));
694                    }
695                    IndexEntry::Occupied(mut o) => {
696                        // we merge both bounds.
697                        for bound in bounds {
698                            if !o.get().0.contains(&bound) {
699                                o.get_mut().0.push(bound);
700                            }
701                        }
702                        for bound_param in bound_params {
703                            if !o.get().1.contains(&bound_param) {
704                                o.get_mut().1.push(bound_param);
705                            }
706                        }
707                    }
708                }
709            }
710            WherePredicate::RegionPredicate { lifetime, bounds } => {
711                match region_predicates.entry(lifetime) {
712                    IndexEntry::Vacant(v) => {
713                        v.insert(bounds);
714                    }
715                    IndexEntry::Occupied(mut o) => {
716                        // we merge both bounds.
717                        for bound in bounds {
718                            if !o.get().contains(&bound) {
719                                o.get_mut().push(bound);
720                            }
721                        }
722                    }
723                }
724            }
725            WherePredicate::EqPredicate { lhs, rhs } => {
726                eq_predicates.push(WherePredicate::EqPredicate { lhs, rhs });
727            }
728        }
729    }
730
731    let mut params = ThinVec::with_capacity(gens.params.len());
732    // In this loop, we gather the generic parameters (`<'a, B: 'a>`) and check if they have
733    // bounds in the where predicates. If so, we move their bounds into the where predicates
734    // while also preventing duplicates.
735    for p in gens.params.iter().filter(|p| !is_impl_trait(p) && !is_elided_lifetime(p)) {
736        let mut p = clean_generic_param(cx, Some(gens), p);
737        match &mut p.kind {
738            GenericParamDefKind::Lifetime { outlives } => {
739                if let Some(region_pred) = region_predicates.get_mut(&Lifetime(p.name)) {
740                    // We merge bounds in the `where` clause.
741                    for outlive in outlives.drain(..) {
742                        let outlive = GenericBound::Outlives(outlive);
743                        if !region_pred.contains(&outlive) {
744                            region_pred.push(outlive);
745                        }
746                    }
747                }
748            }
749            GenericParamDefKind::Type { bounds, synthetic: false, .. } => {
750                if let Some(bound_pred) = bound_predicates.get_mut(&Type::Generic(p.name)) {
751                    // We merge bounds in the `where` clause.
752                    for bound in bounds.drain(..) {
753                        if !bound_pred.0.contains(&bound) {
754                            bound_pred.0.push(bound);
755                        }
756                    }
757                }
758            }
759            GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
760                // nothing to do here.
761            }
762        }
763        params.push(p);
764    }
765    params.extend(impl_trait_params);
766
767    Generics {
768        params,
769        where_predicates: bound_predicates
770            .into_iter()
771            .map(|(ty, (bounds, bound_params))| WherePredicate::BoundPredicate {
772                ty,
773                bounds,
774                bound_params,
775            })
776            .chain(
777                region_predicates
778                    .into_iter()
779                    .map(|(lifetime, bounds)| WherePredicate::RegionPredicate { lifetime, bounds }),
780            )
781            .chain(eq_predicates)
782            .collect(),
783    }
784}
785
786fn clean_ty_generics<'tcx>(cx: &mut DocContext<'tcx>, def_id: DefId) -> Generics {
787    clean_ty_generics_inner(cx, cx.tcx.generics_of(def_id), cx.tcx.explicit_predicates_of(def_id))
788}
789
790fn clean_ty_generics_inner<'tcx>(
791    cx: &mut DocContext<'tcx>,
792    gens: &ty::Generics,
793    preds: ty::GenericPredicates<'tcx>,
794) -> Generics {
795    // Don't populate `cx.impl_trait_bounds` before cleaning where clauses,
796    // since `clean_predicate` would consume them.
797    let mut impl_trait = BTreeMap::<u32, Vec<GenericBound>>::default();
798
799    let params: ThinVec<_> = gens
800        .own_params
801        .iter()
802        .filter(|param| match param.kind {
803            ty::GenericParamDefKind::Lifetime => !param.is_anonymous_lifetime(),
804            ty::GenericParamDefKind::Type { synthetic, .. } => {
805                if param.name == kw::SelfUpper {
806                    debug_assert_eq!(param.index, 0);
807                    return false;
808                }
809                if synthetic {
810                    impl_trait.insert(param.index, vec![]);
811                    return false;
812                }
813                true
814            }
815            ty::GenericParamDefKind::Const { .. } => true,
816        })
817        .map(|param| clean_generic_param_def(param, ParamDefaults::Yes, cx))
818        .collect();
819
820    // param index -> [(trait DefId, associated type name & generics, term)]
821    let mut impl_trait_proj =
822        FxHashMap::<u32, Vec<(DefId, PathSegment, ty::Binder<'_, ty::Term<'_>>)>>::default();
823
824    let where_predicates = preds
825        .predicates
826        .iter()
827        .flat_map(|(pred, _)| {
828            let mut proj_pred = None;
829            let param_idx = {
830                let bound_p = pred.kind();
831                match bound_p.skip_binder() {
832                    ty::ClauseKind::Trait(pred) if let ty::Param(param) = pred.self_ty().kind() => {
833                        Some(param.index)
834                    }
835                    ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg))
836                        if let ty::Param(param) = ty.kind() =>
837                    {
838                        Some(param.index)
839                    }
840                    ty::ClauseKind::Projection(p)
841                        if let ty::Param(param) = p.projection_term.self_ty().kind() =>
842                    {
843                        proj_pred = Some(bound_p.rebind(p));
844                        Some(param.index)
845                    }
846                    _ => None,
847                }
848            };
849
850            if let Some(param_idx) = param_idx
851                && let Some(bounds) = impl_trait.get_mut(&param_idx)
852            {
853                let pred = clean_predicate(*pred, cx)?;
854
855                bounds.extend(pred.get_bounds().into_iter().flatten().cloned());
856
857                if let Some(pred) = proj_pred {
858                    let lhs = clean_projection(pred.map_bound(|p| p.projection_term), cx, None);
859                    impl_trait_proj.entry(param_idx).or_default().push((
860                        lhs.trait_.unwrap().def_id(),
861                        lhs.assoc,
862                        pred.map_bound(|p| p.term),
863                    ));
864                }
865
866                return None;
867            }
868
869            Some(pred)
870        })
871        .collect::<Vec<_>>();
872
873    for (idx, mut bounds) in impl_trait {
874        let mut has_sized = false;
875        bounds.retain(|b| {
876            if b.is_sized_bound(cx) {
877                has_sized = true;
878                false
879            } else if b.is_meta_sized_bound(cx) {
880                // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
881                // is shown and none of the new sizedness traits leak into documentation.
882                false
883            } else {
884                true
885            }
886        });
887        if !has_sized {
888            bounds.push(GenericBound::maybe_sized(cx));
889        }
890
891        // Move trait bounds to the front.
892        bounds.sort_by_key(|b| !b.is_trait_bound());
893
894        // Add back a `Sized` bound if there are no *trait* bounds remaining (incl. `?Sized`).
895        // Since all potential trait bounds are at the front we can just check the first bound.
896        if bounds.first().is_none_or(|b| !b.is_trait_bound()) {
897            bounds.insert(0, GenericBound::sized(cx));
898        }
899
900        if let Some(proj) = impl_trait_proj.remove(&idx) {
901            for (trait_did, name, rhs) in proj {
902                let rhs = clean_middle_term(rhs, cx);
903                simplify::merge_bounds(cx, &mut bounds, trait_did, name, &rhs);
904            }
905        }
906
907        cx.impl_trait_bounds.insert(idx.into(), bounds);
908    }
909
910    // Now that `cx.impl_trait_bounds` is populated, we can process
911    // remaining predicates which could contain `impl Trait`.
912    let where_predicates =
913        where_predicates.into_iter().flat_map(|p| clean_predicate(*p, cx)).collect();
914
915    let mut generics = Generics { params, where_predicates };
916    simplify::sized_bounds(cx, &mut generics);
917    generics.where_predicates = simplify::where_clauses(cx, generics.where_predicates);
918    generics
919}
920
921fn clean_ty_alias_inner_type<'tcx>(
922    ty: Ty<'tcx>,
923    cx: &mut DocContext<'tcx>,
924    ret: &mut Vec<Item>,
925) -> Option<TypeAliasInnerType> {
926    let ty::Adt(adt_def, args) = ty.kind() else {
927        return None;
928    };
929
930    if !adt_def.did().is_local() {
931        cx.with_param_env(adt_def.did(), |cx| {
932            inline::build_impls(cx, adt_def.did(), None, ret);
933        });
934    }
935
936    Some(if adt_def.is_enum() {
937        let variants: rustc_index::IndexVec<_, _> = adt_def
938            .variants()
939            .iter()
940            .map(|variant| clean_variant_def_with_args(variant, args, cx))
941            .collect();
942
943        if !adt_def.did().is_local() {
944            inline::record_extern_fqn(cx, adt_def.did(), ItemType::Enum);
945        }
946
947        TypeAliasInnerType::Enum {
948            variants,
949            is_non_exhaustive: adt_def.is_variant_list_non_exhaustive(),
950        }
951    } else {
952        let variant = adt_def
953            .variants()
954            .iter()
955            .next()
956            .unwrap_or_else(|| bug!("a struct or union should always have one variant def"));
957
958        let fields: Vec<_> =
959            clean_variant_def_with_args(variant, args, cx).kind.inner_items().cloned().collect();
960
961        if adt_def.is_struct() {
962            if !adt_def.did().is_local() {
963                inline::record_extern_fqn(cx, adt_def.did(), ItemType::Struct);
964            }
965            TypeAliasInnerType::Struct { ctor_kind: variant.ctor_kind(), fields }
966        } else {
967            if !adt_def.did().is_local() {
968                inline::record_extern_fqn(cx, adt_def.did(), ItemType::Union);
969            }
970            TypeAliasInnerType::Union { fields }
971        }
972    })
973}
974
975fn clean_proc_macro<'tcx>(
976    item: &hir::Item<'tcx>,
977    name: &mut Symbol,
978    kind: MacroKind,
979    cx: &mut DocContext<'tcx>,
980) -> ItemKind {
981    let attrs = cx.tcx.hir_attrs(item.hir_id());
982    if kind == MacroKind::Derive
983        && let Some(derive_name) =
984            hir_attr_lists(attrs, sym::proc_macro_derive).find_map(|mi| mi.ident())
985    {
986        *name = derive_name.name;
987    }
988
989    let mut helpers = Vec::new();
990    for mi in hir_attr_lists(attrs, sym::proc_macro_derive) {
991        if !mi.has_name(sym::attributes) {
992            continue;
993        }
994
995        if let Some(list) = mi.meta_item_list() {
996            for inner_mi in list {
997                if let Some(ident) = inner_mi.ident() {
998                    helpers.push(ident.name);
999                }
1000            }
1001        }
1002    }
1003    ProcMacroItem(ProcMacro { kind, helpers })
1004}
1005
1006fn clean_fn_or_proc_macro<'tcx>(
1007    item: &hir::Item<'tcx>,
1008    sig: &hir::FnSig<'tcx>,
1009    generics: &hir::Generics<'tcx>,
1010    body_id: hir::BodyId,
1011    name: &mut Symbol,
1012    cx: &mut DocContext<'tcx>,
1013) -> ItemKind {
1014    let attrs = cx.tcx.hir_attrs(item.hir_id());
1015    let macro_kind = attrs.iter().find_map(|a| {
1016        if a.has_name(sym::proc_macro) {
1017            Some(MacroKind::Bang)
1018        } else if a.has_name(sym::proc_macro_derive) {
1019            Some(MacroKind::Derive)
1020        } else if a.has_name(sym::proc_macro_attribute) {
1021            Some(MacroKind::Attr)
1022        } else {
1023            None
1024        }
1025    });
1026    match macro_kind {
1027        Some(kind) => clean_proc_macro(item, name, kind, cx),
1028        None => {
1029            let mut func = clean_function(cx, sig, generics, ParamsSrc::Body(body_id));
1030            clean_fn_decl_legacy_const_generics(&mut func, attrs);
1031            FunctionItem(func)
1032        }
1033    }
1034}
1035
1036/// This is needed to make it more "readable" when documenting functions using
1037/// `rustc_legacy_const_generics`. More information in
1038/// <https://github.com/rust-lang/rust/issues/83167>.
