stable_mir/mir/
body.rs

1use std::io;
2
3use serde::Serialize;
4
5use crate::compiler_interface::with;
6use crate::mir::pretty::function_body;
7use crate::ty::{
8    AdtDef, ClosureDef, CoroutineClosureDef, CoroutineDef, GenericArgs, MirConst, Movability,
9    Region, RigidTy, Ty, TyConst, TyKind, VariantIdx,
10};
11use crate::{Error, Opaque, Span, Symbol};
12
13/// The SMIR representation of a single function.
14#[derive(Clone, Debug, Serialize)]
15pub struct Body {
16    pub blocks: Vec<BasicBlock>,
17
18    /// Declarations of locals within the function.
19    ///
20    /// The first local is the return value pointer, followed by `arg_count`
21    /// locals for the function arguments, followed by any user-declared
22    /// variables and temporaries.
23    pub(super) locals: LocalDecls,
24
25    /// The number of arguments this function takes.
26    pub(super) arg_count: usize,
27
28    /// Debug information pertaining to user variables, including captures.
29    pub var_debug_info: Vec<VarDebugInfo>,
30
31    /// Mark an argument (which must be a tuple) as getting passed as its individual components.
32    ///
33    /// This is used for the "rust-call" ABI such as closures.
34    pub(super) spread_arg: Option<Local>,
35
36    /// The span that covers the entire function body.
37    pub span: Span,
38}
39
40pub type BasicBlockIdx = usize;
41
42impl Body {
43    /// Constructs a `Body`.
44    ///
45    /// A constructor is required to build a `Body` from outside the crate
46    /// because the `arg_count` and `locals` fields are private.
47    pub fn new(
48        blocks: Vec<BasicBlock>,
49        locals: LocalDecls,
50        arg_count: usize,
51        var_debug_info: Vec<VarDebugInfo>,
52        spread_arg: Option<Local>,
53        span: Span,
54    ) -> Self {
55        // If locals doesn't contain enough entries, it can lead to panics in
56        // `ret_local`, `arg_locals`, and `inner_locals`.
57        assert!(
58            locals.len() > arg_count,
59            "A Body must contain at least a local for the return value and each of the function's arguments"
60        );
61        Self { blocks, locals, arg_count, var_debug_info, spread_arg, span }
62    }
63
64    /// Return local that holds this function's return value.
65    pub fn ret_local(&self) -> &LocalDecl {
66        &self.locals[RETURN_LOCAL]
67    }
68
69    /// Locals in `self` that correspond to this function's arguments.
70    pub fn arg_locals(&self) -> &[LocalDecl] {
71        &self.locals[1..][..self.arg_count]
72    }
73
74    /// Inner locals for this function. These are the locals that are
75    /// neither the return local nor the argument locals.
76    pub fn inner_locals(&self) -> &[LocalDecl] {
77        &self.locals[self.arg_count + 1..]
78    }
79
80    /// Returns a mutable reference to the local that holds this function's return value.
81    pub(crate) fn ret_local_mut(&mut self) -> &mut LocalDecl {
82        &mut self.locals[RETURN_LOCAL]
83    }
84
85    /// Returns a mutable slice of locals corresponding to this function's arguments.
86    pub(crate) fn arg_locals_mut(&mut self) -> &mut [LocalDecl] {
87        &mut self.locals[1..][..self.arg_count]
88    }
89
90    /// Returns a mutable slice of inner locals for this function.
91    /// Inner locals are those that are neither the return local nor the argument locals.
92    pub(crate) fn inner_locals_mut(&mut self) -> &mut [LocalDecl] {
93        &mut self.locals[self.arg_count + 1..]
94    }
95
96    /// Convenience function to get all the locals in this function.
97    ///
98    /// Locals are typically accessed via the more specific methods `ret_local`,
99    /// `arg_locals`, and `inner_locals`.
100    pub fn locals(&self) -> &[LocalDecl] {
101        &self.locals
102    }
103
104    /// Get the local declaration for this local.
105    pub fn local_decl(&self, local: Local) -> Option<&LocalDecl> {
106        self.locals.get(local)
107    }
108
109    /// Get an iterator for all local declarations.
110    pub fn local_decls(&self) -> impl Iterator<Item = (Local, &LocalDecl)> {
111        self.locals.iter().enumerate()
112    }
113
114    /// Emit the body using the provided name for the signature.
