charon_driver/translate/translate_functions_to_ullbc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
//! Translate functions from the rust compiler MIR to our internal representation.
//! Our internal representation is very close to MIR, but is more convenient for
//! us to handle, and easier to maintain - rustc's representation can evolve
//! independently.
use std::mem;
use std::panic;
use super::get_mir::boxes_are_desugared;
use super::translate_ctx::*;
use charon_lib::ast::*;
use charon_lib::common::*;
use charon_lib::formatter::{Formatter, IntoFormatter};
use charon_lib::ids::Vector;
use charon_lib::pretty::FmtWithCtx;
use charon_lib::ullbc_ast::*;
use hax_frontend_exporter as hax;
use itertools::Itertools;
use rustc_middle::mir::START_BLOCK;
pub(crate) struct SubstFunId {
pub func: FnPtr,
pub args: Option<Vec<Operand>>,
}
pub(crate) enum SubstFunIdOrPanic {
Panic(Name),
Fun(SubstFunId),
}
fn translate_variant_id(id: hax::VariantIdx) -> VariantId {
VariantId::new(id)
}
fn translate_field_id(id: hax::FieldIdx) -> FieldId {
use rustc_index::Idx;
FieldId::new(id.index())
}
/// Translate a `BorrowKind`
fn translate_borrow_kind(borrow_kind: hax::BorrowKind) -> BorrowKind {
match borrow_kind {
hax::BorrowKind::Shared => BorrowKind::Shared,
hax::BorrowKind::Mut { kind } => match kind {
hax::MutBorrowKind::Default => BorrowKind::Mut,
hax::MutBorrowKind::TwoPhaseBorrow => BorrowKind::TwoPhaseMut,
hax::MutBorrowKind::ClosureCapture => BorrowKind::UniqueImmutable,
},
hax::BorrowKind::Fake(hax::FakeBorrowKind::Shallow) => BorrowKind::Shallow,
// This one is used only in deref patterns.
hax::BorrowKind::Fake(hax::FakeBorrowKind::Deep) => unimplemented!(),
}
}
impl<'tcx, 'ctx> TranslateCtx<'tcx> {
fn translate_binaryop_kind(&mut self, span: Span, binop: hax::BinOp) -> Result<BinOp, Error> {
Ok(match binop {
hax::BinOp::BitXor => BinOp::BitXor,
hax::BinOp::BitAnd => BinOp::BitAnd,
hax::BinOp::BitOr => BinOp::BitOr,
hax::BinOp::Eq => BinOp::Eq,
hax::BinOp::Lt => BinOp::Lt,
hax::BinOp::Le => BinOp::Le,
hax::BinOp::Ne => BinOp::Ne,
hax::BinOp::Ge => BinOp::Ge,
hax::BinOp::Gt => BinOp::Gt,
hax::BinOp::Div => BinOp::Div,
hax::BinOp::Rem => BinOp::Rem,
hax::BinOp::Add => BinOp::Add,
hax::BinOp::Sub => BinOp::Sub,
hax::BinOp::Mul => BinOp::Mul,
hax::BinOp::AddWithOverflow => BinOp::CheckedAdd,
hax::BinOp::SubWithOverflow => BinOp::CheckedSub,
hax::BinOp::MulWithOverflow => BinOp::CheckedMul,
hax::BinOp::Shl => BinOp::Shl,
hax::BinOp::Shr => BinOp::Shr,
hax::BinOp::Cmp => {
raise_error!(self, span, "Unsupported binary operation: Cmp")
}
hax::BinOp::Offset => {
raise_error!(self, span, "Unsupported binary operation: offset")
}
})
}
}
impl<'tcx, 'ctx> BodyTransCtx<'tcx, 'ctx> {
pub(crate) fn get_item_kind(
&mut self,
span: Span,
def: &hax::FullDef,
) -> Result<ItemKind, Error> {
let assoc = match def.kind() {
hax::FullDefKind::AssocTy {
associated_item, ..
}
| hax::FullDefKind::AssocConst {
associated_item, ..
}
| hax::FullDefKind::AssocFn {
associated_item, ..
} => associated_item,
_ => return Ok(ItemKind::Regular),
};
Ok(match &assoc.container {
// E.g.:
// ```
// impl<T> List<T> {
// fn new() -> Self { ... } <- inherent method
// }
// ```
hax::AssocItemContainer::InherentImplContainer { .. } => ItemKind::Regular,
// E.g.:
// ```
// impl Foo for Bar {
// fn baz(...) { ... } // <- implementation of a trait method
// }
// ```
hax::AssocItemContainer::TraitImplContainer {
impl_id,
impl_generics,
impl_required_impl_exprs,
implemented_trait_ref,
implemented_trait_item,
overrides_default,
..
} => {
let impl_id = self.register_trait_impl_id(span, impl_id);
let impl_ref = TraitImplRef {
impl_id,
generics: self.translate_generic_args(
span,
impl_generics,
impl_required_impl_exprs,
None,
GenericsSource::item(impl_id),
)?,
};
let trait_ref = self.translate_trait_ref(span, implemented_trait_ref)?;
if matches!(def.kind(), hax::FullDefKind::AssocFn { .. }) {
// Ensure we translate the corresponding decl signature.
// FIXME(self_clause): also ensure we translate associated globals
// consistently; to do once we have clearer `Self` clause handling.
let _ = self.register_fun_decl_id(span, implemented_trait_item);
}
ItemKind::TraitImpl {
impl_ref,
trait_ref,
item_name: TraitItemName(assoc.name.clone()),
reuses_default: !overrides_default,
}
}
// This method is the *declaration* of a trait item
// E.g.:
// ```
// trait Foo {
// fn baz(...); // <- declaration of a trait method
// }
// ```
hax::AssocItemContainer::TraitContainer { trait_ref, .. } => {
// The trait id should be Some(...): trait markers (that we may eliminate)
// don't have associated items.
let trait_ref = self.translate_trait_ref(span, trait_ref)?;
let item_name = TraitItemName(assoc.name.clone());
ItemKind::TraitDecl {
trait_ref,
item_name,
has_default: assoc.has_value,
}
}
})
}
/// Translate a function's local variables by adding them in the environment.
fn translate_body_locals(&mut self, body: &hax::MirBody<()>) -> Result<(), Error> {
// Translate the parameters
for (index, var) in body.local_decls.raw.iter().enumerate() {
trace!("Translating local of index {} and type {:?}", index, var.ty);
// Find the name of the variable
let name: Option<String> = var.name.clone();
// Translate the type
let span = self.translate_span_from_hax(&var.source_info.span);
let ty = self.translate_ty(span, &var.ty)?;
// Add the variable to the environment
self.push_var(index, ty, name);
}
Ok(())
}
/// Translate an expression's body (either a function or a global).