1039fn clean_fn_decl_legacy_const_generics(func: &mut Function, attrs: &[hir::Attribute]) {
1040    for meta_item_list in attrs
1041        .iter()
1042        .filter(|a| a.has_name(sym::rustc_legacy_const_generics))
1043        .filter_map(|a| a.meta_item_list())
1044    {
1045        for (pos, literal) in meta_item_list.iter().filter_map(|meta| meta.lit()).enumerate() {
1046            match literal.kind {
1047                ast::LitKind::Int(a, _) => {
1048                    let GenericParamDef { name, kind, .. } = func.generics.params.remove(0);
1049                    if let GenericParamDefKind::Const { ty, .. } = kind {
1050                        func.decl.inputs.insert(
1051                            a.get() as _,
1052                            Parameter { name: Some(name), type_: *ty, is_const: true },
1053                        );
1054                    } else {
1055                        panic!("unexpected non const in position {pos}");
1056                    }
1057                }
1058                _ => panic!("invalid arg index"),
1059            }
1060        }
1061    }
1062}
1063
1064enum ParamsSrc<'tcx> {
1065    Body(hir::BodyId),
1066    Idents(&'tcx [Option<Ident>]),
1067}
1068
1069fn clean_function<'tcx>(
1070    cx: &mut DocContext<'tcx>,
1071    sig: &hir::FnSig<'tcx>,
1072    generics: &hir::Generics<'tcx>,
1073    params: ParamsSrc<'tcx>,
1074) -> Box<Function> {
1075    let (generics, decl) = enter_impl_trait(cx, |cx| {
1076        // NOTE: Generics must be cleaned before params.
1077        let generics = clean_generics(generics, cx);
1078        let params = match params {
1079            ParamsSrc::Body(body_id) => clean_params_via_body(cx, sig.decl.inputs, body_id),
1080            // Let's not perpetuate anon params from Rust 2015; use `_` for them.
1081            ParamsSrc::Idents(idents) => clean_params(cx, sig.decl.inputs, idents, |ident| {
1082                Some(ident.map_or(kw::Underscore, |ident| ident.name))
1083            }),
1084        };
1085        let decl = clean_fn_decl_with_params(cx, sig.decl, Some(&sig.header), params);
1086        (generics, decl)
1087    });
1088    Box::new(Function { decl, generics })
1089}
1090
1091fn clean_params<'tcx>(
1092    cx: &mut DocContext<'tcx>,
1093    types: &[hir::Ty<'tcx>],
1094    idents: &[Option<Ident>],
1095    postprocess: impl Fn(Option<Ident>) -> Option<Symbol>,
1096) -> Vec<Parameter> {
1097    types
1098        .iter()
1099        .enumerate()
1100        .map(|(i, ty)| Parameter {
1101            name: postprocess(idents[i]),
1102            type_: clean_ty(ty, cx),
1103            is_const: false,
1104        })
1105        .collect()
1106}
1107
1108fn clean_params_via_body<'tcx>(
1109    cx: &mut DocContext<'tcx>,
1110    types: &[hir::Ty<'tcx>],
1111    body_id: hir::BodyId,
1112) -> Vec<Parameter> {
1113    types
1114        .iter()
1115        .zip(cx.tcx.hir_body(body_id).params)
1116        .map(|(ty, param)| Parameter {
1117            name: Some(name_from_pat(param.pat)),
1118            type_: clean_ty(ty, cx),
1119            is_const: false,
1120        })
1121        .collect()
1122}
1123
1124fn clean_fn_decl_with_params<'tcx>(
1125    cx: &mut DocContext<'tcx>,
1126    decl: &hir::FnDecl<'tcx>,
1127    header: Option<&hir::FnHeader>,
1128    params: Vec<Parameter>,
1129) -> FnDecl {
1130    let mut output = match decl.output {
1131        hir::FnRetTy::Return(typ) => clean_ty(typ, cx),
1132        hir::FnRetTy::DefaultReturn(..) => Type::Tuple(Vec::new()),
1133    };
1134    if let Some(header) = header
1135        && header.is_async()
1136    {
1137        output = output.sugared_async_return_type();
1138    }
1139    FnDecl { inputs: params, output, c_variadic: decl.c_variadic }
1140}
1141
1142fn clean_poly_fn_sig<'tcx>(
1143    cx: &mut DocContext<'tcx>,
1144    did: Option<DefId>,
1145    sig: ty::PolyFnSig<'tcx>,
1146) -> FnDecl {
1147    let mut output = clean_middle_ty(sig.output(), cx, None, None);
1148
1149    // If the return type isn't an `impl Trait`, we can safely assume that this
1150    // function isn't async without needing to execute the query `asyncness` at
1151    // all which gives us a noticeable performance boost.
1152    if let Some(did) = did
1153        && let Type::ImplTrait(_) = output
1154        && cx.tcx.asyncness(did).is_async()
1155    {
1156        output = output.sugared_async_return_type();
1157    }
1158
1159    let mut idents = did.map(|did| cx.tcx.fn_arg_idents(did)).unwrap_or_default().iter().copied();
1160
1161    // If this comes from a fn item, let's not perpetuate anon params from Rust 2015; use `_` for them.
1162    // If this comes from a fn ptr ty, we just keep params unnamed since it's more conventional stylistically.
1163    // Since the param name is not part of the semantic type, these params never bear a name unlike
1164    // in the HIR case, thus we can't perform any fancy fallback logic unlike `clean_bare_fn_ty`.
1165    let fallback = did.map(|_| kw::Underscore);
1166
1167    let params = sig
1168        .inputs()
1169        .iter()
1170        .map(|ty| Parameter {
1171            name: idents.next().flatten().map(|ident| ident.name).or(fallback),
1172            type_: clean_middle_ty(ty.map_bound(|ty| *ty), cx, None, None),
1173            is_const: false,
1174        })
1175        .collect();
1176
1177    FnDecl { inputs: params, output, c_variadic: sig.skip_binder().c_variadic }
1178}
1179
1180fn clean_trait_ref<'tcx>(trait_ref: &hir::TraitRef<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
1181    let path = clean_path(trait_ref.path, cx);
1182    register_res(cx, path.res);
1183    path
1184}
1185
1186fn clean_poly_trait_ref<'tcx>(
1187    poly_trait_ref: &hir::PolyTraitRef<'tcx>,
1188    cx: &mut DocContext<'tcx>,
1189) -> PolyTrait {
1190    PolyTrait {
1191        trait_: clean_trait_ref(&poly_trait_ref.trait_ref, cx),
1192        generic_params: poly_trait_ref
1193            .bound_generic_params
1194            .iter()
1195            .filter(|p| !is_elided_lifetime(p))
1196            .map(|x| clean_generic_param(cx, None, x))
1197            .collect(),
1198    }
1199}
1200
1201fn clean_trait_item<'tcx>(trait_item: &hir::TraitItem<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
1202    let local_did = trait_item.owner_id.to_def_id();
1203    cx.with_param_env(local_did, |cx| {
1204        let inner = match trait_item.kind {
1205            hir::TraitItemKind::Const(ty, Some(default)) => {
1206                ProvidedAssocConstItem(Box::new(Constant {
1207                    generics: enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx)),
1208                    kind: ConstantKind::Local { def_id: local_did, body: default },
1209                    type_: clean_ty(ty, cx),
1210                }))
1211            }
1212            hir::TraitItemKind::Const(ty, None) => {
1213                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1214                RequiredAssocConstItem(generics, Box::new(clean_ty(ty, cx)))
1215            }
1216            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
1217                let m = clean_function(cx, sig, trait_item.generics, ParamsSrc::Body(body));
1218                MethodItem(m, None)
1219            }
1220            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Required(idents)) => {
1221                let m = clean_function(cx, sig, trait_item.generics, ParamsSrc::Idents(idents));
1222                RequiredMethodItem(m)
1223            }
1224            hir::TraitItemKind::Type(bounds, Some(default)) => {
1225                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1226                let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
1227                let item_type =
1228                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, default)), cx, None, None);
1229                AssocTypeItem(
1230                    Box::new(TypeAlias {
1231                        type_: clean_ty(default, cx),
1232                        generics,
1233                        inner_type: None,
1234                        item_type: Some(item_type),
1235                    }),
1236                    bounds,
1237                )
1238            }
1239            hir::TraitItemKind::Type(bounds, None) => {
1240                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1241                let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
1242                RequiredAssocTypeItem(generics, bounds)
1243            }
1244        };
1245        Item::from_def_id_and_parts(local_did, Some(trait_item.ident.name), inner, cx)
1246    })
1247}
1248
1249pub(crate) fn clean_impl_item<'tcx>(
1250    impl_: &hir::ImplItem<'tcx>,
1251    cx: &mut DocContext<'tcx>,
1252) -> Item {
1253    let local_did = impl_.owner_id.to_def_id();
1254    cx.with_param_env(local_did, |cx| {
1255        let inner = match impl_.kind {
1256            hir::ImplItemKind::Const(ty, expr) => ImplAssocConstItem(Box::new(Constant {
1257                generics: clean_generics(impl_.generics, cx),
1258                kind: ConstantKind::Local { def_id: local_did, body: expr },
1259                type_: clean_ty(ty, cx),
1260            })),
1261            hir::ImplItemKind::Fn(ref sig, body) => {
1262                let m = clean_function(cx, sig, impl_.generics, ParamsSrc::Body(body));
1263                let defaultness = cx.tcx.defaultness(impl_.owner_id);
1264                MethodItem(m, Some(defaultness))
1265            }
1266            hir::ImplItemKind::Type(hir_ty) => {
1267                let type_ = clean_ty(hir_ty, cx);
1268                let generics = clean_generics(impl_.generics, cx);
1269                let item_type =
1270                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, hir_ty)), cx, None, None);
1271                AssocTypeItem(
1272                    Box::new(TypeAlias {
1273                        type_,
1274                        generics,
1275                        inner_type: None,
1276                        item_type: Some(item_type),
1277                    }),
1278                    Vec::new(),
1279                )
1280            }
1281        };
1282
1283        Item::from_def_id_and_parts(local_did, Some(impl_.ident.name), inner, cx)
1284    })
1285}
1286
1287pub(crate) fn clean_middle_assoc_item(assoc_item: &ty::AssocItem, cx: &mut DocContext<'_>) -> Item {
1288    let tcx = cx.tcx;
1289    let kind = match assoc_item.kind {
1290        ty::AssocKind::Const { .. } => {
1291            let ty = clean_middle_ty(
1292                ty::Binder::dummy(tcx.type_of(assoc_item.def_id).instantiate_identity()),
1293                cx,
1294                Some(assoc_item.def_id),
1295                None,
1296            );
1297
1298            let mut generics = clean_ty_generics(cx, assoc_item.def_id);
1299            simplify::move_bounds_to_generic_parameters(&mut generics);
1300
1301            match assoc_item.container {
1302                ty::AssocItemContainer::Impl => ImplAssocConstItem(Box::new(Constant {
1303                    generics,
1304                    kind: ConstantKind::Extern { def_id: assoc_item.def_id },
1305                    type_: ty,
1306                })),
1307                ty::AssocItemContainer::Trait => {
1308                    if tcx.defaultness(assoc_item.def_id).has_value() {
1309                        ProvidedAssocConstItem(Box::new(Constant {
1310                            generics,
1311                            kind: ConstantKind::Extern { def_id: assoc_item.def_id },
1312                            type_: ty,
1313                        }))
1314                    } else {
1315                        RequiredAssocConstItem(generics, Box::new(ty))
1316                    }
1317                }
1318            }
1319        }
1320        ty::AssocKind::Fn { has_self, .. } => {
1321            let mut item = inline::build_function(cx, assoc_item.def_id);
1322
1323            if has_self {
1324                let self_ty = match assoc_item.container {
1325                    ty::AssocItemContainer::Impl => {
1326                        tcx.type_of(assoc_item.container_id(tcx)).instantiate_identity()
1327                    }
1328                    ty::AssocItemContainer::Trait => tcx.types.self_param,
1329                };
1330                let self_param_ty =
1331                    tcx.fn_sig(assoc_item.def_id).instantiate_identity().input(0).skip_binder();
1332                if self_param_ty == self_ty {
1333                    item.decl.inputs[0].type_ = SelfTy;
1334                } else if let ty::Ref(_, ty, _) = *self_param_ty.kind()
1335                    && ty == self_ty
1336                {
1337                    match item.decl.inputs[0].type_ {
1338                        BorrowedRef { ref mut type_, .. } => **type_ = SelfTy,
1339                        _ => unreachable!(),
1340                    }
1341                }
1342            }
1343
1344            let provided = match assoc_item.container {
1345                ty::AssocItemContainer::Impl => true,
1346                ty::AssocItemContainer::Trait => assoc_item.defaultness(tcx).has_value(),
1347            };
1348            if provided {
1349                let defaultness = match assoc_item.container {
1350                    ty::AssocItemContainer::Impl => Some(assoc_item.defaultness(tcx)),
1351                    ty::AssocItemContainer::Trait => None,
1352                };
1353                MethodItem(item, defaultness)
1354            } else {
1355                RequiredMethodItem(item)
1356            }
1357        }
1358        ty::AssocKind::Type { .. } => {
1359            let my_name = assoc_item.name();
1360
1361            fn param_eq_arg(param: &GenericParamDef, arg: &GenericArg) -> bool {
1362                match (&param.kind, arg) {
1363                    (GenericParamDefKind::Type { .. }, GenericArg::Type(Type::Generic(ty)))
1364                        if *ty == param.name =>
1365                    {
1366                        true
1367                    }
1368                    (GenericParamDefKind::Lifetime { .. }, GenericArg::Lifetime(Lifetime(lt)))
1369                        if *lt == param.name =>
1370                    {
1371                        true
1372                    }
1373                    (GenericParamDefKind::Const { .. }, GenericArg::Const(c)) => match &**c {
1374                        ConstantKind::TyConst { expr } => **expr == *param.name.as_str(),
1375                        _ => false,
1376                    },
1377                    _ => false,
1378                }
1379            }
1380
1381            let mut predicates = tcx.explicit_predicates_of(assoc_item.def_id).predicates;
1382            if let ty::AssocItemContainer::Trait = assoc_item.container {
1383                let bounds = tcx.explicit_item_bounds(assoc_item.def_id).iter_identity_copied();
1384                predicates = tcx.arena.alloc_from_iter(bounds.chain(predicates.iter().copied()));
1385            }
1386            let mut generics = clean_ty_generics_inner(
1387                cx,
1388                tcx.generics_of(assoc_item.def_id),
1389                ty::GenericPredicates { parent: None, predicates },
1390            );
1391            simplify::move_bounds_to_generic_parameters(&mut generics);
1392
1393            if let ty::AssocItemContainer::Trait = assoc_item.container {
1394                // Move bounds that are (likely) directly attached to the associated type
1395                // from the where-clause to the associated type.