115    pub fn dump<W: io::Write>(&self, w: &mut W, fn_name: &str) -> io::Result<()> {
116        function_body(w, self, fn_name)
117    }
118
119    pub fn spread_arg(&self) -> Option<Local> {
120        self.spread_arg
121    }
122}
123
124type LocalDecls = Vec<LocalDecl>;
125
126#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
127pub struct LocalDecl {
128    pub ty: Ty,
129    pub span: Span,
130    pub mutability: Mutability,
131}
132
133#[derive(Clone, PartialEq, Eq, Debug, Serialize)]
134pub struct BasicBlock {
135    pub statements: Vec<Statement>,
136    pub terminator: Terminator,
137}
138
139#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
140pub struct Terminator {
141    pub kind: TerminatorKind,
142    pub span: Span,
143}
144
145impl Terminator {
146    pub fn successors(&self) -> Successors {
147        self.kind.successors()
148    }
149}
150
151pub type Successors = Vec<BasicBlockIdx>;
152
153#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
154pub enum TerminatorKind {
155    Goto {
156        target: BasicBlockIdx,
157    },
158    SwitchInt {
159        discr: Operand,
160        targets: SwitchTargets,
161    },
162    Resume,
163    Abort,
164    Return,
165    Unreachable,
166    Drop {
167        place: Place,
168        target: BasicBlockIdx,
169        unwind: UnwindAction,
170    },
171    Call {
172        func: Operand,
173        args: Vec<Operand>,
174        destination: Place,
175        target: Option<BasicBlockIdx>,
176        unwind: UnwindAction,
177    },
178    Assert {
179        cond: Operand,
180        expected: bool,
181        msg: AssertMessage,
182        target: BasicBlockIdx,
183        unwind: UnwindAction,
184    },
185    InlineAsm {
186        template: String,
187        operands: Vec<InlineAsmOperand>,
188        options: String,
189        line_spans: String,
190        destination: Option<BasicBlockIdx>,
191        unwind: UnwindAction,
192    },
193}
194
195impl TerminatorKind {
196    pub fn successors(&self) -> Successors {
197        use self::TerminatorKind::*;
198        match *self {
199            Call { target: Some(t), unwind: UnwindAction::Cleanup(u), .. }
200            | Drop { target: t, unwind: UnwindAction::Cleanup(u), .. }
201            | Assert { target: t, unwind: UnwindAction::Cleanup(u), .. }
202            | InlineAsm { destination: Some(t), unwind: UnwindAction::Cleanup(u), .. } => {
203                vec![t, u]
204            }
205            Goto { target: t }
206            | Call { target: None, unwind: UnwindAction::Cleanup(t), .. }
207            | Call { target: Some(t), unwind: _, .. }
208            | Drop { target: t, unwind: _, .. }
209            | Assert { target: t, unwind: _, .. }
210            | InlineAsm { destination: None, unwind: UnwindAction::Cleanup(t), .. }
211            | InlineAsm { destination: Some(t), unwind: _, .. } => {
212                vec![t]
213            }
214
215            Return
216            | Resume
217            | Abort
218            | Unreachable
219            | Call { target: None, unwind: _, .. }
220            | InlineAsm { destination: None, unwind: _, .. } => {
221                vec![]
222            }
223            SwitchInt { ref targets, .. } => targets.all_targets(),
224        }
225    }
226
227    pub fn unwind(&self) -> Option<&UnwindAction> {
228        match *self {
229            TerminatorKind::Goto { .. }
230            | TerminatorKind::Return
231            | TerminatorKind::Unreachable
232            | TerminatorKind::Resume
233            | TerminatorKind::Abort
234            | TerminatorKind::SwitchInt { .. } => None,
235            TerminatorKind::Call { ref unwind, .. }
236            | TerminatorKind::Assert { ref unwind, .. }
237            | TerminatorKind::Drop { ref unwind, .. }
238            | TerminatorKind::InlineAsm { ref unwind, .. } => Some(unwind),
239        }
240    }
241}
242
243#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
244pub struct InlineAsmOperand {
245    pub in_value: Option<Operand>,
246    pub out_place: Option<Place>,
247    // This field has a raw debug representation of MIR's InlineAsmOperand.
248    // For now we care about place/operand + the rest in a debug format.
249    pub raw_rpr: String,
250}
251
252#[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize)]
253pub enum UnwindAction {
254    Continue,
255    Unreachable,
256    Terminate,
257    Cleanup(BasicBlockIdx),
258}
259
260#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
261pub enum AssertMessage {
262    BoundsCheck { len: Operand, index: Operand },
263    Overflow(BinOp, Operand, Operand),
264    OverflowNeg(Operand),
265    DivisionByZero(Operand),
266    RemainderByZero(Operand),
267    ResumedAfterReturn(CoroutineKind),
268    ResumedAfterPanic(CoroutineKind),
269    ResumedAfterDrop(CoroutineKind),
270    MisalignedPointerDereference { required: Operand, found: Operand },
271    NullPointerDereference,
272    InvalidEnumConstruction(Operand),
273}
274
275impl AssertMessage {
276    pub fn description(&self) -> Result<&'static str, Error> {
277        match self {
278            AssertMessage::Overflow(BinOp::Add, _, _) => Ok("attempt to add with overflow"),
279            AssertMessage::Overflow(BinOp::Sub, _, _) => Ok("attempt to subtract with overflow"),
280            AssertMessage::Overflow(BinOp::Mul, _, _) => Ok("attempt to multiply with overflow"),
281            AssertMessage::Overflow(BinOp::Div, _, _) => Ok("attempt to divide with overflow"),
282            AssertMessage::Overflow(BinOp::Rem, _, _) => {
283                Ok("attempt to calculate the remainder with overflow")