///
/// The local variables should already have been translated and inserted in
/// the context.
fn translate_transparent_expression_body(
&mut self,
body: &hax::MirBody<()>,
) -> Result<(), Error> {
trace!();
// Register the start block
let id = self.translate_basic_block_id(rustc_index::Idx::new(START_BLOCK.as_usize()));
assert!(id == START_BLOCK_ID);
// For as long as there are blocks in the stack, translate them
while let Some(block_id) = self.blocks_stack.pop_front() {
self.translate_basic_block(body, block_id)?;
}
Ok(())
}
/// Translate a basic block id and register it, if it hasn't been done.
fn translate_basic_block_id(&mut self, block_id: hax::BasicBlock) -> BlockId {
match self.blocks_map.get(&block_id) {
None => {
// Generate a fresh id - this also registers the block
self.fresh_block_id(block_id)
}
Some(id) => id,
}
}
fn translate_basic_block(
&mut self,
body: &hax::MirBody<()>,
block_id: hax::BasicBlock,
) -> Result<(), Error> {
// Retrieve the translated block id
let nid = self.translate_basic_block_id(block_id);
// Retrieve the block data
let block = body.basic_blocks.get(block_id).unwrap();
// Translate the statements
let mut statements = Vec::new();
for statement in &block.statements {
trace!("statement: {:?}", statement);
// Some statements might be ignored, hence the optional returned value
let opt_statement = self.translate_statement(body, statement)?;
if let Some(statement) = opt_statement {
statements.push(statement)
}
}
// Translate the terminator
let terminator = block.terminator.as_ref().unwrap();
let terminator = self.translate_terminator(body, terminator, &mut statements)?;
// Insert the block in the translated blocks
let block = BlockData {
statements,
terminator,
};
self.push_block(nid, block);
Ok(())
}
/// Translate a place
/// TODO: Hax represents places in a different manner than MIR. We should
/// update our representation of places to match the Hax representation.
fn translate_place(&mut self, span: Span, place: &hax::Place) -> Result<Place, Error> {
match &place.kind {
hax::PlaceKind::Local(local) => {
let var_id = self.translate_local(local).unwrap();
Ok(self.locals.place_for_var(var_id))
}
hax::PlaceKind::Projection {
place: subplace,
kind,
} => {
let ty = self.translate_ty(span, &place.ty)?;
// Compute the type of the value *before* projection - we use this
// to disambiguate
let subplace = self.translate_place(span, subplace)?;
let place = match kind {
hax::ProjectionElem::Deref => {
// We use the type to disambiguate
match subplace.ty().kind() {
TyKind::Ref(_, _, _) | TyKind::RawPtr(_, _) => {}
TyKind::Adt(TypeId::Builtin(BuiltinTy::Box), generics) => {
// This case only happens in some MIR levels
assert!(!boxes_are_desugared(self.t_ctx.options.mir_level));
assert!(generics.regions.is_empty());
assert!(generics.types.elem_count() == 1);
assert!(generics.const_generics.is_empty());
}
_ => {
unreachable!(
"\n- place.kind: {:?}\n- subplace.ty(): {:?}",
kind,
subplace.ty()
)
}
}
subplace.project(ProjectionElem::Deref, ty)
}
hax::ProjectionElem::Field(field_kind) => {
use hax::ProjectionElemFieldKind::*;
let proj_elem = match field_kind {
Tuple(id) => {
let (_, generics) = subplace.ty().kind().as_adt().unwrap();
let field_id = translate_field_id(*id);
let proj_kind = FieldProjKind::Tuple(generics.types.elem_count());
ProjectionElem::Field(proj_kind, field_id)
}
Adt {
typ: _,
variant,
index,
} => {
let field_id = translate_field_id(*index);
let variant_id = variant.map(translate_variant_id);
match subplace.ty().kind() {
TyKind::Adt(TypeId::Adt(type_id), ..) => {
let proj_kind = FieldProjKind::Adt(*type_id, variant_id);
ProjectionElem::Field(proj_kind, field_id)
}
TyKind::Adt(TypeId::Tuple, generics) => {
assert!(generics.regions.is_empty());
assert!(variant.is_none());
assert!(generics.const_generics.is_empty());
let proj_kind =
FieldProjKind::Tuple(generics.types.elem_count());
ProjectionElem::Field(proj_kind, field_id)
}
TyKind::Adt(TypeId::Builtin(BuiltinTy::Box), generics) => {
assert!(!boxes_are_desugared(self.t_ctx.options.mir_level));
// Some more sanity checks
assert!(generics.regions.is_empty());
assert!(generics.types.elem_count() == 1);
assert!(generics.const_generics.is_empty());
assert!(variant_id.is_none());
assert!(field_id == FieldId::ZERO);
ProjectionElem::Deref
}
_ => {
raise_error!(self, span, "Unexpected field projection");
}
}
}
ClosureState(index) => {
let field_id = translate_field_id(*index);
ProjectionElem::Field(FieldProjKind::ClosureState, field_id)
}
};
subplace.project(proj_elem, ty)
}
hax::ProjectionElem::Index(local) => {
let var_id = self.translate_local(local).unwrap();
let local = self.locals.place_for_var(var_id);
let offset = Operand::Copy(local);
subplace.project(
ProjectionElem::Index {
offset: Box::new(offset),
from_end: false,
},
ty,
)
}
hax::ProjectionElem::Downcast(..) => {
// We view it as a nop (the information from the
// downcast has been propagated to the other
// projection elements by Hax)
subplace
}
&hax::ProjectionElem::ConstantIndex {
offset,
from_end,
min_length: _,
} => {
let offset = Operand::Const(ScalarValue::Usize(offset).to_constant());
subplace.project(
ProjectionElem::Index {
offset: Box::new(offset),
from_end,
},
ty,
)
}
&hax::ProjectionElem::Subslice { from, to, from_end } => {
let from = Operand::Const(ScalarValue::Usize(from).to_constant());
let to = Operand::Const(ScalarValue::Usize(to).to_constant());
subplace.project(
ProjectionElem::Subslice {
from: Box::new(from),
to: Box::new(to),
from_end,
},
ty,
)
}
hax::ProjectionElem::OpaqueCast => {
// Don't know what that is
raise_error!(self, span, "Unexpected ProjectionElem::OpaqueCast");
}
};
// Return
Ok(place)
}
}
}
/// Translate an operand with its type
fn translate_operand_with_type(
&mut self,
span: Span,
operand: &hax::Operand,
) -> Result<(Operand, Ty), Error> {
trace!();
match operand {
hax::Operand::Copy(place) => {
let p = self.translate_place(span, place)?;
let ty = p.ty().clone();
Ok((Operand::Copy(p), ty))
}
hax::Operand::Move(place) => {
let p = self.translate_place(span, place)?;
let ty = p.ty().clone();
Ok((Operand::Move(p), ty))
}
hax::Operand::Constant(const_op) => {
let constant =
self.translate_constant_expr_to_constant_expr(span, &const_op.evaluated)?;
let ty = constant.ty.clone();
Ok((Operand::Const(constant), ty))
}
}
}
/// Translate an operand
fn translate_operand(&mut self, span: Span, operand: &hax::Operand) -> Result<Operand, Error> {
trace!();
Ok(self.translate_operand_with_type(span, operand)?.0)
}
/// Translate an rvalue
fn translate_rvalue(&mut self, span: Span, rvalue: &hax::Rvalue) -> Result<Rvalue, Error> {
match rvalue {
hax::Rvalue::Use(operand) => Ok(Rvalue::Use(self.translate_operand(span, operand)?)),
hax::Rvalue::CopyForDeref(place) => {
// According to the documentation, it seems to be an optimisation
// for drop elaboration. We treat it as a regular copy.