1396                // There is no guarantee that this is what the user actually wrote but we have
1397                // no way of knowing.
1398                let mut bounds: Vec<GenericBound> = Vec::new();
1399                generics.where_predicates.retain_mut(|pred| match *pred {
1400                    WherePredicate::BoundPredicate {
1401                        ty:
1402                            QPath(box QPathData {
1403                                ref assoc,
1404                                ref self_type,
1405                                trait_: Some(ref trait_),
1406                                ..
1407                            }),
1408                        bounds: ref mut pred_bounds,
1409                        ..
1410                    } => {
1411                        if assoc.name != my_name {
1412                            return true;
1413                        }
1414                        if trait_.def_id() != assoc_item.container_id(tcx) {
1415                            return true;
1416                        }
1417                        if *self_type != SelfTy {
1418                            return true;
1419                        }
1420                        match &assoc.args {
1421                            GenericArgs::AngleBracketed { args, constraints } => {
1422                                if !constraints.is_empty()
1423                                    || generics
1424                                        .params
1425                                        .iter()
1426                                        .zip(args.iter())
1427                                        .any(|(param, arg)| !param_eq_arg(param, arg))
1428                                {
1429                                    return true;
1430                                }
1431                            }
1432                            GenericArgs::Parenthesized { .. } => {
1433                                // The only time this happens is if we're inside the rustdoc for Fn(),
1434                                // which only has one associated type, which is not a GAT, so whatever.
1435                            }
1436                            GenericArgs::ReturnTypeNotation => {
1437                                // Never move these.
1438                            }
1439                        }
1440                        bounds.extend(mem::take(pred_bounds));
1441                        false
1442                    }
1443                    _ => true,
1444                });
1445
1446                bounds.retain(|b| {
1447                    // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
1448                    // is shown and none of the new sizedness traits leak into documentation.
1449                    !b.is_meta_sized_bound(cx)
1450                });
1451
1452                // Our Sized/?Sized bound didn't get handled when creating the generics
1453                // because we didn't actually get our whole set of bounds until just now
1454                // (some of them may have come from the trait). If we do have a sized
1455                // bound, we remove it, and if we don't then we add the `?Sized` bound
1456                // at the end.
1457                match bounds.iter().position(|b| b.is_sized_bound(cx)) {
1458                    Some(i) => {
1459                        bounds.remove(i);
1460                    }
1461                    None => bounds.push(GenericBound::maybe_sized(cx)),
1462                }
1463
1464                if tcx.defaultness(assoc_item.def_id).has_value() {
1465                    AssocTypeItem(
1466                        Box::new(TypeAlias {
1467                            type_: clean_middle_ty(
1468                                ty::Binder::dummy(
1469                                    tcx.type_of(assoc_item.def_id).instantiate_identity(),
1470                                ),
1471                                cx,
1472                                Some(assoc_item.def_id),
1473                                None,
1474                            ),
1475                            generics,
1476                            inner_type: None,
1477                            item_type: None,
1478                        }),
1479                        bounds,
1480                    )
1481                } else {
1482                    RequiredAssocTypeItem(generics, bounds)
1483                }
1484            } else {
1485                AssocTypeItem(
1486                    Box::new(TypeAlias {
1487                        type_: clean_middle_ty(
1488                            ty::Binder::dummy(
1489                                tcx.type_of(assoc_item.def_id).instantiate_identity(),
1490                            ),
1491                            cx,
1492                            Some(assoc_item.def_id),
1493                            None,
1494                        ),
1495                        generics,
1496                        inner_type: None,
1497                        item_type: None,
1498                    }),
1499                    // Associated types inside trait or inherent impls are not allowed to have
1500                    // item bounds. Thus we don't attempt to move any bounds there.
1501                    Vec::new(),
1502                )
1503            }
1504        }
1505    };
1506
1507    Item::from_def_id_and_parts(assoc_item.def_id, Some(assoc_item.name()), kind, cx)
1508}
1509
1510fn first_non_private_clean_path<'tcx>(
1511    cx: &mut DocContext<'tcx>,
1512    path: &hir::Path<'tcx>,
1513    new_path_segments: &'tcx [hir::PathSegment<'tcx>],
1514    new_path_span: rustc_span::Span,
1515) -> Path {
1516    let new_hir_path =
1517        hir::Path { segments: new_path_segments, res: path.res, span: new_path_span };
1518    let mut new_clean_path = clean_path(&new_hir_path, cx);
1519    // In here we need to play with the path data one last time to provide it the
1520    // missing `args` and `res` of the final `Path` we get, which, since it comes
1521    // from a re-export, doesn't have the generics that were originally there, so
1522    // we add them by hand.
1523    if let Some(path_last) = path.segments.last().as_ref()
1524        && let Some(new_path_last) = new_clean_path.segments[..].last_mut()
1525        && let Some(path_last_args) = path_last.args.as_ref()
1526        && path_last.args.is_some()
1527    {
1528        assert!(new_path_last.args.is_empty());
1529        new_path_last.args = clean_generic_args(path_last_args, cx);
1530    }
1531    new_clean_path
1532}
1533
1534/// The goal of this function is to return the first `Path` which is not private (ie not private
1535/// or `doc(hidden)`). If it's not possible, it'll return the "end type".
1536///
1537/// If the path is not a re-export or is public, it'll return `None`.
1538fn first_non_private<'tcx>(
1539    cx: &mut DocContext<'tcx>,
1540    hir_id: hir::HirId,
1541    path: &hir::Path<'tcx>,
1542) -> Option<Path> {
1543    let target_def_id = path.res.opt_def_id()?;
1544    let (parent_def_id, ident) = match &path.segments {
1545        [] => return None,
1546        // Relative paths are available in the same scope as the owner.
1547        [leaf] => (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident),
1548        // So are self paths.
1549        [parent, leaf] if parent.ident.name == kw::SelfLower => {
1550            (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident)
1551        }
1552        // Crate paths are not. We start from the crate root.
1553        [parent, leaf] if matches!(parent.ident.name, kw::Crate | kw::PathRoot) => {
1554            (LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
1555        }
1556        [parent, leaf] if parent.ident.name == kw::Super => {
1557            let parent_mod = cx.tcx.parent_module(hir_id);
1558            if let Some(super_parent) = cx.tcx.opt_local_parent(parent_mod.to_local_def_id()) {
1559                (super_parent, leaf.ident)
1560            } else {
1561                // If we can't find the parent of the parent, then the parent is already the crate.
1562                (LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
1563            }
1564        }
1565        // Absolute paths are not. We start from the parent of the item.
1566        [.., parent, leaf] => (parent.res.opt_def_id()?.as_local()?, leaf.ident),
1567    };
1568    // First we try to get the `DefId` of the item.
1569    for child in
1570        cx.tcx.module_children_local(parent_def_id).iter().filter(move |c| c.ident == ident)
1571    {
1572        if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = child.res {
1573            continue;
1574        }
1575
1576        if let Some(def_id) = child.res.opt_def_id()
1577            && target_def_id == def_id
1578        {
1579            let mut last_path_res = None;
1580            'reexps: for reexp in child.reexport_chain.iter() {
1581                if let Some(use_def_id) = reexp.id()
1582                    && let Some(local_use_def_id) = use_def_id.as_local()
1583                    && let hir::Node::Item(item) = cx.tcx.hir_node_by_def_id(local_use_def_id)
1584                    && let hir::ItemKind::Use(path, hir::UseKind::Single(_)) = item.kind
1585                {
1586                    for res in path.res.present_items() {
1587                        if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = res {
1588                            continue;
1589                        }
1590                        if (cx.render_options.document_hidden ||
1591                            !cx.tcx.is_doc_hidden(use_def_id)) &&
1592                            // We never check for "cx.render_options.document_private"
1593                            // because if a re-export is not fully public, it's never
1594                            // documented.
1595                            cx.tcx.local_visibility(local_use_def_id).is_public()
1596                        {
1597                            break 'reexps;
1598                        }
1599                        last_path_res = Some((path, res));
1600                        continue 'reexps;
1601                    }
1602                }
1603            }
1604            if !child.reexport_chain.is_empty() {
1605                // So in here, we use the data we gathered from iterating the reexports. If
1606                // `last_path_res` is set, it can mean two things:
1607                //
1608                // 1. We found a public reexport.
1609                // 2. We didn't find a public reexport so it's the "end type" path.
1610                if let Some((new_path, _)) = last_path_res {
1611                    return Some(first_non_private_clean_path(
1612                        cx,
1613                        path,
1614                        new_path.segments,
1615                        new_path.span,
1616                    ));
1617                }
1618                // If `last_path_res` is `None`, it can mean two things:
1619                //
1620                // 1. The re-export is public, no need to change anything, just use the path as is.
1621                // 2. Nothing was found, so let's just return the original path.
1622                return None;
1623            }
1624        }
1625    }
1626    None
1627}
1628
1629fn clean_qpath<'tcx>(hir_ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
1630    let hir::Ty { hir_id, span, ref kind } = *hir_ty;
1631    let hir::TyKind::Path(qpath) = kind else { unreachable!() };
1632
1633    match qpath {
1634        hir::QPath::Resolved(None, path) => {
1635            if let Res::Def(DefKind::TyParam, did) = path.res {
1636                if let Some(new_ty) = cx.args.get(&did).and_then(|p| p.as_ty()).cloned() {
1637                    return new_ty;
1638                }
1639                if let Some(bounds) = cx.impl_trait_bounds.remove(&did.into()) {
1640                    return ImplTrait(bounds);
1641                }
1642            }
1643
1644            if let Some(expanded) = maybe_expand_private_type_alias(cx, path) {
1645                expanded
1646            } else {
1647                // First we check if it's a private re-export.