284            }
285            AssertMessage::OverflowNeg(_) => Ok("attempt to negate with overflow"),
286            AssertMessage::Overflow(BinOp::Shr, _, _) => Ok("attempt to shift right with overflow"),
287            AssertMessage::Overflow(BinOp::Shl, _, _) => Ok("attempt to shift left with overflow"),
288            AssertMessage::Overflow(op, _, _) => Err(error!("`{:?}` cannot overflow", op)),
289            AssertMessage::DivisionByZero(_) => Ok("attempt to divide by zero"),
290            AssertMessage::RemainderByZero(_) => {
291                Ok("attempt to calculate the remainder with a divisor of zero")
292            }
293            AssertMessage::ResumedAfterReturn(CoroutineKind::Coroutine(_)) => {
294                Ok("coroutine resumed after completion")
295            }
296            AssertMessage::ResumedAfterReturn(CoroutineKind::Desugared(
297                CoroutineDesugaring::Async,
298                _,
299            )) => Ok("`async fn` resumed after completion"),
300            AssertMessage::ResumedAfterReturn(CoroutineKind::Desugared(
301                CoroutineDesugaring::Gen,
302                _,
303            )) => Ok("`async gen fn` resumed after completion"),
304            AssertMessage::ResumedAfterReturn(CoroutineKind::Desugared(
305                CoroutineDesugaring::AsyncGen,
306                _,
307            )) => Ok("`gen fn` should just keep returning `AssertMessage::None` after completion"),
308            AssertMessage::ResumedAfterPanic(CoroutineKind::Coroutine(_)) => {
309                Ok("coroutine resumed after panicking")
310            }
311            AssertMessage::ResumedAfterPanic(CoroutineKind::Desugared(
312                CoroutineDesugaring::Async,
313                _,
314            )) => Ok("`async fn` resumed after panicking"),
315            AssertMessage::ResumedAfterPanic(CoroutineKind::Desugared(
316                CoroutineDesugaring::Gen,
317                _,
318            )) => Ok("`async gen fn` resumed after panicking"),
319            AssertMessage::ResumedAfterPanic(CoroutineKind::Desugared(
320                CoroutineDesugaring::AsyncGen,
321                _,
322            )) => Ok("`gen fn` should just keep returning `AssertMessage::None` after panicking"),
323
324            AssertMessage::ResumedAfterDrop(CoroutineKind::Coroutine(_)) => {
325                Ok("coroutine resumed after async drop")
326            }
327            AssertMessage::ResumedAfterDrop(CoroutineKind::Desugared(
328                CoroutineDesugaring::Async,
329                _,
330            )) => Ok("`async fn` resumed after async drop"),
331            AssertMessage::ResumedAfterDrop(CoroutineKind::Desugared(
332                CoroutineDesugaring::Gen,
333                _,
334            )) => Ok("`async gen fn` resumed after async drop"),
335            AssertMessage::ResumedAfterDrop(CoroutineKind::Desugared(
336                CoroutineDesugaring::AsyncGen,
337                _,
338            )) => Ok("`gen fn` should just keep returning `AssertMessage::None` after async drop"),
339
340            AssertMessage::BoundsCheck { .. } => Ok("index out of bounds"),
341            AssertMessage::MisalignedPointerDereference { .. } => {
342                Ok("misaligned pointer dereference")
343            }
344            AssertMessage::NullPointerDereference => Ok("null pointer dereference occurred"),
345            AssertMessage::InvalidEnumConstruction(_) => {
346                Ok("trying to construct an enum from an invalid value")
347            }
348        }
349    }
350}
351
352#[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize)]
353pub enum BinOp {
354    Add,
355    AddUnchecked,
356    Sub,
357    SubUnchecked,
358    Mul,
359    MulUnchecked,
360    Div,
361    Rem,
362    BitXor,
363    BitAnd,
364    BitOr,
365    Shl,
366    ShlUnchecked,
367    Shr,
368    ShrUnchecked,
369    Eq,
370    Lt,
371    Le,
372    Ne,
373    Ge,
374    Gt,
375    Cmp,
376    Offset,
377}
378
379impl BinOp {
380    /// Return the type of this operation for the given input Ty.
381    /// This function does not perform type checking, and it currently doesn't handle SIMD.
382    pub fn ty(&self, lhs_ty: Ty, rhs_ty: Ty) -> Ty {
383        with(|ctx| ctx.binop_ty(*self, lhs_ty, rhs_ty))
384    }
385}
386
387#[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize)]
388pub enum UnOp {
389    Not,
390    Neg,
391    PtrMetadata,
392}
393
394impl UnOp {
395    /// Return the type of this operation for the given input Ty.
396    /// This function does not perform type checking, and it currently doesn't handle SIMD.
397    pub fn ty(&self, arg_ty: Ty) -> Ty {
398        with(|ctx| ctx.unop_ty(*self, arg_ty))
399    }
400}
401
402#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
403pub enum CoroutineKind {
404    Desugared(CoroutineDesugaring, CoroutineSource),
405    Coroutine(Movability),
406}
407
408#[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize)]
409pub enum CoroutineSource {
410    Block,
411    Closure,
412    Fn,
413}
414
415#[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize)]
416pub enum CoroutineDesugaring {
417    Async,
418
419    Gen,
420
421    AsyncGen,
422}
423
424pub(crate) type LocalDefId = Opaque;
425/// The rustc coverage data structures are heavily tied to internal details of the
426/// coverage implementation that are likely to change, and are unlikely to be
427/// useful to third-party tools for the foreseeable future.
428pub(crate) type Coverage = Opaque;
429
430/// The FakeReadCause describes the type of pattern why a FakeRead statement exists.