let place = self.translate_place(span, place)?;
Ok(Rvalue::Use(Operand::Copy(place)))
}
hax::Rvalue::Repeat(operand, cnst) => {
let c = self.translate_constant_expr_to_const_generic(span, cnst)?;
let (operand, t) = self.translate_operand_with_type(span, operand)?;
// Remark: we could desugar this into a function call later.
Ok(Rvalue::Repeat(operand, t, c))
}
hax::Rvalue::Ref(_region, borrow_kind, place) => {
let place = self.translate_place(span, place)?;
let borrow_kind = translate_borrow_kind(*borrow_kind);
Ok(Rvalue::Ref(place, borrow_kind))
}
hax::Rvalue::ThreadLocalRef(_) => {
raise_error!(
self,
span,
"charon does not support thread local references"
);
}
hax::Rvalue::RawPtr(mtbl, place) => {
let mtbl = if *mtbl { RefKind::Mut } else { RefKind::Shared };
let place = self.translate_place(span, place)?;
Ok(Rvalue::RawPtr(place, mtbl))
}
hax::Rvalue::Len(place) => {
let place = self.translate_place(span, place)?;
let ty = place.ty().clone();
let cg = match ty.kind() {
TyKind::Adt(
TypeId::Builtin(aty @ (BuiltinTy::Array | BuiltinTy::Slice)),
generics,
) => {
if aty.is_array() {
Some(generics.const_generics[0].clone())
} else {
None
}
}
_ => unreachable!(),
};
Ok(Rvalue::Len(place, ty, cg))
}
hax::Rvalue::Cast(cast_kind, operand, tgt_ty) => {
trace!("Rvalue::Cast: {:?}", rvalue);
// Translate the target type
let tgt_ty = self.translate_ty(span, tgt_ty)?;
// Translate the operand
let (operand, src_ty) = self.translate_operand_with_type(span, operand)?;
match cast_kind {
hax::CastKind::IntToInt
| hax::CastKind::IntToFloat
| hax::CastKind::FloatToInt
| hax::CastKind::FloatToFloat => {
let tgt_ty = *tgt_ty.kind().as_literal().unwrap();
let src_ty = *src_ty.kind().as_literal().unwrap();
Ok(Rvalue::UnaryOp(
UnOp::Cast(CastKind::Scalar(src_ty, tgt_ty)),
operand,
))
}
hax::CastKind::PtrToPtr
| hax::CastKind::PointerCoercion(hax::PointerCoercion::MutToConstPointer, ..)
| hax::CastKind::PointerCoercion(hax::PointerCoercion::ArrayToPointer, ..)
| hax::CastKind::PointerCoercion(hax::PointerCoercion::DynStar, ..)
| hax::CastKind::FnPtrToPtr
| hax::CastKind::PointerExposeProvenance
| hax::CastKind::PointerWithExposedProvenance => Ok(Rvalue::UnaryOp(
UnOp::Cast(CastKind::RawPtr(src_ty, tgt_ty)),
operand,
)),
hax::CastKind::PointerCoercion(
hax::PointerCoercion::ClosureFnPointer(_)
| hax::PointerCoercion::UnsafeFnPointer
| hax::PointerCoercion::ReifyFnPointer,
..,
) => Ok(Rvalue::UnaryOp(
UnOp::Cast(CastKind::FnPtr(src_ty, tgt_ty)),
operand,
)),
hax::CastKind::Transmute => Ok(Rvalue::UnaryOp(
UnOp::Cast(CastKind::Transmute(src_ty, tgt_ty)),
operand,
)),
hax::CastKind::PointerCoercion(hax::PointerCoercion::Unsize, ..) => {
let unop = if let (
TyKind::Ref(
_,
deref!(TyKind::Adt(TypeId::Builtin(BuiltinTy::Array), generics)),
kind1,
),
TyKind::Ref(
_,
deref!(TyKind::Adt(TypeId::Builtin(BuiltinTy::Slice), generics1)),
kind2,
),
) = (src_ty.kind(), tgt_ty.kind())
{
// In MIR terminology, we go from &[T; l] to &[T] which means we
// effectively "unsize" the type, as `l` no longer appears in the
// destination type. At runtime, the converse happens: the length
// materializes into the fat pointer.