1648                let path = if let Some(path) = first_non_private(cx, hir_id, path) {
1649                    path
1650                } else {
1651                    clean_path(path, cx)
1652                };
1653                resolve_type(cx, path)
1654            }
1655        }
1656        hir::QPath::Resolved(Some(qself), p) => {
1657            // Try to normalize `<X as Y>::T` to a type
1658            let ty = lower_ty(cx.tcx, hir_ty);
1659            // `hir_to_ty` can return projection types with escaping vars for GATs, e.g. `<() as Trait>::Gat<'_>`
1660            if !ty.has_escaping_bound_vars()
1661                && let Some(normalized_value) = normalize(cx, ty::Binder::dummy(ty))
1662            {
1663                return clean_middle_ty(normalized_value, cx, None, None);
1664            }
1665
1666            let trait_segments = &p.segments[..p.segments.len() - 1];
1667            let trait_def = cx.tcx.associated_item(p.res.def_id()).container_id(cx.tcx);
1668            let trait_ = self::Path {
1669                res: Res::Def(DefKind::Trait, trait_def),
1670                segments: trait_segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
1671            };
1672            register_res(cx, trait_.res);
1673            let self_def_id = DefId::local(qself.hir_id.owner.def_id.local_def_index);
1674            let self_type = clean_ty(qself, cx);
1675            let should_fully_qualify =
1676                should_fully_qualify_path(Some(self_def_id), &trait_, &self_type);
1677            Type::QPath(Box::new(QPathData {
1678                assoc: clean_path_segment(p.segments.last().expect("segments were empty"), cx),
1679                should_fully_qualify,
1680                self_type,
1681                trait_: Some(trait_),
1682            }))
1683        }
1684        hir::QPath::TypeRelative(qself, segment) => {
1685            let ty = lower_ty(cx.tcx, hir_ty);
1686            let self_type = clean_ty(qself, cx);
1687
1688            let (trait_, should_fully_qualify) = match ty.kind() {
1689                ty::Alias(ty::Projection, proj) => {
1690                    let res = Res::Def(DefKind::Trait, proj.trait_ref(cx.tcx).def_id);
1691                    let trait_ = clean_path(&hir::Path { span, res, segments: &[] }, cx);
1692                    register_res(cx, trait_.res);
1693                    let self_def_id = res.opt_def_id();
1694                    let should_fully_qualify =
1695                        should_fully_qualify_path(self_def_id, &trait_, &self_type);
1696
1697                    (Some(trait_), should_fully_qualify)
1698                }
1699                ty::Alias(ty::Inherent, _) => (None, false),
1700                // Rustdoc handles `ty::Error`s by turning them into `Type::Infer`s.
1701                ty::Error(_) => return Type::Infer,
1702                _ => bug!("clean: expected associated type, found `{ty:?}`"),
1703            };
1704
1705            Type::QPath(Box::new(QPathData {
1706                assoc: clean_path_segment(segment, cx),
1707                should_fully_qualify,
1708                self_type,
1709                trait_,
1710            }))
1711        }
1712        hir::QPath::LangItem(..) => bug!("clean: requiring documentation of lang item"),
1713    }
1714}
1715
1716fn maybe_expand_private_type_alias<'tcx>(
1717    cx: &mut DocContext<'tcx>,
1718    path: &hir::Path<'tcx>,
1719) -> Option<Type> {
1720    let Res::Def(DefKind::TyAlias, def_id) = path.res else { return None };
1721    // Substitute private type aliases
1722    let def_id = def_id.as_local()?;
1723    let alias = if !cx.cache.effective_visibilities.is_exported(cx.tcx, def_id.to_def_id())
1724        && !cx.current_type_aliases.contains_key(&def_id.to_def_id())
1725    {
1726        &cx.tcx.hir_expect_item(def_id).kind
1727    } else {
1728        return None;
1729    };
1730    let hir::ItemKind::TyAlias(_, generics, ty) = alias else { return None };
1731
1732    let final_seg = &path.segments.last().expect("segments were empty");
1733    let mut args = DefIdMap::default();
1734    let generic_args = final_seg.args();
1735
1736    let mut indices: hir::GenericParamCount = Default::default();
1737    for param in generics.params.iter() {
1738        match param.kind {
1739            hir::GenericParamKind::Lifetime { .. } => {
1740                let mut j = 0;
1741                let lifetime = generic_args.args.iter().find_map(|arg| match arg {
1742                    hir::GenericArg::Lifetime(lt) => {
1743                        if indices.lifetimes == j {
1744                            return Some(lt);
1745                        }
1746                        j += 1;
1747                        None
1748                    }
1749                    _ => None,
1750                });
1751                if let Some(lt) = lifetime {
1752                    let lt = if !lt.is_anonymous() {
1753                        clean_lifetime(lt, cx)
1754                    } else {
1755                        Lifetime::elided()
1756                    };
1757                    args.insert(param.def_id.to_def_id(), GenericArg::Lifetime(lt));
1758                }
1759                indices.lifetimes += 1;
1760            }
1761            hir::GenericParamKind::Type { ref default, .. } => {
1762                let mut j = 0;
1763                let type_ = generic_args.args.iter().find_map(|arg| match arg {
1764                    hir::GenericArg::Type(ty) => {
1765                        if indices.types == j {
1766                            return Some(ty.as_unambig_ty());
1767                        }
1768                        j += 1;
1769                        None
1770                    }
1771                    _ => None,
1772                });
1773                if let Some(ty) = type_.or(*default) {
1774                    args.insert(param.def_id.to_def_id(), GenericArg::Type(clean_ty(ty, cx)));
1775                }
1776                indices.types += 1;
1777            }
1778            // FIXME(#82852): Instantiate const parameters.
1779            hir::GenericParamKind::Const { .. } => {}
1780        }
1781    }
1782
1783    Some(cx.enter_alias(args, def_id.to_def_id(), |cx| {
1784        cx.with_param_env(def_id.to_def_id(), |cx| clean_ty(ty, cx))
1785    }))
1786}
1787
1788pub(crate) fn clean_ty<'tcx>(ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
1789    use rustc_hir::*;
1790
1791    match ty.kind {
1792        TyKind::Never => Primitive(PrimitiveType::Never),
1793        TyKind::Ptr(ref m) => RawPointer(m.mutbl, Box::new(clean_ty(m.ty, cx))),
1794        TyKind::Ref(l, ref m) => {
1795            let lifetime = if l.is_anonymous() { None } else { Some(clean_lifetime(l, cx)) };
1796            BorrowedRef { lifetime, mutability: m.mutbl, type_: Box::new(clean_ty(m.ty, cx)) }
1797        }
1798        TyKind::Slice(ty) => Slice(Box::new(clean_ty(ty, cx))),
1799        TyKind::Pat(ty, pat) => Type::Pat(Box::new(clean_ty(ty, cx)), format!("{pat:?}").into()),
1800        TyKind::Array(ty, const_arg) => {
1801            // NOTE(min_const_generics): We can't use `const_eval_poly` for constants
1802            // as we currently do not supply the parent generics to anonymous constants
1803            // but do allow `ConstKind::Param`.
1804            //
1805            // `const_eval_poly` tries to first substitute generic parameters which
1806            // results in an ICE while manually constructing the constant and using `eval`
1807            // does nothing for `ConstKind::Param`.
1808            let length = match const_arg.kind {
1809                hir::ConstArgKind::Infer(..) => "_".to_string(),
1810                hir::ConstArgKind::Anon(hir::AnonConst { def_id, .. }) => {
1811                    let ct = lower_const_arg_for_rustdoc(cx.tcx, const_arg, FeedConstTy::No);
1812                    let typing_env = ty::TypingEnv::post_analysis(cx.tcx, *def_id);
1813                    let ct = cx.tcx.normalize_erasing_regions(typing_env, ct);
1814                    print_const(cx, ct)
1815                }
1816                hir::ConstArgKind::Path(..) => {
1817                    let ct = lower_const_arg_for_rustdoc(cx.tcx, const_arg, FeedConstTy::No);
1818                    print_const(cx, ct)
1819                }
1820            };
1821            Array(Box::new(clean_ty(ty, cx)), length.into())
1822        }
1823        TyKind::Tup(tys) => Tuple(tys.iter().map(|ty| clean_ty(ty, cx)).collect()),
1824        TyKind::OpaqueDef(ty) => {
1825            ImplTrait(ty.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect())
1826        }
1827        TyKind::Path(_) => clean_qpath(ty, cx),
1828        TyKind::TraitObject(bounds, lifetime) => {
1829            let bounds = bounds.iter().map(|bound| clean_poly_trait_ref(bound, cx)).collect();
1830            let lifetime = if !lifetime.is_elided() {
1831                Some(clean_lifetime(lifetime.pointer(), cx))
1832            } else {
1833                None
1834            };
1835            DynTrait(bounds, lifetime)
1836        }
1837        TyKind::FnPtr(barefn) => BareFunction(Box::new(clean_bare_fn_ty(barefn, cx))),
1838        TyKind::UnsafeBinder(unsafe_binder_ty) => {
1839            UnsafeBinder(Box::new(clean_unsafe_binder_ty(unsafe_binder_ty, cx)))
1840        }
1841        // Rustdoc handles `TyKind::Err`s by turning them into `Type::Infer`s.
1842        TyKind::Infer(())
1843        | TyKind::Err(_)
1844        | TyKind::Typeof(..)
1845        | TyKind::InferDelegation(..)
1846        | TyKind::TraitAscription(_) => Infer,
1847    }
1848}
1849
1850/// Returns `None` if the type could not be normalized
1851fn normalize<'tcx>(
1852    cx: &DocContext<'tcx>,
1853    ty: ty::Binder<'tcx, Ty<'tcx>>,
1854) -> Option<ty::Binder<'tcx, Ty<'tcx>>> {
1855    // HACK: low-churn fix for #79459 while we wait for a trait normalization fix
1856    if !cx.tcx.sess.opts.unstable_opts.normalize_docs {
1857        return None;
1858    }
1859
1860    use rustc_middle::traits::ObligationCause;
1861    use rustc_trait_selection::infer::TyCtxtInferExt;
1862    use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
1863
1864    // Try to normalize `<X as Y>::T` to a type
1865    let infcx = cx.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
1866    let normalized = infcx
1867        .at(&ObligationCause::dummy(), cx.param_env)
1868        .query_normalize(ty)
1869        .map(|resolved| infcx.resolve_vars_if_possible(resolved.value));
1870    match normalized {
1871        Ok(normalized_value) => {
1872            debug!("normalized {ty:?} to {normalized_value:?}");
1873            Some(normalized_value)
1874        }
1875        Err(err) => {
1876            debug!("failed to normalize {ty:?}: {err:?}");
1877            None
1878        }
1879    }
1880}
1881
1882fn clean_trait_object_lifetime_bound<'tcx>(
1883    region: ty::Region<'tcx>,
1884    container: Option<ContainerTy<'_, 'tcx>>,
1885    preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1886    tcx: TyCtxt<'tcx>,
1887) -> Option<Lifetime> {
1888    if can_elide_trait_object_lifetime_bound(region, container, preds, tcx) {
1889        return None;
1890    }
1891
1892    // Since there is a semantic difference between an implicitly elided (i.e. "defaulted") object
1893    // lifetime and an explicitly elided object lifetime (`'_`), we intentionally don't hide the
1894    // latter contrary to `clean_middle_region`.
1895    match region.kind() {
1896        ty::ReStatic => Some(Lifetime::statik()),
1897        ty::ReEarlyParam(region) => Some(Lifetime(region.name)),
1898        ty::ReBound(_, ty::BoundRegion { kind: ty::BoundRegionKind::Named(def_id), .. }) => {
1899            Some(Lifetime(tcx.item_name(def_id)))
1900        }
1901        ty::ReBound(..)
1902        | ty::ReLateParam(_)
1903        | ty::ReVar(_)
1904        | ty::RePlaceholder(_)
1905        | ty::ReErased
1906        | ty::ReError(_) => None,
1907    }
1908}
1909
1910fn can_elide_trait_object_lifetime_bound<'tcx>(
1911    region: ty::Region<'tcx>,
1912    container: Option<ContainerTy<'_, 'tcx>>,
1913    preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1914    tcx: TyCtxt<'tcx>,
1915) -> bool {
1916    // Below we quote extracts from https://doc.rust-lang.org/stable/reference/lifetime-elision.html#default-trait-object-lifetimes
1917
1918    // > If the trait object is used as a type argument of a generic type then the containing type is
1919    // > first used to try to infer a bound.
1920    let default = container
1921        .map_or(ObjectLifetimeDefault::Empty, |container| container.object_lifetime_default(tcx));
1922
1923    // > If there is a unique bound from the containing type then that is the default
1924    // If there is a default object lifetime and the given region is lexically equal to it, elide it.
1925    match default {
1926        ObjectLifetimeDefault::Static => return region.kind() == ty::ReStatic,
1927        // FIXME(fmease): Don't compare lexically but respect de Bruijn indices etc. to handle shadowing correctly.
1928        ObjectLifetimeDefault::Arg(default) => {
1929            return region.get_name(tcx) == default.get_name(tcx);
1930        }
1931        // > If there is more than one bound from the containing type then an explicit bound must be specified
1932        // Due to ambiguity there is no default trait-object lifetime and thus elision is impossible.
1933        // Don't elide the lifetime.
1934        ObjectLifetimeDefault::Ambiguous => return false,
1935        // There is no meaningful bound. Further processing is needed...
1936        ObjectLifetimeDefault::Empty => {}
1937    }
1938
1939    // > If neither of those rules apply, then the bounds on the trait are used:
1940    match *object_region_bounds(tcx, preds) {
1941        // > If the trait has no lifetime bounds, then the lifetime is inferred in expressions
1942        // > and is 'static outside of expressions.
1943        // FIXME: If we are in an expression context (i.e. fn bodies and const exprs) then the default is
1944        // `'_` and not `'static`. Only if we are in a non-expression one, the default is `'static`.