431#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
432pub enum FakeReadCause {
433    ForMatchGuard,
434    ForMatchedPlace(LocalDefId),
435    ForGuardBinding,
436    ForLet(LocalDefId),
437    ForIndex,
438}
439
440/// Describes what kind of retag is to be performed
441#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash, Serialize)]
442pub enum RetagKind {
443    FnEntry,
444    TwoPhase,
445    Raw,
446    Default,
447}
448
449#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash, Serialize)]
450pub enum Variance {
451    Covariant,
452    Invariant,
453    Contravariant,
454    Bivariant,
455}
456
457#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
458pub struct CopyNonOverlapping {
459    pub src: Operand,
460    pub dst: Operand,
461    pub count: Operand,
462}
463
464#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
465pub enum NonDivergingIntrinsic {
466    Assume(Operand),
467    CopyNonOverlapping(CopyNonOverlapping),
468}
469
470#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
471pub struct Statement {
472    pub kind: StatementKind,
473    pub span: Span,
474}
475
476#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
477pub enum StatementKind {
478    Assign(Place, Rvalue),
479    FakeRead(FakeReadCause, Place),
480    SetDiscriminant { place: Place, variant_index: VariantIdx },
481    Deinit(Place),
482    StorageLive(Local),
483    StorageDead(Local),
484    Retag(RetagKind, Place),
485    PlaceMention(Place),
486    AscribeUserType { place: Place, projections: UserTypeProjection, variance: Variance },
487    Coverage(Coverage),
488    Intrinsic(NonDivergingIntrinsic),
489    ConstEvalCounter,
490    Nop,
491}
492
493#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
494pub enum Rvalue {
495    /// Creates a pointer with the indicated mutability to the place.
496    ///
497    /// This is generated by pointer casts like `&v as *const _` or raw address of expressions like
498    /// `&raw v` or `addr_of!(v)`.
499    AddressOf(RawPtrKind, Place),
500
501    /// Creates an aggregate value, like a tuple or struct.
502    ///
503    /// This is needed because dataflow analysis needs to distinguish
504    /// `dest = Foo { x: ..., y: ... }` from `dest.x = ...; dest.y = ...;` in the case that `Foo`
505    /// has a destructor.
506    ///
507    /// Disallowed after deaggregation for all aggregate kinds except `Array` and `Coroutine`. After
508    /// coroutine lowering, `Coroutine` aggregate kinds are disallowed too.
509    Aggregate(AggregateKind, Vec<Operand>),
510
511    /// * `Offset` has the same semantics as `<*const T>::offset`, except that the second
512    ///   parameter may be a `usize` as well.
513    /// * The comparison operations accept `bool`s, `char`s, signed or unsigned integers, floats,
514    ///   raw pointers, or function pointers and return a `bool`. The types of the operands must be
515    ///   matching, up to the usual caveat of the lifetimes in function pointers.
516    /// * Left and right shift operations accept signed or unsigned integers not necessarily of the
517    ///   same type and return a value of the same type as their LHS. Like in Rust, the RHS is
518    ///   truncated as needed.
519    /// * The `Bit*` operations accept signed integers, unsigned integers, or bools with matching
520    ///   types and return a value of that type.
521    /// * The remaining operations accept signed integers, unsigned integers, or floats with
522    ///   matching types and return a value of that type.
523    BinaryOp(BinOp, Operand, Operand),
524
525    /// Performs essentially all of the casts that can be performed via `as`.
526    ///
527    /// This allows for casts from/to a variety of types.
528    Cast(CastKind, Operand, Ty),
529
530    /// Same as `BinaryOp`, but yields `(T, bool)` with a `bool` indicating an error condition.
531    ///
532    /// For addition, subtraction, and multiplication on integers the error condition is set when
533    /// the infinite precision result would not be equal to the actual result.
534    CheckedBinaryOp(BinOp, Operand, Operand),
535
536    /// A CopyForDeref is equivalent to a read from a place.
537    /// When such a read happens, it is guaranteed that the only use of the returned value is a
538    /// deref operation, immediately followed by one or more projections.
539    CopyForDeref(Place),
540
541    /// Computes the discriminant of the place, returning it as an integer.
542    /// Returns zero for types without discriminant.
543    ///
544    /// The validity requirements for the underlying value are undecided for this rvalue, see
545    /// [#91095]. Note too that the value of the discriminant is not the same thing as the
546    /// variant index;
547    ///
548    /// [#91095]: https://github.com/rust-lang/rust/issues/91095
549    Discriminant(Place),
550
551    /// Yields the length of the place, as a `usize`.
552    ///
553    /// If the type of the place is an array, this is the array length. For slices (`[T]`, not
554    /// `&[T]`) this accesses the place's metadata to determine the length. This rvalue is
555    /// ill-formed for places of other types.
556    Len(Place),
557
558    /// Creates a reference to the place.
559    Ref(Region, BorrowKind, Place),
560
561    /// Creates an array where each element is the value of the operand.
562    ///
563    /// This is the cause of a bug in the case where the repetition count is zero because the value
564    /// is not dropped, see [#74836].
565    ///
566    /// Corresponds to source code like `[x; 32]`.
567    ///
568    /// [#74836]: https://github.com/rust-lang/rust/issues/74836
569    Repeat(Operand, TyConst),
570
571    /// Transmutes a `*mut u8` into shallow-initialized `Box<T>`.
572    ///
573    /// This is different from a normal transmute because dataflow analysis will treat the box as
574    /// initialized but its content as uninitialized. Like other pointer casts, this in general
575    /// affects alias analysis.
576    ShallowInitBox(Operand, Ty),
577
578    /// Creates a pointer/reference to the given thread local.
579    ///
580    /// The yielded type is a `*mut T` if the static is mutable, otherwise if the static is extern a
581    /// `*const T`, and if neither of those apply a `&T`.