assert!(
generics.types.elem_count() == 1
&& generics.const_generics.elem_count() == 1
);
assert!(generics.types[0] == generics1.types[0]);
assert!(kind1 == kind2);
UnOp::ArrayToSlice(
*kind1,
generics.types[0].clone(),
generics.const_generics[0].clone(),
)
} else {
UnOp::Cast(CastKind::Unsize(src_ty.clone(), tgt_ty.clone()))
};
Ok(Rvalue::UnaryOp(unop, operand))
}
}
}
hax::Rvalue::BinaryOp(binop, (left, right)) => Ok(Rvalue::BinaryOp(
self.t_ctx.translate_binaryop_kind(span, *binop)?,
self.translate_operand(span, left)?,
self.translate_operand(span, right)?,
)),
hax::Rvalue::NullaryOp(nullop, ty) => {
trace!("NullOp: {:?}", nullop);
let ty = self.translate_ty(span, ty)?;
let op = match nullop {
hax::NullOp::SizeOf => NullOp::SizeOf,
hax::NullOp::AlignOf => NullOp::AlignOf,
hax::NullOp::OffsetOf(fields) => NullOp::OffsetOf(
fields
.iter()
.copied()
.map(|(n, idx)| (n, translate_field_id(idx)))
.collect(),
),
hax::NullOp::UbChecks => NullOp::UbChecks,
};
Ok(Rvalue::NullaryOp(op, ty))
}
hax::Rvalue::UnaryOp(unop, operand) => {
let unop = match unop {
hax::UnOp::Not => UnOp::Not,
hax::UnOp::Neg => UnOp::Neg,
hax::UnOp::PtrMetadata => {
raise_error!(self, span, "Unsupported operation: PtrMetadata")
}
};
Ok(Rvalue::UnaryOp(
unop,
self.translate_operand(span, operand)?,
))
}
hax::Rvalue::Discriminant(place) => {
let place = self.translate_place(span, place)?;
if let TyKind::Adt(TypeId::Adt(adt_id), _) = *place.ty().kind() {
Ok(Rvalue::Discriminant(place, adt_id))
} else {
raise_error!(
self,
span,
"Unexpected scrutinee type for ReadDiscriminant: {}",
place.ty().fmt_with_ctx(&self.into_fmt())
)
}
}
hax::Rvalue::Aggregate(aggregate_kind, operands) => {
// It seems this instruction is not present in certain passes:
// for example, it seems it is not used in optimized MIR, where
// ADT initialization is split into several instructions, for
// instance:
// ```
// p = Pair { x:xv, y:yv };
// ```
// Might become:
// ```
// p.x = x;
// p.y = yv;
// ```
// First translate the operands
let operands_t: Vec<Operand> = operands
.raw
.iter()
.map(|op| self.translate_operand(span, op))
.try_collect()?;
match aggregate_kind {
hax::AggregateKind::Array(ty) => {
let t_ty = self.translate_ty(span, ty)?;
let cg = ConstGeneric::Value(Literal::Scalar(ScalarValue::Usize(
operands_t.len() as u64,
)));
Ok(Rvalue::Aggregate(
AggregateKind::Array(t_ty, cg),
operands_t,
))
}
hax::AggregateKind::Tuple => Ok(Rvalue::Aggregate(
AggregateKind::Adt(
TypeId::Tuple,
None,
None,
GenericArgs::empty(GenericsSource::Builtin),
),
operands_t,
)),
hax::AggregateKind::Adt(
adt_id,
variant_idx,
kind,
substs,
trait_refs,
user_annotation,
field_index,
) => {
trace!("{:?}", rvalue);
// We ignore type annotations since rustc has already inferred all the
// types we need.
let _ = user_annotation;
let type_id = self.translate_type_id(span, adt_id)?;
// Sanity check
assert!(matches!(&type_id, TypeId::Adt(_)));
// Translate the substitution
let generics = self.translate_generic_args(
span,
substs,
trait_refs,
None,
type_id.generics_target(),
)?;
use hax::AdtKind;
let variant_id = match kind {
AdtKind::Struct | AdtKind::Union => None,
AdtKind::Enum => Some(translate_variant_id(*variant_idx)),
};
let field_id = match kind {
AdtKind::Struct | AdtKind::Enum => None,
AdtKind::Union => Some(translate_field_id(field_index.unwrap())),
};
let akind = AggregateKind::Adt(type_id, variant_id, field_id, generics);
Ok(Rvalue::Aggregate(akind, operands_t))
}
hax::AggregateKind::Closure(def_id, closure_args) => {
trace!(
"Closure:\n\n- def_id: {:?}\n\n- sig:\n{:?}",
def_id,
closure_args.tupled_sig
);
let fun_id = self.register_fun_decl_id(span, def_id);
// Retrieve the late-bound variables.
let binder = closure_args.tupled_sig.as_ref().rebind(());
// Translate the substitution
let generics = self.translate_generic_args(
span,
&closure_args.parent_args,
&closure_args.parent_trait_refs,
Some(binder),
GenericsSource::item(fun_id),
)?;
let akind = AggregateKind::Closure(fun_id, generics);
Ok(Rvalue::Aggregate(akind, operands_t))
}
hax::AggregateKind::RawPtr(..) => {
// TODO: replace with a call to `ptr::from_raw_parts`.
raise_error!(self, span, "Wide raw pointers are not supported");
}
hax::AggregateKind::Coroutine(..)
| hax::AggregateKind::CoroutineClosure(..) => {
raise_error!(self, span, "Coroutines are not supported");
}
}
}
hax::Rvalue::ShallowInitBox(op, ty) => {
let op = self.translate_operand(span, op)?;
let ty = self.translate_ty(span, ty)?;
Ok(Rvalue::ShallowInitBox(op, ty))
}
}
}
/// Checks whether the given id corresponds to a built-in function.
fn recognize_builtin_fun(&mut self, def: &hax::FullDef) -> Result<Option<BuiltinFun>, Error> {
let name = self.t_ctx.hax_def_id_to_name(&def.def_id)?;
let panic_lang_items = &["panic", "panic_fmt", "begin_panic"];
let panic_names = &[&["core", "panicking", "assert_failed"], EXPLICIT_PANIC_NAME];
if def.diagnostic_item.as_deref() == Some("box_new") {
Ok(Some(BuiltinFun::BoxNew))
} else if def
.lang_item
.as_deref()
.is_some_and(|lang_it| panic_lang_items.iter().contains(&lang_it))
|| panic_names.iter().any(|panic| name.equals_ref_name(panic))
{
Ok(Some(BuiltinFun::Panic))
} else {
Ok(None)
}
}
/// Auxiliary function to translate function calls and references to functions.
/// Translate a function id applied with some substitutions and some optional
/// arguments.
///
/// We use a special function because the function might be built-in, and
/// some parameters/arguments might need to be filtered.
/// We return the fun id, its generics, and filtering information for the
/// arguments.
///
/// TODO: should we always erase the regions?
#[allow(clippy::too_many_arguments)]
pub(crate) fn translate_fun_decl_id_with_args(
&mut self,
span: Span,
def_id: &hax::DefId,
substs: &Vec<hax::GenericArg>,
args: Option<&Vec<hax::Spanned<hax::Operand>>>,
trait_refs: &Vec<hax::ImplExpr>,
trait_info: &Option<hax::ImplExpr>,
) -> Result<SubstFunIdOrPanic, Error> {
let fun_def = self.t_ctx.hax_def(def_id)?;
let builtin_fun = self.recognize_builtin_fun(&fun_def)?;
if matches!(builtin_fun, Some(BuiltinFun::Panic)) {
let name = self.t_ctx.hax_def_id_to_name(def_id)?;
return Ok(SubstFunIdOrPanic::Panic(name));
}
// Retreive the late-bound variables.
let binder = match self.t_ctx.hax_def(def_id)?.kind() {
hax::FullDefKind::Fn { sig, .. } | hax::FullDefKind::AssocFn { sig, .. } => {
Some(sig.as_ref().rebind(()))
}
_ => None,
};
// Trait information
trace!(
"Trait information:\n- def_id: {:?}\n- impl source:\n{:?}",
def_id,
trait_info
);
trace!(
"Method traits:\n- def_id: {:?}\n- traits:\n{:?}",
def_id,
trait_refs
);
// Check if the function is considered primitive: primitive
// functions benefit from special treatment.
let fun_id = if let Some(builtin_fun) = builtin_fun {
// Primitive function.