1945        // Note however that at the time of this writing it should be fine to disregard this subtlety
1946        // as we neither render const exprs faithfully anyway (hiding them in some places or using `_` instead)
1947        // nor show the contents of fn bodies.
1948        [] => region.kind() == ty::ReStatic,
1949        // > If the trait is defined with a single lifetime bound then that bound is used.
1950        // > If 'static is used for any lifetime bound then 'static is used.
1951        // FIXME(fmease): Don't compare lexically but respect de Bruijn indices etc. to handle shadowing correctly.
1952        [object_region] => object_region.get_name(tcx) == region.get_name(tcx),
1953        // There are several distinct trait regions and none are `'static`.
1954        // Due to ambiguity there is no default trait-object lifetime and thus elision is impossible.
1955        // Don't elide the lifetime.
1956        _ => false,
1957    }
1958}
1959
1960#[derive(Debug)]
1961pub(crate) enum ContainerTy<'a, 'tcx> {
1962    Ref(ty::Region<'tcx>),
1963    Regular {
1964        ty: DefId,
1965        /// The arguments *have* to contain an arg for the self type if the corresponding generics
1966        /// contain a self type.
1967        args: ty::Binder<'tcx, &'a [ty::GenericArg<'tcx>]>,
1968        arg: usize,
1969    },
1970}
1971
1972impl<'tcx> ContainerTy<'_, 'tcx> {
1973    fn object_lifetime_default(self, tcx: TyCtxt<'tcx>) -> ObjectLifetimeDefault<'tcx> {
1974        match self {
1975            Self::Ref(region) => ObjectLifetimeDefault::Arg(region),
1976            Self::Regular { ty: container, args, arg: index } => {
1977                let (DefKind::Struct
1978                | DefKind::Union
1979                | DefKind::Enum
1980                | DefKind::TyAlias
1981                | DefKind::Trait) = tcx.def_kind(container)
1982                else {
1983                    return ObjectLifetimeDefault::Empty;
1984                };
1985
1986                let generics = tcx.generics_of(container);
1987                debug_assert_eq!(generics.parent_count, 0);
1988
1989                let param = generics.own_params[index].def_id;
1990                let default = tcx.object_lifetime_default(param);
1991                match default {
1992                    rbv::ObjectLifetimeDefault::Param(lifetime) => {
1993                        // The index is relative to the parent generics but since we don't have any,
1994                        // we don't need to translate it.
1995                        let index = generics.param_def_id_to_index[&lifetime];
1996                        let arg = args.skip_binder()[index as usize].expect_region();
1997                        ObjectLifetimeDefault::Arg(arg)
1998                    }
1999                    rbv::ObjectLifetimeDefault::Empty => ObjectLifetimeDefault::Empty,
2000                    rbv::ObjectLifetimeDefault::Static => ObjectLifetimeDefault::Static,
2001                    rbv::ObjectLifetimeDefault::Ambiguous => ObjectLifetimeDefault::Ambiguous,
2002                }
2003            }
2004        }
2005    }
2006}
2007
2008#[derive(Debug, Clone, Copy)]
2009pub(crate) enum ObjectLifetimeDefault<'tcx> {
2010    Empty,
2011    Static,
2012    Ambiguous,
2013    Arg(ty::Region<'tcx>),
2014}
2015
2016#[instrument(level = "trace", skip(cx), ret)]
2017pub(crate) fn clean_middle_ty<'tcx>(
2018    bound_ty: ty::Binder<'tcx, Ty<'tcx>>,
2019    cx: &mut DocContext<'tcx>,
2020    parent_def_id: Option<DefId>,
2021    container: Option<ContainerTy<'_, 'tcx>>,
2022) -> Type {
2023    let bound_ty = normalize(cx, bound_ty).unwrap_or(bound_ty);
2024    match *bound_ty.skip_binder().kind() {
2025        ty::Never => Primitive(PrimitiveType::Never),
2026        ty::Bool => Primitive(PrimitiveType::Bool),
2027        ty::Char => Primitive(PrimitiveType::Char),
2028        ty::Int(int_ty) => Primitive(int_ty.into()),
2029        ty::Uint(uint_ty) => Primitive(uint_ty.into()),
2030        ty::Float(float_ty) => Primitive(float_ty.into()),
2031        ty::Str => Primitive(PrimitiveType::Str),
2032        ty::Slice(ty) => Slice(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None))),
2033        ty::Pat(ty, pat) => Type::Pat(
2034            Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)),
2035            format!("{pat:?}").into_boxed_str(),
2036        ),
2037        ty::Array(ty, n) => {
2038            let n = cx.tcx.normalize_erasing_regions(cx.typing_env(), n);
2039            let n = print_const(cx, n);
2040            Array(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)), n.into())
2041        }
2042        ty::RawPtr(ty, mutbl) => {
2043            RawPointer(mutbl, Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)))
2044        }
2045        ty::Ref(r, ty, mutbl) => BorrowedRef {
2046            lifetime: clean_middle_region(r, cx),
2047            mutability: mutbl,
2048            type_: Box::new(clean_middle_ty(
2049                bound_ty.rebind(ty),
2050                cx,
2051                None,
2052                Some(ContainerTy::Ref(r)),
2053            )),
2054        },
2055        ty::FnDef(..) | ty::FnPtr(..) => {
2056            // FIXME: should we merge the outer and inner binders somehow?
2057            let sig = bound_ty.skip_binder().fn_sig(cx.tcx);
2058            let decl = clean_poly_fn_sig(cx, None, sig);
2059            let generic_params = clean_bound_vars(sig.bound_vars(), cx);
2060
2061            BareFunction(Box::new(BareFunctionDecl {
2062                safety: sig.safety(),
2063                generic_params,
2064                decl,
2065                abi: sig.abi(),
2066            }))
2067        }
2068        ty::UnsafeBinder(inner) => {
2069            let generic_params = clean_bound_vars(inner.bound_vars(), cx);
2070            let ty = clean_middle_ty(inner.into(), cx, None, None);
2071            UnsafeBinder(Box::new(UnsafeBinderTy { generic_params, ty }))
2072        }
2073        ty::Adt(def, args) => {
2074            let did = def.did();
2075            let kind = match def.adt_kind() {
2076                AdtKind::Struct => ItemType::Struct,
2077                AdtKind::Union => ItemType::Union,
2078                AdtKind::Enum => ItemType::Enum,
2079            };
2080            inline::record_extern_fqn(cx, did, kind);
2081            let path = clean_middle_path(cx, did, false, ThinVec::new(), bound_ty.rebind(args));
2082            Type::Path { path }
2083        }
2084        ty::Foreign(did) => {
2085            inline::record_extern_fqn(cx, did, ItemType::ForeignType);
2086            let path = clean_middle_path(
2087                cx,
2088                did,
2089                false,
2090                ThinVec::new(),
2091                ty::Binder::dummy(ty::GenericArgs::empty()),
2092            );
2093            Type::Path { path }
2094        }
2095        ty::Dynamic(obj, reg, _) => {
2096            // HACK: pick the first `did` as the `did` of the trait object. Someone
2097            // might want to implement "native" support for marker-trait-only
2098            // trait objects.
2099            let mut dids = obj.auto_traits();
2100            let did = obj
2101                .principal_def_id()
2102                .or_else(|| dids.next())
2103                .unwrap_or_else(|| panic!("found trait object `{bound_ty:?}` with no traits?"));
2104            let args = match obj.principal() {
2105                Some(principal) => principal.map_bound(|p| p.args),
2106                // marker traits have no args.
2107                _ => ty::Binder::dummy(ty::GenericArgs::empty()),
2108            };
2109
2110            inline::record_extern_fqn(cx, did, ItemType::Trait);
2111
2112            let lifetime = clean_trait_object_lifetime_bound(reg, container, obj, cx.tcx);
2113
2114            let mut bounds = dids
2115                .map(|did| {
2116                    let empty = ty::Binder::dummy(ty::GenericArgs::empty());
2117                    let path = clean_middle_path(cx, did, false, ThinVec::new(), empty);
2118                    inline::record_extern_fqn(cx, did, ItemType::Trait);
2119                    PolyTrait { trait_: path, generic_params: Vec::new() }
2120                })
2121                .collect::<Vec<_>>();
2122
2123            let constraints = obj
2124                .projection_bounds()
2125                .map(|pb| AssocItemConstraint {
2126                    assoc: projection_to_path_segment(
2127                        pb.map_bound(|pb| {
2128                            pb.with_self_ty(cx.tcx, cx.tcx.types.trait_object_dummy_self)
2129                                .projection_term
2130                        }),
2131                        cx,
2132                    ),
2133                    kind: AssocItemConstraintKind::Equality {
2134                        term: clean_middle_term(pb.map_bound(|pb| pb.term), cx),
2135                    },
2136                })
2137                .collect();
2138
2139            let late_bound_regions: FxIndexSet<_> = obj
2140                .iter()
2141                .flat_map(|pred| pred.bound_vars())
2142                .filter_map(|var| match var {
2143                    ty::BoundVariableKind::Region(ty::BoundRegionKind::Named(def_id)) => {
2144                        let name = cx.tcx.item_name(def_id);
2145                        if name != kw::UnderscoreLifetime {
2146                            Some(GenericParamDef::lifetime(def_id, name))
2147                        } else {
2148                            None
2149                        }
2150                    }
2151                    _ => None,
2152                })
2153                .collect();
2154            let late_bound_regions = late_bound_regions.into_iter().collect();
2155
2156            let path = clean_middle_path(cx, did, false, constraints, args);
2157            bounds.insert(0, PolyTrait { trait_: path, generic_params: late_bound_regions });
2158
2159            DynTrait(bounds, lifetime)
2160        }
2161        ty::Tuple(t) => {
2162            Tuple(t.iter().map(|t| clean_middle_ty(bound_ty.rebind(t), cx, None, None)).collect())
2163        }
2164
2165        ty::Alias(ty::Projection, alias_ty @ ty::AliasTy { def_id, args, .. }) => {
2166            if cx.tcx.is_impl_trait_in_trait(def_id) {
2167                clean_middle_opaque_bounds(cx, def_id, args)
2168            } else {
2169                Type::QPath(Box::new(clean_projection(
2170                    bound_ty.rebind(alias_ty.into()),
2171                    cx,
2172                    parent_def_id,
2173                )))
2174            }
2175        }
2176
2177        ty::Alias(ty::Inherent, alias_ty @ ty::AliasTy { def_id, .. }) => {
2178            let alias_ty = bound_ty.rebind(alias_ty);
2179            let self_type = clean_middle_ty(alias_ty.map_bound(|ty| ty.self_ty()), cx, None, None);
2180
2181            Type::QPath(Box::new(QPathData {
2182                assoc: PathSegment {
2183                    name: cx.tcx.item_name(def_id),
2184                    args: GenericArgs::AngleBracketed {
2185                        args: clean_middle_generic_args(
2186                            cx,
2187                            alias_ty.map_bound(|ty| ty.args.as_slice()),
2188                            true,
2189                            def_id,
2190                        ),
2191                        constraints: Default::default(),
2192                    },
2193                },
2194                should_fully_qualify: false,
2195                self_type,
2196                trait_: None,
2197            }))
2198        }
2199
2200        ty::Alias(ty::Free, ty::AliasTy { def_id, args, .. }) => {
2201            if cx.tcx.features().lazy_type_alias() {
2202                // Free type alias `data` represents the `type X` in `type X = Y`. If we need `Y`,
2203                // we need to use `type_of`.
2204                let path =
2205                    clean_middle_path(cx, def_id, false, ThinVec::new(), bound_ty.rebind(args));
2206                Type::Path { path }
2207            } else {
2208                let ty = cx.tcx.type_of(def_id).instantiate(cx.tcx, args);
2209                clean_middle_ty(bound_ty.rebind(ty), cx, None, None)
2210            }
2211        }
2212
2213        ty::Param(ref p) => {
2214            if let Some(bounds) = cx.impl_trait_bounds.remove(&p.index.into()) {
2215                ImplTrait(bounds)
2216            } else if p.name == kw::SelfUpper {
2217                SelfTy
2218            } else {
2219                Generic(p.name)
2220            }
2221        }
2222
2223        ty::Bound(_, ref ty) => match ty.kind {
2224            ty::BoundTyKind::Param(def_id) => Generic(cx.tcx.item_name(def_id)),
2225            ty::BoundTyKind::Anon => panic!("unexpected anonymous bound type variable"),
2226        },
2227
2228        ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
2229            // If it's already in the same alias, don't get an infinite loop.
2230            if cx.current_type_aliases.contains_key(&def_id) {
2231                let path =
2232                    clean_middle_path(cx, def_id, false, ThinVec::new(), bound_ty.rebind(args));
2233                Type::Path { path }
2234            } else {
2235                *cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
2236                // Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
2237                // by looking up the bounds associated with the def_id.