582    ///
583    /// **Note:** This is a runtime operation that actually executes code and is in this sense more
584    /// like a function call. Also, eliminating dead stores of this rvalue causes `fn main() {}` to
585    /// SIGILL for some reason that I (JakobDegen) never got a chance to look into.
586    ///
587    /// **Needs clarification**: Are there weird additional semantics here related to the runtime
588    /// nature of this operation?
589    ThreadLocalRef(crate::CrateItem),
590
591    /// Computes a value as described by the operation.
592    NullaryOp(NullOp, Ty),
593
594    /// Exactly like `BinaryOp`, but less operands.
595    ///
596    /// Also does two's-complement arithmetic. Negation requires a signed integer or a float;
597    /// bitwise not requires a signed integer, unsigned integer, or bool. Both operation kinds
598    /// return a value with the same type as their operand.
599    UnaryOp(UnOp, Operand),
600
601    /// Yields the operand unchanged
602    Use(Operand),
603}
604
605impl Rvalue {
606    pub fn ty(&self, locals: &[LocalDecl]) -> Result<Ty, Error> {
607        match self {
608            Rvalue::Use(operand) => operand.ty(locals),
609            Rvalue::Repeat(operand, count) => {
610                Ok(Ty::new_array_with_const_len(operand.ty(locals)?, count.clone()))
611            }
612            Rvalue::ThreadLocalRef(did) => Ok(did.ty()),
613            Rvalue::Ref(reg, bk, place) => {
614                let place_ty = place.ty(locals)?;
615                Ok(Ty::new_ref(reg.clone(), place_ty, bk.to_mutable_lossy()))
616            }
617            Rvalue::AddressOf(mutability, place) => {
618                let place_ty = place.ty(locals)?;
619                Ok(Ty::new_ptr(place_ty, mutability.to_mutable_lossy()))
620            }
621            Rvalue::Len(..) => Ok(Ty::usize_ty()),
622            Rvalue::Cast(.., ty) => Ok(*ty),
623            Rvalue::BinaryOp(op, lhs, rhs) => {
624                let lhs_ty = lhs.ty(locals)?;
625                let rhs_ty = rhs.ty(locals)?;
626                Ok(op.ty(lhs_ty, rhs_ty))
627            }
628            Rvalue::CheckedBinaryOp(op, lhs, rhs) => {
629                let lhs_ty = lhs.ty(locals)?;
630                let rhs_ty = rhs.ty(locals)?;
631                let ty = op.ty(lhs_ty, rhs_ty);
632                Ok(Ty::new_tuple(&[ty, Ty::bool_ty()]))
633            }
634            Rvalue::UnaryOp(op, operand) => {
635                let arg_ty = operand.ty(locals)?;
636                Ok(op.ty(arg_ty))
637            }
638            Rvalue::Discriminant(place) => {
639                let place_ty = place.ty(locals)?;
640                place_ty
641                    .kind()
642                    .discriminant_ty()
643                    .ok_or_else(|| error!("Expected a `RigidTy` but found: {place_ty:?}"))
644            }
645            Rvalue::NullaryOp(NullOp::SizeOf | NullOp::AlignOf | NullOp::OffsetOf(..), _) => {
646                Ok(Ty::usize_ty())
647            }
648            Rvalue::NullaryOp(NullOp::ContractChecks, _)
649            | Rvalue::NullaryOp(NullOp::UbChecks, _) => Ok(Ty::bool_ty()),
650            Rvalue::Aggregate(ak, ops) => match *ak {
651                AggregateKind::Array(ty) => Ty::try_new_array(ty, ops.len() as u64),
652                AggregateKind::Tuple => Ok(Ty::new_tuple(
653                    &ops.iter().map(|op| op.ty(locals)).collect::<Result<Vec<_>, _>>()?,
654                )),
655                AggregateKind::Adt(def, _, ref args, _, _) => Ok(def.ty_with_args(args)),
656                AggregateKind::Closure(def, ref args) => Ok(Ty::new_closure(def, args.clone())),
657                AggregateKind::Coroutine(def, ref args, mov) => {
658                    Ok(Ty::new_coroutine(def, args.clone(), mov))
659                }
660                AggregateKind::CoroutineClosure(def, ref args) => {
661                    Ok(Ty::new_coroutine_closure(def, args.clone()))
662                }
663                AggregateKind::RawPtr(ty, mutability) => Ok(Ty::new_ptr(ty, mutability)),
664            },
665            Rvalue::ShallowInitBox(_, ty) => Ok(Ty::new_box(*ty)),
666            Rvalue::CopyForDeref(place) => place.ty(locals),
667        }
668    }
669}
670
671#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
672pub enum AggregateKind {
673    Array(Ty),
674    Tuple,
675    Adt(AdtDef, VariantIdx, GenericArgs, Option<UserTypeAnnotationIndex>, Option<FieldIdx>),
676    Closure(ClosureDef, GenericArgs),
677    // FIXME(stable_mir): Movability here is redundant
678    Coroutine(CoroutineDef, GenericArgs, Movability),
679    CoroutineClosure(CoroutineClosureDef, GenericArgs),
680    RawPtr(Ty, Mutability),
681}
682
683#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
684pub enum Operand {
685    Copy(Place),
686    Move(Place),
687    Constant(ConstOperand),
688}
689
690#[derive(Clone, Eq, PartialEq, Serialize)]
691pub struct Place {
692    pub local: Local,
693    /// projection out of a place (access a field, deref a pointer, etc)
694    pub projection: Vec<ProjectionElem>,
695}
696
697impl From<Local> for Place {
698    fn from(local: Local) -> Self {
699        Place { local, projection: vec![] }
700    }
701}
702
703#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
704pub struct ConstOperand {
705    pub span: Span,
706    pub user_ty: Option<UserTypeAnnotationIndex>,
707    pub const_: MirConst,
708}
709
710/// Debug information pertaining to a user variable.