//
// Note that there are subtleties with regards to the way types parameters
// are translated, because some functions are actually traits, where the
// types are used for the resolution. For instance, the following:
// `core::ops::deref::Deref::<alloc::boxed::Box<T>>::deref`
// is translated to:
// `box_deref<T>`
// (the type parameter is not `Box<T>` but `T`).
assert!(trait_info.is_none());
let aid = builtin_fun.to_ullbc_builtin_fun();
// Note that some functions are actually traits (deref, index, etc.):
// we assume that they are called only on a limited set of types
// (ex.: box, vec...).
// For those trait functions, we need a custom treatment to retrieve
// and check the type information.
// For instance, derefencing boxes generates MIR of the following form:
// ```
// _2 = <Box<u32> as Deref>::deref(move _3)
// ```
// We have to retrieve the type `Box<u32>` and check that it is of the
// form `Box<T>` (and we generate `box_deref<u32>`).
match aid {
BuiltinFunId::BoxNew => {
// Nothing to do
}
BuiltinFunId::Index { .. }
| BuiltinFunId::ArrayToSliceShared
| BuiltinFunId::ArrayToSliceMut
| BuiltinFunId::ArrayRepeat => {
// Those cases are introduced later, in micro-passes, by desugaring
// projections (for ArrayIndex and ArrayIndexMut for instnace) and=
// operations (for ArrayToSlice for instance) to function calls.
unreachable!()
}
};
FunIdOrTraitMethodRef::Fun(FunId::Builtin(aid))
} else {
let fun_id = self.register_fun_decl_id(span, def_id);
// Two cases depending on whether we call a trait method or not
match trait_info {
// Direct function call
None => FunIdOrTraitMethodRef::Fun(FunId::Regular(fun_id)),
// Trait method
Some(trait_info) => {
let impl_expr = self.translate_trait_impl_expr(span, trait_info)?;
let method_name = self.t_ctx.translate_trait_item_name(def_id)?;
FunIdOrTraitMethodRef::Trait(impl_expr, method_name, fun_id)
}
}
};
// Translate the type parameters
let generics = self.translate_generic_args(
span,
substs,
trait_refs,
binder,
fun_id.generics_target(),
)?;
// Translate the arguments
let args = args
.map(|args| self.translate_arguments(span, args))
.transpose()?;
let sfid = SubstFunId {
func: FnPtr {
func: fun_id,
generics,
},
args,
};
Ok(SubstFunIdOrPanic::Fun(sfid))
}
/// Translate a statement
///
/// We return an option, because we ignore some statements (`Nop`, `StorageLive`...)
fn translate_statement(
&mut self,
body: &hax::MirBody<()>,
statement: &hax::Statement,
) -> Result<Option<Statement>, Error> {
trace!("About to translate statement (MIR) {:?}", statement);
let span = self
.t_ctx
.translate_span_from_source_info(&body.source_scopes, &statement.source_info);
use hax::StatementKind;
let t_statement: Option<RawStatement> = match &*statement.kind {
StatementKind::Assign((place, rvalue)) => {
let t_place = self.translate_place(span, place)?;
let t_rvalue = self.translate_rvalue(span, rvalue)?;
Some(RawStatement::Assign(t_place, t_rvalue))
}
StatementKind::FakeRead((_read_cause, place)) => {
let t_place = self.translate_place(span, place)?;
Some(RawStatement::FakeRead(t_place))
}
StatementKind::PlaceMention(place) => {
// Simply accesses a place, for use of the borrow checker. Introduced for instance
// in place of `let _ = ...`. We desugar it to a fake read.
let t_place = self.translate_place(span, place)?;
Some(RawStatement::FakeRead(t_place))
}
StatementKind::SetDiscriminant {
place,
variant_index,
} => {
let t_place = self.translate_place(span, place)?;
let variant_id = translate_variant_id(*variant_index);
Some(RawStatement::SetDiscriminant(t_place, variant_id))
}
// We ignore StorageLive
StatementKind::StorageLive(_) => None,
StatementKind::StorageDead(local) => {
let var_id = self.translate_local(local).unwrap();
Some(RawStatement::StorageDead(var_id))
}
StatementKind::Deinit(place) => {
let t_place = self.translate_place(span, place)?;
Some(RawStatement::Deinit(t_place))
}
// This asserts the operand true on pain of UB. We treat it like a normal assertion.
StatementKind::Intrinsic(hax::NonDivergingIntrinsic::Assume(op)) => {
let op = self.translate_operand(span, op)?;
Some(RawStatement::Assert(Assert {
cond: op,
expected: true,
}))
}
StatementKind::Intrinsic(hax::NonDivergingIntrinsic::CopyNonOverlapping(..)) => {
raise_error!(self, span, "Unsupported statement kind: CopyNonOverlapping");
}
// This is for the stacked borrows memory model.
StatementKind::Retag(_, _) => None,
// There are user-provided type annotations with no semantic effect (since we get a
// fully-typechecked MIR (TODO: this isn't quite true with opaque types, we should
// really use promoted MIR)).
StatementKind::AscribeUserType(_, _) => None,
// Used for coverage instrumentation.
StatementKind::Coverage(_) => None,
// Used in the interpreter to check that const code doesn't run for too long or even
// indefinitely.
StatementKind::ConstEvalCounter => None,
// Semantically equivalent to `Nop`, used only for rustc lints.
StatementKind::BackwardIncompatibleDropHint { .. } => None,
StatementKind::Nop => None,
};
// Add the span information
Ok(t_statement.map(|kind| Statement::new(span, kind)))
}
/// Translate a terminator
fn translate_terminator(
&mut self,
body: &hax::MirBody<()>,
terminator: &hax::Terminator,
statements: &mut Vec<Statement>,
) -> Result<Terminator, Error> {
trace!("About to translate terminator (MIR) {:?}", terminator);
// Compute the span information beforehand (we might need it to introduce
// intermediate statements - we desugar some terminators)
let span = self
.t_ctx
.translate_span_from_source_info(&body.source_scopes, &terminator.source_info);
// Translate the terminator
use hax::TerminatorKind;
let t_terminator: RawTerminator = match &terminator.kind {
TerminatorKind::Goto { target } => {
let target = self.translate_basic_block_id(*target);
RawTerminator::Goto { target }
}
TerminatorKind::SwitchInt {
discr,
targets,
otherwise,
..