2238                let ty = clean_middle_opaque_bounds(cx, def_id, args);
2239                if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
2240                    *count -= 1;
2241                    if *count == 0 {
2242                        cx.current_type_aliases.remove(&def_id);
2243                    }
2244                }
2245                ty
2246            }
2247        }
2248
2249        ty::Closure(..) => panic!("Closure"),
2250        ty::CoroutineClosure(..) => panic!("CoroutineClosure"),
2251        ty::Coroutine(..) => panic!("Coroutine"),
2252        ty::Placeholder(..) => panic!("Placeholder"),
2253        ty::CoroutineWitness(..) => panic!("CoroutineWitness"),
2254        ty::Infer(..) => panic!("Infer"),
2255
2256        ty::Error(_) => FatalError.raise(),
2257    }
2258}
2259
2260fn clean_middle_opaque_bounds<'tcx>(
2261    cx: &mut DocContext<'tcx>,
2262    impl_trait_def_id: DefId,
2263    args: ty::GenericArgsRef<'tcx>,
2264) -> Type {
2265    let mut has_sized = false;
2266
2267    let bounds: Vec<_> = cx
2268        .tcx
2269        .explicit_item_bounds(impl_trait_def_id)
2270        .iter_instantiated_copied(cx.tcx, args)
2271        .collect();
2272
2273    let mut bounds = bounds
2274        .iter()
2275        .filter_map(|(bound, _)| {
2276            let bound_predicate = bound.kind();
2277            let trait_ref = match bound_predicate.skip_binder() {
2278                ty::ClauseKind::Trait(tr) => bound_predicate.rebind(tr.trait_ref),
2279                ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(_ty, reg)) => {
2280                    return clean_middle_region(reg, cx).map(GenericBound::Outlives);
2281                }
2282                _ => return None,
2283            };
2284
2285            // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
2286            // is shown and none of the new sizedness traits leak into documentation.
2287            if cx.tcx.is_lang_item(trait_ref.def_id(), LangItem::MetaSized) {
2288                return None;
2289            }
2290
2291            if let Some(sized) = cx.tcx.lang_items().sized_trait()
2292                && trait_ref.def_id() == sized
2293            {
2294                has_sized = true;
2295                return None;
2296            }
2297
2298            let bindings: ThinVec<_> = bounds
2299                .iter()
2300                .filter_map(|(bound, _)| {
2301                    let bound = bound.kind();
2302                    if let ty::ClauseKind::Projection(proj_pred) = bound.skip_binder()
2303                        && proj_pred.projection_term.trait_ref(cx.tcx) == trait_ref.skip_binder()
2304                    {
2305                        return Some(AssocItemConstraint {
2306                            assoc: projection_to_path_segment(
2307                                bound.rebind(proj_pred.projection_term),
2308                                cx,
2309                            ),
2310                            kind: AssocItemConstraintKind::Equality {
2311                                term: clean_middle_term(bound.rebind(proj_pred.term), cx),
2312                            },
2313                        });
2314                    }
2315                    None
2316                })
2317                .collect();
2318
2319            Some(clean_poly_trait_ref_with_constraints(cx, trait_ref, bindings))
2320        })
2321        .collect::<Vec<_>>();
2322
2323    if !has_sized {
2324        bounds.push(GenericBound::maybe_sized(cx));
2325    }
2326
2327    // Move trait bounds to the front.
2328    bounds.sort_by_key(|b| !b.is_trait_bound());
2329
2330    // Add back a `Sized` bound if there are no *trait* bounds remaining (incl. `?Sized`).
2331    // Since all potential trait bounds are at the front we can just check the first bound.
2332    if bounds.first().is_none_or(|b| !b.is_trait_bound()) {
2333        bounds.insert(0, GenericBound::sized(cx));
2334    }
2335
2336    if let Some(args) = cx.tcx.rendered_precise_capturing_args(impl_trait_def_id) {
2337        bounds.push(GenericBound::Use(
2338            args.iter()
2339                .map(|arg| match arg {
2340                    hir::PreciseCapturingArgKind::Lifetime(lt) => {
2341                        PreciseCapturingArg::Lifetime(Lifetime(*lt))
2342                    }
2343                    hir::PreciseCapturingArgKind::Param(param) => {
2344                        PreciseCapturingArg::Param(*param)
2345                    }
2346                })
2347                .collect(),
2348        ));
2349    }
2350
2351    ImplTrait(bounds)
2352}
2353
2354pub(crate) fn clean_field<'tcx>(field: &hir::FieldDef<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
2355    clean_field_with_def_id(field.def_id.to_def_id(), field.ident.name, clean_ty(field.ty, cx), cx)
2356}
2357
2358pub(crate) fn clean_middle_field(field: &ty::FieldDef, cx: &mut DocContext<'_>) -> Item {
2359    clean_field_with_def_id(
2360        field.did,
2361        field.name,
2362        clean_middle_ty(
2363            ty::Binder::dummy(cx.tcx.type_of(field.did).instantiate_identity()),
2364            cx,
2365            Some(field.did),
2366            None,
2367        ),
2368        cx,
2369    )
2370}
2371
2372pub(crate) fn clean_field_with_def_id(
2373    def_id: DefId,
2374    name: Symbol,
2375    ty: Type,
2376    cx: &mut DocContext<'_>,
2377) -> Item {
2378    Item::from_def_id_and_parts(def_id, Some(name), StructFieldItem(ty), cx)
2379}
2380
2381pub(crate) fn clean_variant_def(variant: &ty::VariantDef, cx: &mut DocContext<'_>) -> Item {
2382    let discriminant = match variant.discr {
2383        ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
2384        ty::VariantDiscr::Relative(_) => None,
2385    };
2386
2387    let kind = match variant.ctor_kind() {
2388        Some(CtorKind::Const) => VariantKind::CLike,
2389        Some(CtorKind::Fn) => VariantKind::Tuple(
2390            variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
2391        ),
2392        None => VariantKind::Struct(VariantStruct {
2393            fields: variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
2394        }),
2395    };
2396
2397    Item::from_def_id_and_parts(
2398        variant.def_id,
2399        Some(variant.name),
2400        VariantItem(Variant { kind, discriminant }),
2401        cx,
2402    )
2403}
2404
2405pub(crate) fn clean_variant_def_with_args<'tcx>(
2406    variant: &ty::VariantDef,
2407    args: &GenericArgsRef<'tcx>,
2408    cx: &mut DocContext<'tcx>,
2409) -> Item {
2410    let discriminant = match variant.discr {
2411        ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
2412        ty::VariantDiscr::Relative(_) => None,
2413    };
2414
2415    use rustc_middle::traits::ObligationCause;
2416    use rustc_trait_selection::infer::TyCtxtInferExt;
2417    use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
2418
2419    let infcx = cx.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
2420    let kind = match variant.ctor_kind() {
2421        Some(CtorKind::Const) => VariantKind::CLike,
2422        Some(CtorKind::Fn) => VariantKind::Tuple(
2423            variant
2424                .fields
2425                .iter()
2426                .map(|field| {
2427                    let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
2428
2429                    // normalize the type to only show concrete types
2430                    // note: we do not use try_normalize_erasing_regions since we
2431                    // do care about showing the regions
2432                    let ty = infcx
2433                        .at(&ObligationCause::dummy(), cx.param_env)
2434                        .query_normalize(ty)
2435                        .map(|normalized| normalized.value)
2436                        .unwrap_or(ty);
2437
2438                    clean_field_with_def_id(
2439                        field.did,
2440                        field.name,
2441                        clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
2442                        cx,
2443                    )
2444                })
2445                .collect(),
2446        ),
2447        None => VariantKind::Struct(VariantStruct {
2448            fields: variant
2449                .fields
2450                .iter()
2451                .map(|field| {
2452                    let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
2453
2454                    // normalize the type to only show concrete types
2455                    // note: we do not use try_normalize_erasing_regions since we
2456                    // do care about showing the regions
2457                    let ty = infcx
2458                        .at(&ObligationCause::dummy(), cx.param_env)
2459                        .query_normalize(ty)
2460                        .map(|normalized| normalized.value)
2461                        .unwrap_or(ty);
2462
2463                    clean_field_with_def_id(
2464                        field.did,
2465                        field.name,
2466                        clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
2467                        cx,
2468                    )
2469                })
2470                .collect(),
2471        }),
2472    };
2473
2474    Item::from_def_id_and_parts(
2475        variant.def_id,
2476        Some(variant.name),
2477        VariantItem(Variant { kind, discriminant }),
2478        cx,
2479    )
2480}
2481
2482fn clean_variant_data<'tcx>(
2483    variant: &hir::VariantData<'tcx>,
2484    disr_expr: &Option<&hir::AnonConst>,
2485    cx: &mut DocContext<'tcx>,
2486) -> Variant {
2487    let discriminant = disr_expr
2488        .map(|disr| Discriminant { expr: Some(disr.body), value: disr.def_id.to_def_id() });
2489
2490    let kind = match variant {
2491        hir::VariantData::Struct { fields, .. } => VariantKind::Struct(VariantStruct {
2492            fields: fields.iter().map(|x| clean_field(x, cx)).collect(),
2493        }),
2494        hir::VariantData::Tuple(..) => {
2495            VariantKind::Tuple(variant.fields().iter().map(|x| clean_field(x, cx)).collect())
2496        }
2497        hir::VariantData::Unit(..) => VariantKind::CLike,
2498    };
2499
2500    Variant { discriminant, kind }
2501}
2502
2503fn clean_path<'tcx>(path: &hir::Path<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
2504    Path {
2505        res: path.res,
2506        segments: path.segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
2507    }
2508}
2509
2510fn clean_generic_args<'tcx>(
2511    generic_args: &hir::GenericArgs<'tcx>,
2512    cx: &mut DocContext<'tcx>,
2513) -> GenericArgs {
2514    match generic_args.parenthesized {
2515        hir::GenericArgsParentheses::No => {
2516            let args = generic_args
2517                .args
2518                .iter()
2519                .map(|arg| match arg {
2520                    hir::GenericArg::Lifetime(lt) if !lt.is_anonymous() => {
2521                        GenericArg::Lifetime(clean_lifetime(lt, cx))
2522                    }
2523                    hir::GenericArg::Lifetime(_) => GenericArg::Lifetime(Lifetime::elided()),
2524                    hir::GenericArg::Type(ty) => GenericArg::Type(clean_ty(ty.as_unambig_ty(), cx)),
2525                    hir::GenericArg::Const(ct) => {
2526                        GenericArg::Const(Box::new(clean_const(ct.as_unambig_ct(), cx)))
2527                    }
2528                    hir::GenericArg::Infer(_inf) => GenericArg::Infer,
2529                })
2530                .collect();
2531            let constraints = generic_args
2532                .constraints
2533                .iter()
2534                .map(|c| clean_assoc_item_constraint(c, cx))
2535                .collect::<ThinVec<_>>();
2536            GenericArgs::AngleBracketed { args, constraints }
2537        }
2538        hir::GenericArgsParentheses::ParenSugar => {
2539            let Some((inputs, output)) = generic_args.paren_sugar_inputs_output() else {
2540                bug!();
2541            };
2542            let inputs = inputs.iter().map(|x| clean_ty(x, cx)).collect();
2543            let output = match output.kind {
2544                hir::TyKind::Tup(&[]) => None,
2545                _ => Some(Box::new(clean_ty(output, cx))),
2546            };
2547            GenericArgs::Parenthesized { inputs, output }
2548        }
2549        hir::GenericArgsParentheses::ReturnTypeNotation => GenericArgs::ReturnTypeNotation,
2550    }
2551}
2552
2553fn clean_path_segment<'tcx>(
2554    path: &hir::PathSegment<'tcx>,
2555    cx: &mut DocContext<'tcx>,
2556) -> PathSegment {
2557    PathSegment { name: path.ident.name, args: clean_generic_args(path.args(), cx) }
2558}
2559
2560fn clean_bare_fn_ty<'tcx>(
2561    bare_fn: &hir::FnPtrTy<'tcx>,
2562    cx: &mut DocContext<'tcx>,
2563) -> BareFunctionDecl {
2564    let (generic_params, decl) = enter_impl_trait(cx, |cx| {
2565        // NOTE: Generics must be cleaned before params.
2566        let generic_params = bare_fn
2567            .generic_params
2568            .iter()
2569            .filter(|p| !is_elided_lifetime(p))
2570            .map(|x| clean_generic_param(cx, None, x))
2571            .collect();
2572        // Since it's more conventional stylistically, elide the name of all params called `_`
2573        // unless there's at least one interestingly named param in which case don't elide any
2574        // name since mixing named and unnamed params is less legible.