711#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
712pub struct VarDebugInfo {
713    /// The variable name.
714    pub name: Symbol,
715
716    /// Source info of the user variable, including the scope
717    /// within which the variable is visible (to debuginfo).
718    pub source_info: SourceInfo,
719
720    /// The user variable's data is split across several fragments,
721    /// each described by a `VarDebugInfoFragment`.
722    pub composite: Option<VarDebugInfoFragment>,
723
724    /// Where the data for this user variable is to be found.
725    pub value: VarDebugInfoContents,
726
727    /// When present, indicates what argument number this variable is in the function that it
728    /// originated from (starting from 1). Note, if MIR inlining is enabled, then this is the
729    /// argument number in the original function before it was inlined.
730    pub argument_index: Option<u16>,
731}
732
733impl VarDebugInfo {
734    /// Return a local variable if this info is related to one.
735    pub fn local(&self) -> Option<Local> {
736        match &self.value {
737            VarDebugInfoContents::Place(place) if place.projection.is_empty() => Some(place.local),
738            VarDebugInfoContents::Place(_) | VarDebugInfoContents::Const(_) => None,
739        }
740    }
741
742    /// Return a constant if this info is related to one.
743    pub fn constant(&self) -> Option<&ConstOperand> {
744        match &self.value {
745            VarDebugInfoContents::Place(_) => None,
746            VarDebugInfoContents::Const(const_op) => Some(const_op),
747        }
748    }
749}
750
751pub type SourceScope = u32;
752
753#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
754pub struct SourceInfo {
755    pub span: Span,
756    pub scope: SourceScope,
757}
758
759#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
760pub struct VarDebugInfoFragment {
761    pub ty: Ty,
762    pub projection: Vec<ProjectionElem>,
763}
764
765#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
766pub enum VarDebugInfoContents {
767    Place(Place),
768    Const(ConstOperand),
769}
770
771// In MIR ProjectionElem is parameterized on the second Field argument and the Index argument. This
772// is so it can be used for both Places (for which the projection elements are of type
773// ProjectionElem<Local, Ty>) and user-provided type annotations (for which the projection elements
774// are of type ProjectionElem<(), ()>). In SMIR we don't need this generality, so we just use
775// ProjectionElem for Places.
776#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
777pub enum ProjectionElem {
778    /// Dereference projections (e.g. `*_1`) project to the address referenced by the base place.
779    Deref,
780
781    /// A field projection (e.g., `f` in `_1.f`) project to a field in the base place. The field is
782    /// referenced by source-order index rather than the name of the field. The fields type is also
783    /// given.
784    Field(FieldIdx, Ty),
785
786    /// Index into a slice/array. The value of the index is computed at runtime using the `V`
787    /// argument.
788    ///
789    /// Note that this does not also dereference, and so it does not exactly correspond to slice
790    /// indexing in Rust. In other words, in the below Rust code:
791    ///
792    /// ```rust
793    /// let x = &[1, 2, 3, 4];
794    /// let i = 2;
795    /// x[i];
796    /// ```
797    ///
798    /// The `x[i]` is turned into a `Deref` followed by an `Index`, not just an `Index`. The same
799    /// thing is true of the `ConstantIndex` and `Subslice` projections below.
800    Index(Local),
801
802    /// Index into a slice/array given by offsets.
803    ///
804    /// These indices are generated by slice patterns. Easiest to explain by example:
805    ///
806    /// ```ignore (illustrative)
807    /// [X, _, .._, _, _] => { offset: 0, min_length: 4, from_end: false },
808    /// [_, X, .._, _, _] => { offset: 1, min_length: 4, from_end: false },
809    /// [_, _, .._, X, _] => { offset: 2, min_length: 4, from_end: true },
810    /// [_, _, .._, _, X] => { offset: 1, min_length: 4, from_end: true },
811    /// ```
812    ConstantIndex {
813        /// index or -index (in Python terms), depending on from_end
814        offset: u64,
815        /// The thing being indexed must be at least this long -- otherwise, the
816        /// projection is UB.
817        ///
818        /// For arrays this is always the exact length.
819        min_length: u64,
820        /// Counting backwards from end? This is always false when indexing an
821        /// array.
822        from_end: bool,
823    },
824
825    /// Projects a slice from the base place.
826    ///
827    /// These indices are generated by slice patterns. If `from_end` is true, this represents
828    /// `slice[from..slice.len() - to]`. Otherwise it represents `array[from..to]`.
829    Subslice {
830        from: u64,
831        to: u64,
832        /// Whether `to` counts from the start or end of the array/slice.
833        from_end: bool,
834    },
835
836    /// "Downcast" to a variant of an enum or a coroutine.
837    Downcast(VariantIdx),
838
839    /// Like an explicit cast from an opaque type to a concrete type, but without
840    /// requiring an intermediate variable.