} => {
// Translate the operand which gives the discriminant
let (discr, discr_ty) = self.translate_operand_with_type(span, discr)?;
// Translate the switch targets
let targets = self.translate_switch_targets(span, &discr_ty, targets, otherwise)?;
RawTerminator::Switch { discr, targets }
}
TerminatorKind::UnwindResume => {
// This is used to correctly unwind. We shouldn't get there: if
// we panic, the state gets stuck.
raise_error!(self, span, "Unexpected terminator: UnwindResume");
}
TerminatorKind::UnwindTerminate { .. } => {
raise_error!(self, span, "Unexpected terminator: UnwindTerminate")
}
TerminatorKind::Return => RawTerminator::Return,
// A MIR `Unreachable` terminator indicates undefined behavior of the rust abstract
// machine.
TerminatorKind::Unreachable => RawTerminator::Abort(AbortKind::UndefinedBehavior),
TerminatorKind::Drop {
place,
target,
unwind: _, // We consider that panic is an error, and don't model unwinding
replace: _,
} => {
let place = self.translate_place(span, place)?;
statements.push(Statement::new(span, RawStatement::Drop(place)));
let target = self.translate_basic_block_id(*target);
RawTerminator::Goto { target }
}
TerminatorKind::Call {
fun,
args,
destination,
target,
unwind: _, // We model unwinding as an effet, we don't represent it in control flow
fn_span: _,
..
} => self.translate_function_call(statements, span, fun, args, destination, target)?,
TerminatorKind::Assert {
cond,
expected,
msg: _,
target,
unwind: _, // We model unwinding as an effet, we don't represent it in control flow
} => {
let assert = Assert {
cond: self.translate_operand(span, cond)?,
expected: *expected,
};
statements.push(Statement::new(span, RawStatement::Assert(assert)));
let target = self.translate_basic_block_id(*target);
RawTerminator::Goto { target }
}
TerminatorKind::FalseEdge {
real_target,
imaginary_target,
} => {
trace!(
"False edge:\n- real target ({:?}):\n{:?}\n- imaginary target ({:?}):\n{:?}",
real_target,
body.basic_blocks.get(*real_target).unwrap(),
imaginary_target,
body.basic_blocks.get(*imaginary_target).unwrap(),
);
// False edges are used to make the borrow checker a bit conservative.
// We translate them as Gotos.
// Also note that they are used in some passes, and not in some others
// (they are present in mir_promoted, but not mir_optimized).
let target = self.translate_basic_block_id(*real_target);
RawTerminator::Goto { target }
}
TerminatorKind::FalseUnwind {
real_target,
unwind: _,
} => {
// We consider this to be a goto
let target = self.translate_basic_block_id(*real_target);
RawTerminator::Goto { target }
}
TerminatorKind::InlineAsm { .. } => {
raise_error!(self, span, "Inline assembly is not supported");
}
TerminatorKind::CoroutineDrop
| TerminatorKind::TailCall { .. }
| TerminatorKind::Yield { .. } => {
raise_error!(self, span, "Unsupported terminator: {:?}", terminator.kind);
}
};
// Add the span information
Ok(Terminator::new(span, t_terminator))
}
/// Translate switch targets
fn translate_switch_targets(
&mut self,
span: Span,
switch_ty: &Ty,
targets: &[(hax::ScalarInt, hax::BasicBlock)],
otherwise: &hax::BasicBlock,
) -> Result<SwitchTargets, Error> {
trace!("targets: {:?}", targets);
let switch_ty = *switch_ty.kind().as_literal().unwrap();
match switch_ty {
LiteralTy::Bool => {
assert_eq!(targets.len(), 1);
let (val, target) = targets.first().unwrap();
// It seems the block targets are inverted
assert_eq!(val.data_le_bytes, [0; 16]);
let if_block = self.translate_basic_block_id(*otherwise);
let then_block = self.translate_basic_block_id(*target);
Ok(SwitchTargets::If(if_block, then_block))
}
LiteralTy::Integer(int_ty) => {
let targets: Vec<(ScalarValue, BlockId)> = targets
.iter()
.map(|(v, tgt)| {
let v = ScalarValue::from_le_bytes(int_ty, v.data_le_bytes);
let tgt = self.translate_basic_block_id(*tgt);
Ok((v, tgt))
})
.try_collect()?;
let otherwise = self.translate_basic_block_id(*otherwise);
Ok(SwitchTargets::SwitchInt(int_ty, targets, otherwise))
}
_ => raise_error!(self, span, "Can't match on type {switch_ty}"),
}
}
/// Translate a function call statement.
/// Note that `body` is the body of the function being translated, not of the
/// function referenced in the function call: we need it in order to translate
/// the blocks we go to after the function call returns.
#[allow(clippy::too_many_arguments)]
fn translate_function_call(
&mut self,
statements: &mut Vec<Statement>,
span: Span,
fun: &hax::FunOperand,
args: &Vec<hax::Spanned<hax::Operand>>,
destination: &hax::Place,
target: &Option<hax::BasicBlock>,
) -> Result<RawTerminator, Error> {
trace!();
// There are two cases, depending on whether this is a "regular"
// call to a top-level function identified by its id, or if we
// are using a local function pointer (i.e., the operand is a "move").
let lval = self.translate_place(span, destination)?;
let next_block = target.map(|target| self.translate_basic_block_id(target));
let (fn_operand, args) = match fun {
hax::FunOperand::Static {
def_id,
generics,
trait_refs,
trait_info,
} => {
// Translate the function operand - should be a constant: we don't
// support closures for now
trace!("func: {:?}", def_id);
// Translate the function id, with its parameters
let fid = self.translate_fun_decl_id_with_args(
span,
def_id,
generics,
Some(args),
trait_refs,
trait_info,
)?;
match fid {
SubstFunIdOrPanic::Panic(name) => {
// If the call is `panic!`, then the target is `None`.