2575        let filter = |ident: Option<Ident>| {
2576            ident.map(|ident| ident.name).filter(|&ident| ident != kw::Underscore)
2577        };
2578        let fallback =
2579            bare_fn.param_idents.iter().copied().find_map(filter).map(|_| kw::Underscore);
2580        let params = clean_params(cx, bare_fn.decl.inputs, bare_fn.param_idents, |ident| {
2581            filter(ident).or(fallback)
2582        });
2583        let decl = clean_fn_decl_with_params(cx, bare_fn.decl, None, params);
2584        (generic_params, decl)
2585    });
2586    BareFunctionDecl { safety: bare_fn.safety, abi: bare_fn.abi, decl, generic_params }
2587}
2588
2589fn clean_unsafe_binder_ty<'tcx>(
2590    unsafe_binder_ty: &hir::UnsafeBinderTy<'tcx>,
2591    cx: &mut DocContext<'tcx>,
2592) -> UnsafeBinderTy {
2593    let generic_params = unsafe_binder_ty
2594        .generic_params
2595        .iter()
2596        .filter(|p| !is_elided_lifetime(p))
2597        .map(|x| clean_generic_param(cx, None, x))
2598        .collect();
2599    let ty = clean_ty(unsafe_binder_ty.inner_ty, cx);
2600    UnsafeBinderTy { generic_params, ty }
2601}
2602
2603pub(crate) fn reexport_chain(
2604    tcx: TyCtxt<'_>,
2605    import_def_id: LocalDefId,
2606    target_def_id: DefId,
2607) -> &[Reexport] {
2608    for child in tcx.module_children_local(tcx.local_parent(import_def_id)) {
2609        if child.res.opt_def_id() == Some(target_def_id)
2610            && child.reexport_chain.first().and_then(|r| r.id()) == Some(import_def_id.to_def_id())
2611        {
2612            return &child.reexport_chain;
2613        }
2614    }
2615    &[]
2616}
2617
2618/// Collect attributes from the whole import chain.
2619fn get_all_import_attributes<'hir>(
2620    cx: &mut DocContext<'hir>,
2621    import_def_id: LocalDefId,
2622    target_def_id: DefId,
2623    is_inline: bool,
2624) -> Vec<(Cow<'hir, hir::Attribute>, Option<DefId>)> {
2625    let mut attrs = Vec::new();
2626    let mut first = true;
2627    for def_id in reexport_chain(cx.tcx, import_def_id, target_def_id)
2628        .iter()
2629        .flat_map(|reexport| reexport.id())
2630    {
2631        let import_attrs = inline::load_attrs(cx, def_id);
2632        if first {
2633            // This is the "original" reexport so we get all its attributes without filtering them.
2634            attrs = import_attrs.iter().map(|attr| (Cow::Borrowed(attr), Some(def_id))).collect();
2635            first = false;
2636        // We don't add attributes of an intermediate re-export if it has `#[doc(hidden)]`.
2637        } else if cx.render_options.document_hidden || !cx.tcx.is_doc_hidden(def_id) {
2638            add_without_unwanted_attributes(&mut attrs, import_attrs, is_inline, Some(def_id));
2639        }
2640    }
2641    attrs
2642}
2643
2644fn filter_tokens_from_list(
2645    args_tokens: &TokenStream,
2646    should_retain: impl Fn(&TokenTree) -> bool,
2647) -> Vec<TokenTree> {
2648    let mut tokens = Vec::with_capacity(args_tokens.len());
2649    let mut skip_next_comma = false;
2650    for token in args_tokens.iter() {
2651        match token {
2652            TokenTree::Token(Token { kind: TokenKind::Comma, .. }, _) if skip_next_comma => {
2653                skip_next_comma = false;
2654            }
2655            token if should_retain(token) => {
2656                skip_next_comma = false;
2657                tokens.push(token.clone());
2658            }
2659            _ => {
2660                skip_next_comma = true;
2661            }
2662        }
2663    }
2664    tokens
2665}
2666
2667fn filter_doc_attr_ident(ident: Symbol, is_inline: bool) -> bool {
2668    if is_inline {
2669        ident == sym::hidden || ident == sym::inline || ident == sym::no_inline
2670    } else {
2671        ident == sym::cfg
2672    }
2673}
2674
2675/// Remove attributes from `normal` that should not be inherited by `use` re-export.
2676/// Before calling this function, make sure `normal` is a `#[doc]` attribute.
2677fn filter_doc_attr(args: &mut hir::AttrArgs, is_inline: bool) {
2678    match args {
2679        hir::AttrArgs::Delimited(args) => {
2680            let tokens = filter_tokens_from_list(&args.tokens, |token| {
2681                !matches!(
2682                    token,
2683                    TokenTree::Token(
2684                        Token {
2685                            kind: TokenKind::Ident(
2686                                ident,
2687                                _,
2688                            ),
2689                            ..
2690                        },
2691                        _,
2692                    ) if filter_doc_attr_ident(*ident, is_inline),
2693                )
2694            });
2695            args.tokens = TokenStream::new(tokens);
2696        }
2697        hir::AttrArgs::Empty | hir::AttrArgs::Eq { .. } => {}
2698    }
2699}
2700
2701/// When inlining items, we merge their attributes (and all the reexports attributes too) with the
2702/// final reexport. For example:
2703///
2704/// ```ignore (just an example)
2705/// #[doc(hidden, cfg(feature = "foo"))]
2706/// pub struct Foo;
2707///
2708/// #[doc(cfg(feature = "bar"))]
2709/// #[doc(hidden, no_inline)]
2710/// pub use Foo as Foo1;
2711///
2712/// #[doc(inline)]
2713/// pub use Foo2 as Bar;
2714/// ```
2715///
2716/// So `Bar` at the end will have both `cfg(feature = "...")`. However, we don't want to merge all
2717/// attributes so we filter out the following ones:
2718/// * `doc(inline)`
2719/// * `doc(no_inline)`
2720/// * `doc(hidden)`
2721fn add_without_unwanted_attributes<'hir>(
2722    attrs: &mut Vec<(Cow<'hir, hir::Attribute>, Option<DefId>)>,
2723    new_attrs: &'hir [hir::Attribute],
2724    is_inline: bool,
2725    import_parent: Option<DefId>,
2726) {
2727    for attr in new_attrs {
2728        if attr.is_doc_comment() {
2729            attrs.push((Cow::Borrowed(attr), import_parent));
2730            continue;
2731        }
2732        let mut attr = attr.clone();
2733        match attr {
2734            hir::Attribute::Unparsed(ref mut normal) if let [ident] = &*normal.path.segments => {
2735                let ident = ident.name;
2736                if ident == sym::doc {
2737                    filter_doc_attr(&mut normal.args, is_inline);
2738                    attrs.push((Cow::Owned(attr), import_parent));
2739                } else if is_inline || ident != sym::cfg_trace {
2740                    // If it's not a `cfg()` attribute, we keep it.
2741                    attrs.push((Cow::Owned(attr), import_parent));
2742                }
2743            }
2744            // FIXME: make sure to exclude `#[cfg_trace]` here when it is ported to the new parsers
2745            hir::Attribute::Parsed(..) => {
2746                attrs.push((Cow::Owned(attr), import_parent));
2747            }
2748            _ => {}
2749        }
2750    }
2751}
2752
2753fn clean_maybe_renamed_item<'tcx>(
2754    cx: &mut DocContext<'tcx>,
2755    item: &hir::Item<'tcx>,
2756    renamed: Option<Symbol>,
2757    import_id: Option<LocalDefId>,
2758) -> Vec<Item> {
2759    use hir::ItemKind;
2760    fn get_name(
2761        cx: &DocContext<'_>,
2762        item: &hir::Item<'_>,
2763        renamed: Option<Symbol>,
2764    ) -> Option<Symbol> {
2765        renamed.or_else(|| cx.tcx.hir_opt_name(item.hir_id()))
2766    }
2767
2768    let def_id = item.owner_id.to_def_id();
2769    cx.with_param_env(def_id, |cx| {
2770        // These kinds of item either don't need a `name` or accept a `None` one so we handle them
2771        // before.
2772        match item.kind {
2773            ItemKind::Impl(impl_) => return clean_impl(impl_, item.owner_id.def_id, cx),
2774            ItemKind::Use(path, kind) => {
2775                return clean_use_statement(
2776                    item,
2777                    get_name(cx, item, renamed),
2778                    path,
2779                    kind,
2780                    cx,
2781                    &mut FxHashSet::default(),
2782                );
2783            }
2784            _ => {}
2785        }
2786
2787        let mut name = get_name(cx, item, renamed).unwrap();
2788
2789        let kind = match item.kind {
2790            ItemKind::Static(mutability, _, ty, body_id) => StaticItem(Static {
2791                type_: Box::new(clean_ty(ty, cx)),
2792                mutability,
2793                expr: Some(body_id),
2794            }),
2795            ItemKind::Const(_, generics, ty, body_id) => ConstantItem(Box::new(Constant {
2796                generics: clean_generics(generics, cx),
2797                type_: clean_ty(ty, cx),
2798                kind: ConstantKind::Local { body: body_id, def_id },
2799            })),
2800            ItemKind::TyAlias(_, generics, ty) => {
2801                *cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
2802                let rustdoc_ty = clean_ty(ty, cx);
2803                let type_ =
2804                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, ty)), cx, None, None);
2805                let generics = clean_generics(generics, cx);
2806                if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
2807                    *count -= 1;
2808                    if *count == 0 {
2809                        cx.current_type_aliases.remove(&def_id);
2810                    }
2811                }
2812
2813                let ty = cx.tcx.type_of(def_id).instantiate_identity();
2814
2815                let mut ret = Vec::new();
2816                let inner_type = clean_ty_alias_inner_type(ty, cx, &mut ret);
2817
2818                ret.push(generate_item_with_correct_attrs(
2819                    cx,
2820                    TypeAliasItem(Box::new(TypeAlias {
2821                        generics,
2822                        inner_type,
2823                        type_: rustdoc_ty,
2824                        item_type: Some(type_),
2825                    })),
2826                    item.owner_id.def_id.to_def_id(),
2827                    name,
2828                    import_id,
2829                    renamed,
2830                ));
2831                return ret;
2832            }
2833            ItemKind::Enum(_, generics, def) => EnumItem(Enum {
2834                variants: def.variants.iter().map(|v| clean_variant(v, cx)).collect(),
2835                generics: clean_generics(generics, cx),
2836            }),
2837            ItemKind::TraitAlias(_, generics, bounds) => TraitAliasItem(TraitAlias {
2838                generics: clean_generics(generics, cx),
2839                bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
2840            }),
2841            ItemKind::Union(_, generics, variant_data) => UnionItem(Union {
2842                generics: clean_generics(generics, cx),
2843                fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
2844            }),
2845            ItemKind::Struct(_, generics, variant_data) => StructItem(Struct {
2846                ctor_kind: variant_data.ctor_kind(),
2847                generics: clean_generics(generics, cx),
2848                fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
2849            }),
2850            ItemKind::Macro(_, macro_def, MacroKind::Bang) => MacroItem(Macro {
2851                source: display_macro_source(cx, name, macro_def),
2852                macro_rules: macro_def.macro_rules,
2853            }),
2854            ItemKind::Macro(_, _, macro_kind) => clean_proc_macro(item, &mut name, macro_kind, cx),
2855            // proc macros can have a name set by attributes
2856            ItemKind::Fn { ref sig, generics, body: body_id, .. } => {
2857                clean_fn_or_proc_macro(item, sig, generics, body_id, &mut name, cx)
2858            }
2859            ItemKind::Trait(_, _, _, generics, bounds, item_ids) => {
2860                let items = item_ids
2861                    .iter()
2862                    .map(|ti| clean_trait_item(cx.tcx.hir_trait_item(ti.id), cx))
2863                    .collect();
2864
2865                TraitItem(Box::new(Trait {
2866                    def_id,
2867                    items,
2868                    generics: clean_generics(generics, cx),
2869                    bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
2870                }))
2871            }
2872            ItemKind::ExternCrate(orig_name, _) => {
2873                return clean_extern_crate(item, name, orig_name, cx);
2874            }
2875            _ => span_bug!(item.span, "not yet converted"),
2876        };
2877
2878        vec![generate_item_with_correct_attrs(
2879            cx,
2880            kind,
2881            item.owner_id.def_id.to_def_id(),
2882            name,
2883            import_id,
2884            renamed,
2885        )]
2886    })
2887}
2888
2889fn clean_variant<'tcx>(variant: &hir::Variant<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
2890    let kind = VariantItem(clean_variant_data(&variant.data, &variant.disr_expr, cx));
2891    Item::from_def_id_and_parts(variant.def_id.to_def_id(), Some(variant.ident.name), kind, cx)
2892}
2893
2894fn clean_impl<'tcx>(
2895    impl_: &hir::Impl<'tcx>,
2896    def_id: LocalDefId,
2897    cx: &mut DocContext<'tcx>,
2898) -> Vec<Item> {
2899    let tcx = cx.tcx;
2900    let mut ret = Vec::new();
2901    let trait_ = impl_.of_trait.as_ref().map(|t| clean_trait_ref(t, cx));
2902    let items = impl_
2903        .items
2904        .iter()
2905        .map(|ii| clean_impl_item(tcx.hir_impl_item(ii.id), cx))
2906        .collect::<Vec<_>>();
2907
2908    // If this impl block is an implementation of the Deref trait, then we
2909    // need to try inlining the target's inherent impl blocks as well.