841    OpaqueCast(Ty),
842
843    /// A `Subtype(T)` projection is applied to any `StatementKind::Assign` where
844    /// type of lvalue doesn't match the type of rvalue, the primary goal is making subtyping
845    /// explicit during optimizations and codegen.
846    ///
847    /// This projection doesn't impact the runtime behavior of the program except for potentially changing
848    /// some type metadata of the interpreter or codegen backend.
849    Subtype(Ty),
850}
851
852#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
853pub struct UserTypeProjection {
854    pub base: UserTypeAnnotationIndex,
855
856    pub projection: Opaque,
857}
858
859pub type Local = usize;
860
861pub const RETURN_LOCAL: Local = 0;
862
863/// The source-order index of a field in a variant.
864///
865/// For example, in the following types,
866/// ```ignore(illustrative)
867/// enum Demo1 {
868///    Variant0 { a: bool, b: i32 },
869///    Variant1 { c: u8, d: u64 },
870/// }
871/// struct Demo2 { e: u8, f: u16, g: u8 }
872/// ```
873/// `a`'s `FieldIdx` is `0`,
874/// `b`'s `FieldIdx` is `1`,
875/// `c`'s `FieldIdx` is `0`, and
876/// `g`'s `FieldIdx` is `2`.
877pub type FieldIdx = usize;
878
879type UserTypeAnnotationIndex = usize;
880
881/// The possible branch sites of a [TerminatorKind::SwitchInt].
882#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
883pub struct SwitchTargets {
884    /// The conditional branches where the first element represents the value that guards this
885    /// branch, and the second element is the branch target.
886    branches: Vec<(u128, BasicBlockIdx)>,
887    /// The `otherwise` branch which will be taken in case none of the conditional branches are
888    /// satisfied.
889    otherwise: BasicBlockIdx,
890}
891
892impl SwitchTargets {
893    /// All possible targets including the `otherwise` target.
894    pub fn all_targets(&self) -> Successors {
895        self.branches.iter().map(|(_, target)| *target).chain(Some(self.otherwise)).collect()
896    }
897
898    /// The `otherwise` branch target.
899    pub fn otherwise(&self) -> BasicBlockIdx {
900        self.otherwise
901    }
902
903    /// The conditional targets which are only taken if the pattern matches the given value.
904    pub fn branches(&self) -> impl Iterator<Item = (u128, BasicBlockIdx)> {
905        self.branches.iter().copied()
906    }
907
908    /// The number of targets including `otherwise`.
909    pub fn len(&self) -> usize {
910        self.branches.len() + 1
911    }
912
913    /// Create a new SwitchTargets from the given branches and `otherwise` target.
914    pub fn new(branches: Vec<(u128, BasicBlockIdx)>, otherwise: BasicBlockIdx) -> SwitchTargets {
915        SwitchTargets { branches, otherwise }
916    }
917}
918
919#[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize)]
920pub enum BorrowKind {
921    /// Data must be immutable and is aliasable.
922    Shared,
923
924    /// An immutable, aliasable borrow that is discarded after borrow-checking. Can behave either
925    /// like a normal shared borrow or like a special shallow borrow (see [`FakeBorrowKind`]).
926    Fake(FakeBorrowKind),
927
928    /// Data is mutable and not aliasable.
929    Mut {
930        /// `true` if this borrow arose from method-call auto-ref
931        kind: MutBorrowKind,
932    },
933}
934
935impl BorrowKind {
936    pub fn to_mutable_lossy(self) -> Mutability {
937        match self {
938            BorrowKind::Mut { .. } => Mutability::Mut,
939            BorrowKind::Shared => Mutability::Not,
940            // FIXME: There's no type corresponding to a shallow borrow, so use `&` as an approximation.
941            BorrowKind::Fake(_) => Mutability::Not,
942        }
943    }
944}
945
946#[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize)]
947pub enum RawPtrKind {
948    Mut,
949    Const,
950    FakeForPtrMetadata,
951}
952
953impl RawPtrKind {
954    pub fn to_mutable_lossy(self) -> Mutability {
955        match self {
956            RawPtrKind::Mut { .. } => Mutability::Mut,
957            RawPtrKind::Const => Mutability::Not,
958            // FIXME: There's no type corresponding to a shallow borrow, so use `&` as an approximation.
959            RawPtrKind::FakeForPtrMetadata => Mutability::Not,
960        }
961    }
962}
963
964#[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize)]
965pub enum MutBorrowKind {
966    Default,
967    TwoPhaseBorrow,
968    ClosureCapture,
969}
970
971#[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize)]
972pub enum FakeBorrowKind {
973    /// A shared (deep) borrow. Data must be immutable and is aliasable.
974    Deep,
975    /// The immediately borrowed place must be immutable, but projections from
976    /// it don't need to be. This is used to prevent match guards from replacing
977    /// the scrutinee. For example, a fake borrow of `a.b` doesn't
978    /// conflict with a mutable borrow of `a.b.c`.
979    Shallow,
980}
981
982#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Serialize)]
983pub enum Mutability {
984    Not,
985    Mut,
986}
987
988#[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize)]
989pub enum Safety {
990    Safe,
991    Unsafe,
992}
993
994#[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize)]
995pub enum PointerCoercion {
996    /// Go from a fn-item type to a fn-pointer type.
997    ReifyFnPointer,
998
999    /// Go from a safe fn pointer to an unsafe fn pointer.