// I don't know in which other cases it can be `None`.
assert!(target.is_none());
// We ignore the arguments
return Ok(RawTerminator::Abort(AbortKind::Panic(name)));
}
SubstFunIdOrPanic::Fun(fid) => {
let fn_operand = FnOperand::Regular(fid.func);
let args = fid.args.unwrap();
(fn_operand, args)
}
}
}
hax::FunOperand::DynamicMove(p) => {
// Call to a local function pointer
// The function
let p = self.translate_place(span, p)?;
// TODO: we may have a problem here because as we don't
// know which function is being called, we may not be
// able to filter the arguments properly... But maybe
// this is rather an issue for the statement which creates
// the function pointer, by refering to a top-level function
// for instance.
let args = self.translate_arguments(span, args)?;
let fn_operand = FnOperand::Move(p);
(fn_operand, args)
}
};
let call = Call {
func: fn_operand,
args,
dest: lval,
};
statements.push(Statement::new(span, RawStatement::Call(call)));
Ok(match next_block {
Some(target) => RawTerminator::Goto { target },
None => RawTerminator::Abort(AbortKind::UndefinedBehavior),
})
}
/// Evaluate function arguments in a context, and return the list of computed
/// values.
fn translate_arguments(
&mut self,
span: Span,
args: &Vec<hax::Spanned<hax::Operand>>,
) -> Result<Vec<Operand>, Error> {
let mut t_args: Vec<Operand> = Vec::new();
for arg in args.iter().map(|x| &x.node) {
// Translate
let op = self.translate_operand(span, arg)?;
t_args.push(op);
}
Ok(t_args)
}
/// Gather all the lines that start with `//` inside the given span.
fn translate_body_comments(
&mut self,
def: &hax::FullDef,
charon_span: Span,
) -> Vec<(usize, Vec<String>)> {
if let Some(body_text) = &def.source_text {
let mut comments = body_text
.lines()
// Iter through the lines of this body in reverse order.
.rev()
.enumerate()
// Compute the absolute line number
.map(|(i, line)| (charon_span.span.end.line - i, line))
// Extract the comment if this line starts with `//`
.map(|(line_nbr, line)| (line_nbr, line.trim_start().strip_prefix("//")))
.peekable()
.batching(|iter| {
// Get the next line. This is not a comment: it's either the last line of the
// body or a line that wasn't consumed by `peeking_take_while`.
let (line_nbr, _first) = iter.next()?;
// Collect all the comments before this line.
let mut comments = iter
// `peeking_take_while` ensures we don't consume a line that returns
// `false`. It will be consumed by the next round of `batching`.
.peeking_take_while(|(_, opt_comment)| opt_comment.is_some())
.map(|(_, opt_comment)| opt_comment.unwrap())
.map(|s| s.strip_prefix(" ").unwrap_or(s))
.map(str::to_owned)
.collect_vec();
comments.reverse();
Some((line_nbr, comments))
})
.filter(|(_, comments)| !comments.is_empty())
.collect_vec();
comments.reverse();
comments
} else {
Vec::new()
}
}
/// Translate a function body if we can (it has MIR) and we want to (we don't translate bodies
/// declared opaque, and only translate non-local bodies if `extract_opaque_bodies` is set).
fn translate_body(
&mut self,
def: &hax::FullDef,
sig: &FunSig,
item_meta: &ItemMeta,
) -> Result<Result<Body, Opaque>, Error> {
// Stopgap measure because there are still many panics in charon and hax.
let mut this = panic::AssertUnwindSafe(&mut *self);
let res = panic::catch_unwind(move || this.translate_body_aux(def, sig, item_meta));
match res {
Ok(Ok(body)) => Ok(body),
// Translation error
Ok(Err(e)) => Err(e),
Err(_) => {
raise_error!(
self,
item_meta.span,
"Thread panicked when extracting body."
);
}
}
}
fn translate_body_aux(
&mut self,
def: &hax::FullDef,
sig: &FunSig,
item_meta: &ItemMeta,
) -> Result<Result<Body, Opaque>, Error> {
if item_meta.opacity.with_private_contents().is_opaque() {
// The bodies of foreign functions are opaque by default.
return Ok(Err(Opaque));
}
if let hax::FullDefKind::Ctor {
adt_def_id,
ctor_of,
variant_id,
fields,
output_ty,
..
} = def.kind()
{
let span = item_meta.span;
let adt_decl_id = self.register_type_decl_id(span, adt_def_id);
let output_ty = self.translate_ty(span, output_ty)?;
let mut locals = Locals {
arg_count: fields.len(),
vars: Vector::new(),
};
locals.new_var(None, output_ty); // return place
let args: Vec<_> = fields
.iter()
.map(|field| {
let ty = self.translate_ty(span, &field.ty)?;
let place = locals.new_var(None, ty);
Ok(Operand::Move(place))
})
.try_collect()?;
let variant = match ctor_of {
hax::CtorOf::Struct => None,
hax::CtorOf::Variant => Some(VariantId::from(*variant_id)),
};
let st_kind = RawStatement::Assign(
locals.return_place(),
Rvalue::Aggregate(
AggregateKind::Adt(
TypeId::Adt(adt_decl_id),
variant,
None,
sig.generics
.identity_args(GenericsSource::item(adt_decl_id)),
),
args,
),
);
let statement = Statement::new(span, st_kind);
let block = BlockData {
statements: vec![statement],
terminator: Terminator::new(span, RawTerminator::Return),
};
let body = Body::Unstructured(GExprBody {
span,
locals,
comments: Default::default(),
body: [block].into_iter().collect(),
});
return Ok(Ok(body));
}
// Retrieve the body
let rust_id = def.rust_def_id();
let Some(body) = self.t_ctx.get_mir(rust_id, item_meta.span)? else {
return Ok(Err(Opaque));
};
// Initialize the local variables
trace!("Translating the body locals");
self.locals.arg_count = sig.inputs.len();
self.translate_body_locals(&body)?;
// Translate the expression body
trace!("Translating the expression body");
self.translate_transparent_expression_body(&body)?;
// Compute the span information
let span = self.translate_span_from_hax(&body.span);
// We need to convert the blocks map to an index vector
// We clone things while we could move them...
let mut blocks = Vector::new();
for (id, block) in mem::take(&mut self.blocks) {
let new_id = blocks.push(block);
// Sanity check to make sure we don't mess with the indices
assert!(id == new_id);
}
// Create the body
Ok(Ok(Body::Unstructured(ExprBody {
span,
locals: mem::take(&mut self.locals),
comments: self.translate_body_comments(def, span),
body: blocks,
})))
}
/// Translate a function's signature, and initialize a body translation context
/// at the same time - the function signature gives us the list of region and
/// type parameters, that we put in the translation context.
fn translate_function_signature(
&mut self,
def: &hax::FullDef,
item_meta: &ItemMeta,
) -> Result<FunSig, Error> {
let span = item_meta.span;
self.translate_def_generics(span, def)?;
let signature = match &def.kind {
hax::FullDefKind::Closure { args, .. } => &args.tupled_sig,
hax::FullDefKind::Fn { sig, .. } => sig,
hax::FullDefKind::AssocFn { sig, .. } => sig,
hax::FullDefKind::Ctor {
fields, output_ty, ..