2910    if trait_.as_ref().map(|t| t.def_id()) == tcx.lang_items().deref_trait() {
2911        build_deref_target_impls(cx, &items, &mut ret);
2912    }
2913
2914    let for_ = clean_ty(impl_.self_ty, cx);
2915    let type_alias =
2916        for_.def_id(&cx.cache).and_then(|alias_def_id: DefId| match tcx.def_kind(alias_def_id) {
2917            DefKind::TyAlias => Some(clean_middle_ty(
2918                ty::Binder::dummy(tcx.type_of(def_id).instantiate_identity()),
2919                cx,
2920                Some(def_id.to_def_id()),
2921                None,
2922            )),
2923            _ => None,
2924        });
2925    let mut make_item = |trait_: Option<Path>, for_: Type, items: Vec<Item>| {
2926        let kind = ImplItem(Box::new(Impl {
2927            safety: impl_.safety,
2928            generics: clean_generics(impl_.generics, cx),
2929            trait_,
2930            for_,
2931            items,
2932            polarity: tcx.impl_polarity(def_id),
2933            kind: if utils::has_doc_flag(tcx, def_id.to_def_id(), sym::fake_variadic) {
2934                ImplKind::FakeVariadic
2935            } else {
2936                ImplKind::Normal
2937            },
2938        }));
2939        Item::from_def_id_and_parts(def_id.to_def_id(), None, kind, cx)
2940    };
2941    if let Some(type_alias) = type_alias {
2942        ret.push(make_item(trait_.clone(), type_alias, items.clone()));
2943    }
2944    ret.push(make_item(trait_, for_, items));
2945    ret
2946}
2947
2948fn clean_extern_crate<'tcx>(
2949    krate: &hir::Item<'tcx>,
2950    name: Symbol,
2951    orig_name: Option<Symbol>,
2952    cx: &mut DocContext<'tcx>,
2953) -> Vec<Item> {
2954    // this is the ID of the `extern crate` statement
2955    let cnum = cx.tcx.extern_mod_stmt_cnum(krate.owner_id.def_id).unwrap_or(LOCAL_CRATE);
2956    // this is the ID of the crate itself
2957    let crate_def_id = cnum.as_def_id();
2958    let attrs = cx.tcx.hir_attrs(krate.hir_id());
2959    let ty_vis = cx.tcx.visibility(krate.owner_id);
2960    let please_inline = ty_vis.is_public()
2961        && attrs.iter().any(|a| {
2962            a.has_name(sym::doc)
2963                && match a.meta_item_list() {
2964                    Some(l) => ast::attr::list_contains_name(&l, sym::inline),
2965                    None => false,
2966                }
2967        })
2968        && !cx.is_json_output();
2969
2970    let krate_owner_def_id = krate.owner_id.def_id;
2971
2972    if please_inline
2973        && let Some(items) = inline::try_inline(
2974            cx,
2975            Res::Def(DefKind::Mod, crate_def_id),
2976            name,
2977            Some((attrs, Some(krate_owner_def_id))),
2978            &mut Default::default(),
2979        )
2980    {
2981        return items;
2982    }
2983
2984    vec![Item::from_def_id_and_parts(
2985        krate_owner_def_id.to_def_id(),
2986        Some(name),
2987        ExternCrateItem { src: orig_name },
2988        cx,
2989    )]
2990}
2991
2992fn clean_use_statement<'tcx>(
2993    import: &hir::Item<'tcx>,
2994    name: Option<Symbol>,
2995    path: &hir::UsePath<'tcx>,
2996    kind: hir::UseKind,
2997    cx: &mut DocContext<'tcx>,
2998    inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
2999) -> Vec<Item> {
3000    let mut items = Vec::new();
3001    let hir::UsePath { segments, ref res, span } = *path;
3002    for res in res.present_items() {
3003        let path = hir::Path { segments, res, span };
3004        items.append(&mut clean_use_statement_inner(import, name, &path, kind, cx, inlined_names));
3005    }
3006    items
3007}
3008
3009fn clean_use_statement_inner<'tcx>(
3010    import: &hir::Item<'tcx>,
3011    name: Option<Symbol>,
3012    path: &hir::Path<'tcx>,
3013    kind: hir::UseKind,
3014    cx: &mut DocContext<'tcx>,
3015    inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
3016) -> Vec<Item> {
3017    if should_ignore_res(path.res) {
3018        return Vec::new();
3019    }
3020    // We need this comparison because some imports (for std types for example)
3021    // are "inserted" as well but directly by the compiler and they should not be
3022    // taken into account.
3023    if import.span.ctxt().outer_expn_data().kind == ExpnKind::AstPass(AstPass::StdImports) {
3024        return Vec::new();
3025    }
3026
3027    let visibility = cx.tcx.visibility(import.owner_id);
3028    let attrs = cx.tcx.hir_attrs(import.hir_id());
3029    let inline_attr = hir_attr_lists(attrs, sym::doc).get_word_attr(sym::inline);
3030    let pub_underscore = visibility.is_public() && name == Some(kw::Underscore);
3031    let current_mod = cx.tcx.parent_module_from_def_id(import.owner_id.def_id);
3032    let import_def_id = import.owner_id.def_id;
3033
3034    // The parent of the module in which this import resides. This
3035    // is the same as `current_mod` if that's already the top
3036    // level module.
3037    let parent_mod = cx.tcx.parent_module_from_def_id(current_mod.to_local_def_id());
3038
3039    // This checks if the import can be seen from a higher level module.
3040    // In other words, it checks if the visibility is the equivalent of
3041    // `pub(super)` or higher. If the current module is the top level
3042    // module, there isn't really a parent module, which makes the results
3043    // meaningless. In this case, we make sure the answer is `false`.
3044    let is_visible_from_parent_mod =
3045        visibility.is_accessible_from(parent_mod, cx.tcx) && !current_mod.is_top_level_module();
3046
3047    if pub_underscore && let Some(ref inline) = inline_attr {
3048        struct_span_code_err!(
3049            cx.tcx.dcx(),
3050            inline.span(),
3051            E0780,
3052            "anonymous imports cannot be inlined"
3053        )
3054        .with_span_label(import.span, "anonymous import")
3055        .emit();
3056    }
3057
3058    // We consider inlining the documentation of `pub use` statements, but we
3059    // forcefully don't inline if this is not public or if the
3060    // #[doc(no_inline)] attribute is present.
3061    // Don't inline doc(hidden) imports so they can be stripped at a later stage.
3062    let mut denied = cx.is_json_output()
3063        || !(visibility.is_public()
3064            || (cx.render_options.document_private && is_visible_from_parent_mod))
3065        || pub_underscore
3066        || attrs.iter().any(|a| {
3067            a.has_name(sym::doc)
3068                && match a.meta_item_list() {
3069                    Some(l) => {
3070                        ast::attr::list_contains_name(&l, sym::no_inline)
3071                            || ast::attr::list_contains_name(&l, sym::hidden)
3072                    }
3073                    None => false,
3074                }
3075        });
3076
3077    // Also check whether imports were asked to be inlined, in case we're trying to re-export a
3078    // crate in Rust 2018+
3079    let path = clean_path(path, cx);
3080    let inner = if kind == hir::UseKind::Glob {
3081        if !denied {
3082            let mut visited = DefIdSet::default();
3083            if let Some(items) = inline::try_inline_glob(
3084                cx,
3085                path.res,
3086                current_mod,
3087                &mut visited,
3088                inlined_names,
3089                import,
3090            ) {
3091                return items;
3092            }
3093        }
3094        Import::new_glob(resolve_use_source(cx, path), true)
3095    } else {
3096        let name = name.unwrap();
3097        if inline_attr.is_none()
3098            && let Res::Def(DefKind::Mod, did) = path.res
3099            && !did.is_local()
3100            && did.is_crate_root()
3101        {
3102            // if we're `pub use`ing an extern crate root, don't inline it unless we
3103            // were specifically asked for it
3104            denied = true;
3105        }
3106        if !denied
3107            && let Some(mut items) = inline::try_inline(
3108                cx,
3109                path.res,
3110                name,
3111                Some((attrs, Some(import_def_id))),
3112                &mut Default::default(),
3113            )
3114        {
3115            items.push(Item::from_def_id_and_parts(
3116                import_def_id.to_def_id(),
3117                None,
3118                ImportItem(Import::new_simple(name, resolve_use_source(cx, path), false)),
3119                cx,
3120            ));
3121            return items;
3122        }
3123        Import::new_simple(name, resolve_use_source(cx, path), true)
3124    };
3125
3126    vec![Item::from_def_id_and_parts(import_def_id.to_def_id(), None, ImportItem(inner), cx)]
3127}
3128
3129fn clean_maybe_renamed_foreign_item<'tcx>(
3130    cx: &mut DocContext<'tcx>,
3131    item: &hir::ForeignItem<'tcx>,
3132    renamed: Option<Symbol>,
3133    import_id: Option<LocalDefId>,
3134) -> Item {
3135    let def_id = item.owner_id.to_def_id();
3136    cx.with_param_env(def_id, |cx| {
3137        let kind = match item.kind {
3138            hir::ForeignItemKind::Fn(sig, idents, generics) => ForeignFunctionItem(
3139                clean_function(cx, &sig, generics, ParamsSrc::Idents(idents)),
3140                sig.header.safety(),
3141            ),
3142            hir::ForeignItemKind::Static(ty, mutability, safety) => ForeignStaticItem(
3143                Static { type_: Box::new(clean_ty(ty, cx)), mutability, expr: None },
3144                safety,
3145            ),
3146            hir::ForeignItemKind::Type => ForeignTypeItem,
3147        };
3148
3149        generate_item_with_correct_attrs(
3150            cx,
3151            kind,
3152            item.owner_id.def_id.to_def_id(),
3153            item.ident.name,
3154            import_id,
3155            renamed,
3156        )
3157    })
3158}
3159
3160fn clean_assoc_item_constraint<'tcx>(
3161    constraint: &hir::AssocItemConstraint<'tcx>,
3162    cx: &mut DocContext<'tcx>,
3163) -> AssocItemConstraint {
3164    AssocItemConstraint {
3165        assoc: PathSegment {
3166            name: constraint.ident.name,
3167            args: clean_generic_args(constraint.gen_args, cx),
3168        },
3169        kind: match constraint.kind {
3170            hir::AssocItemConstraintKind::Equality { ref term } => {
3171                AssocItemConstraintKind::Equality { term: clean_hir_term(term, cx) }
3172            }
3173            hir::AssocItemConstraintKind::Bound { bounds } => AssocItemConstraintKind::Bound {
3174                bounds: bounds.iter().filter_map(|b| clean_generic_bound(b, cx)).collect(),
3175            },
3176        },
3177    }
3178}
3179
3180fn clean_bound_vars<'tcx>(
3181    bound_vars: &ty::List<ty::BoundVariableKind>,
3182    cx: &mut DocContext<'tcx>,
3183) -> Vec<GenericParamDef> {
3184    bound_vars
3185        .into_iter()
3186        .filter_map(|var| match var {
3187            ty::BoundVariableKind::Region(ty::BoundRegionKind::Named(def_id)) => {
3188                let name = cx.tcx.item_name(def_id);
3189                if name != kw::UnderscoreLifetime {
3190                    Some(GenericParamDef::lifetime(def_id, name))
3191                } else {
3192                    None
3193                }
3194            }
3195            ty::BoundVariableKind::Ty(ty::BoundTyKind::Param(def_id)) => {
3196                let name = cx.tcx.item_name(def_id);
3197                Some(GenericParamDef {
3198                    name,
3199                    def_id,
3200                    kind: GenericParamDefKind::Type {
3201                        bounds: ThinVec::new(),
3202                        default: None,
3203                        synthetic: false,
3204                    },
3205                })
3206            }
3207            // FIXME(non_lifetime_binders): Support higher-ranked const parameters.
3208            ty::BoundVariableKind::Const => None,
3209            _ => None,
3210        })
3211        .collect()
3212}