1000    UnsafeFnPointer,
1001
1002    /// Go from a non-capturing closure to a fn pointer or an unsafe fn pointer.
1003    /// It cannot convert a closure that requires unsafe.
1004    ClosureFnPointer(Safety),
1005
1006    /// Go from a mut raw pointer to a const raw pointer.
1007    MutToConstPointer,
1008
1009    /// Go from `*const [T; N]` to `*const T`
1010    ArrayToPointer,
1011
1012    /// Unsize a pointer/reference value, e.g., `&[T; n]` to
1013    /// `&[T]`. Note that the source could be a thin or wide pointer.
1014    /// This will do things like convert thin pointers to wide
1015    /// pointers, or convert structs containing thin pointers to
1016    /// structs containing wide pointers, or convert between wide
1017    /// pointers.
1018    Unsize,
1019}
1020
1021#[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize)]
1022pub enum CastKind {
1023    // FIXME(smir-rename): rename this to PointerExposeProvenance
1024    PointerExposeAddress,
1025    PointerWithExposedProvenance,
1026    PointerCoercion(PointerCoercion),
1027    IntToInt,
1028    FloatToInt,
1029    FloatToFloat,
1030    IntToFloat,
1031    PtrToPtr,
1032    FnPtrToPtr,
1033    Transmute,
1034}
1035
1036#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
1037pub enum NullOp {
1038    /// Returns the size of a value of that type.
1039    SizeOf,
1040    /// Returns the minimum alignment of a type.
1041    AlignOf,
1042    /// Returns the offset of a field.
1043    OffsetOf(Vec<(VariantIdx, FieldIdx)>),
1044    /// cfg!(ub_checks), but at codegen time
1045    UbChecks,
1046    /// cfg!(contract_checks), but at codegen time
1047    ContractChecks,
1048}
1049
1050impl Operand {
1051    /// Get the type of an operand relative to the local declaration.
1052    ///
1053    /// In order to retrieve the correct type, the `locals` argument must match the list of all
1054    /// locals from the function body where this operand originates from.
1055    ///
1056    /// Errors indicate a malformed operand or incompatible locals list.
1057    pub fn ty(&self, locals: &[LocalDecl]) -> Result<Ty, Error> {
1058        match self {
1059            Operand::Copy(place) | Operand::Move(place) => place.ty(locals),
1060            Operand::Constant(c) => Ok(c.ty()),
1061        }
1062    }
1063}
1064
1065impl ConstOperand {
1066    pub fn ty(&self) -> Ty {
1067        self.const_.ty()
1068    }
1069}
1070
1071impl Place {
1072    /// Resolve down the chain of projections to get the type referenced at the end of it.
1073    /// E.g.:
1074    /// Calling `ty()` on `var.field` should return the type of `field`.
1075    ///
1076    /// In order to retrieve the correct type, the `locals` argument must match the list of all
1077    /// locals from the function body where this place originates from.
1078    pub fn ty(&self, locals: &[LocalDecl]) -> Result<Ty, Error> {
1079        self.projection.iter().try_fold(locals[self.local].ty, |place_ty, elem| elem.ty(place_ty))
1080    }
1081}
1082
1083impl ProjectionElem {
1084    /// Get the expected type after applying this projection to a given place type.
1085    pub fn ty(&self, place_ty: Ty) -> Result<Ty, Error> {
1086        let ty = place_ty;
1087        match &self {
1088            ProjectionElem::Deref => Self::deref_ty(ty),
1089            ProjectionElem::Field(_idx, fty) => Ok(*fty),
1090            ProjectionElem::Index(_) | ProjectionElem::ConstantIndex { .. } => Self::index_ty(ty),
1091            ProjectionElem::Subslice { from, to, from_end } => {
1092                Self::subslice_ty(ty, *from, *to, *from_end)
1093            }
1094            ProjectionElem::Downcast(_) => Ok(ty),
1095            ProjectionElem::OpaqueCast(ty) | ProjectionElem::Subtype(ty) => Ok(*ty),
1096        }
1097    }
1098
1099    fn index_ty(ty: Ty) -> Result<Ty, Error> {
1100        ty.kind().builtin_index().ok_or_else(|| error!("Cannot index non-array type: {ty:?}"))
1101    }
1102
1103    fn subslice_ty(ty: Ty, from: u64, to: u64, from_end: bool) -> Result<Ty, Error> {
1104        let ty_kind = ty.kind();
1105        match ty_kind {
1106            TyKind::RigidTy(RigidTy::Slice(..)) => Ok(ty),
1107            TyKind::RigidTy(RigidTy::Array(inner, _)) if !from_end => Ty::try_new_array(
1108                inner,
1109                to.checked_sub(from).ok_or_else(|| error!("Subslice overflow: {from}..{to}"))?,
1110            ),
1111            TyKind::RigidTy(RigidTy::Array(inner, size)) => {
1112                let size = size.eval_target_usize()?;
1113                let len = size - from - to;
1114                Ty::try_new_array(inner, len)
1115            }
1116            _ => Err(Error(format!("Cannot subslice non-array type: `{ty_kind:?}`"))),
1117        }
1118    }
1119
1120    fn deref_ty(ty: Ty) -> Result<Ty, Error> {
1121        let deref_ty = ty
1122            .kind()
1123            .builtin_deref(true)
1124            .ok_or_else(|| error!("Cannot dereference type: {ty:?}"))?;
1125        Ok(deref_ty.ty)
1126    }
1127}