} => {
let sig = hax::TyFnSig {
inputs: fields.iter().map(|field| field.ty.clone()).collect(),
output: output_ty.clone(),
c_variadic: false,
safety: hax::Safety::Safe,
abi: hax::Abi::Rust,
};
&hax::Binder {
value: sig,
bound_vars: Default::default(),
}
}
hax::FullDefKind::Const { ty, .. }
| hax::FullDefKind::AssocConst { ty, .. }
| hax::FullDefKind::Static { ty, .. } => {
let sig = hax::TyFnSig {
inputs: vec![],
output: ty.clone(),
c_variadic: false,
safety: hax::Safety::Safe,
abi: hax::Abi::Rust,
};
&hax::Binder {
value: sig,
bound_vars: Default::default(),
}
}
_ => panic!("Unexpected definition for function: {def:?}"),
};
// Translate the signature
trace!("signature of {:?}:\n{:?}", def.def_id, signature.value);
let mut inputs: Vec<Ty> = signature
.value
.inputs
.iter()
.map(|ty| self.translate_ty(span, ty))
.try_collect()?;
let output = self.translate_ty(span, &signature.value.output)?;
let fmt_ctx = self.into_fmt();
trace!(
"# Input variables types:\n{}",
pretty_display_list(|x| fmt_ctx.format_object(x), &inputs)
);
trace!(
"# Output variable type:\n{}",
fmt_ctx.format_object(&output)
);
let is_unsafe = match signature.value.safety {
hax::Safety::Unsafe => true,
hax::Safety::Safe => false,
};
let closure_info = match &def.kind {
hax::FullDefKind::Closure { args, .. } => {
let kind = match args.kind {
hax::ClosureKind::Fn => ClosureKind::Fn,
hax::ClosureKind::FnMut => ClosureKind::FnMut,
hax::ClosureKind::FnOnce => ClosureKind::FnOnce,
};
assert_eq!(inputs.len(), 1);
let tuple_arg = inputs.pop().unwrap();
let state: Vector<TypeVarId, Ty> = args
.upvar_tys
.iter()
.map(|ty| self.translate_ty(span, &ty))
.try_collect()?;
// Add the state of the closure as first parameter.
let state_ty = {
// Group the state types into a tuple
let state_ty =
TyKind::Adt(TypeId::Tuple, GenericArgs::new_for_builtin(state.clone()))
.into_ty();
// Depending on the kind of the closure, add a reference
match &kind {
ClosureKind::FnOnce => state_ty,
ClosureKind::Fn | ClosureKind::FnMut => {
let rid = self
.innermost_generics_mut()
.regions
.push_with(|index| RegionVar { index, name: None });
let r = Region::Var(DeBruijnVar::new_at_zero(rid));
let mutability = if kind == ClosureKind::Fn {
RefKind::Shared
} else {
RefKind::Mut
};
TyKind::Ref(r, state_ty, mutability).into_ty()
}
}
};
inputs.push(state_ty);
// Unpack the tupled arguments to match the body locals.
let TyKind::Adt(TypeId::Tuple, tuple_args) = tuple_arg.kind() else {
raise_error!(self, span, "Closure argument is not a tuple")
};
inputs.extend(tuple_args.types.iter().cloned());
Some(ClosureInfo { kind, state })
}
_ => None,
};
Ok(FunSig {
generics: self.the_only_binder().params.clone(),
is_unsafe,
is_closure: matches!(&def.kind, hax::FullDefKind::Closure { .. }),
closure_info,
inputs,
output,
})
}
}
impl BodyTransCtx<'_, '_> {
/// Translate one function.
#[tracing::instrument(skip(self, item_meta))]
pub fn translate_function(
mut self,
def_id: FunDeclId,
item_meta: ItemMeta,
def: &hax::FullDef,
) -> Result<FunDecl, Error> {
trace!("About to translate function:\n{:?}", def.def_id);
let def_span = item_meta.span;
// Translate the function signature
trace!("Translating function signature");
let signature = self.translate_function_signature(def, &item_meta)?;
// Check whether this function is a method declaration for a trait definition.
// If this is the case, it shouldn't contain a body.
let kind = self.get_item_kind(def_span, def)?;
let is_trait_method_decl_without_default = match &kind {
ItemKind::Regular | ItemKind::TraitImpl { .. } => false,
ItemKind::TraitDecl { has_default, .. } => !has_default,
};
let is_global_initializer = matches!(
def.kind(),
hax::FullDefKind::Const { .. }
| hax::FullDefKind::AssocConst { .. }
| hax::FullDefKind::Static { .. }
);
let is_global_initializer = is_global_initializer
.then(|| self.register_global_decl_id(item_meta.span, &def.def_id));
let body_id = if !is_trait_method_decl_without_default {
// Translate the body. This doesn't store anything if we can't/decide not to translate
// this body.
match self.translate_body(def, &signature, &item_meta) {
Ok(Ok(body)) => Ok(body),
// Opaque declaration
Ok(Err(Opaque)) => Err(Opaque),
// Translation error.
// FIXME: handle error cases more explicitly.
Err(_) => Err(Opaque),
}
} else {
Err(Opaque)
};
Ok(FunDecl {
def_id,
item_meta,
signature,
kind,
is_global_initializer,
body: body_id,
})
}
/// Translate one global.
#[tracing::instrument(skip(self, item_meta))]
pub fn translate_global(
mut self,
def_id: GlobalDeclId,
item_meta: ItemMeta,
def: &hax::FullDef,
) -> Result<GlobalDecl, Error> {
trace!("About to translate global:\n{:?}", def.def_id);
let span = item_meta.span;
// Translate the generics and predicates - globals *can* have generics
// Ex.:
// ```
// impl<const N : usize> Foo<N> {
// const LEN : usize = N;
// }
// ```
self.translate_def_generics(span, def)?;
// Retrieve the kind
let global_kind = self.get_item_kind(span, def)?;
trace!("Translating global type");
let ty = match &def.kind {
hax::FullDefKind::Const { ty, .. }
| hax::FullDefKind::AssocConst { ty, .. }
| hax::FullDefKind::Static { ty, .. } => ty,
_ => panic!("Unexpected def for constant: {def:?}"),
};
let ty = self.translate_ty(span, ty)?;
let initializer = self.register_fun_decl_id(span, &def.def_id);
Ok(GlobalDecl {
def_id,
item_meta,
generics: self.into_generics(),
ty,
kind: global_kind,
init: initializer,
})
}
}