charon_driver/translate/
translate_predicates.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
use super::translate_ctx::*;
use super::translate_traits::PredicateLocation;
use charon_lib::ast::*;
use charon_lib::formatter::IntoFormatter;
use charon_lib::ids::Vector;
use charon_lib::pretty::FmtWithCtx;
use hax_frontend_exporter as hax;

impl<'tcx, 'ctx> BodyTransCtx<'tcx, 'ctx> {
    /// This function should be called **after** we translated the generics (type parameters,
    /// regions...).
    pub(crate) fn register_predicates(
        &mut self,
        preds: &hax::GenericPredicates,
        origin: PredicateOrigin,
        location: &PredicateLocation,
    ) -> Result<(), Error> {
        // Translate the trait predicates first, because associated type constraints may refer to
        // them. E.g. in `fn foo<I: Iterator<Item=usize>>()`, the `I: Iterator` clause must be
        // translated before the `<I as Iterator>::Item = usize` predicate.
        for (clause, span) in &preds.predicates {
            if matches!(clause.kind.value, hax::ClauseKind::Trait(_)) {
                self.register_predicate(clause, span, origin.clone(), location)?;
            }
        }
        for (clause, span) in &preds.predicates {
            if !matches!(clause.kind.value, hax::ClauseKind::Trait(_)) {
                self.register_predicate(clause, span, origin.clone(), location)?;
            }
        }
        Ok(())
    }

    pub(crate) fn translate_poly_trait_ref(
        &mut self,
        span: Span,
        bound_trait_ref: &hax::Binder<hax::TraitRef>,
    ) -> Result<PolyTraitDeclRef, Error> {
        self.translate_region_binder(span, bound_trait_ref, move |ctx, trait_ref| {
            ctx.translate_trait_ref(span, trait_ref)
        })
    }

    pub(crate) fn translate_trait_predicate(
        &mut self,
        span: Span,
        trait_pred: &hax::TraitPredicate,
    ) -> Result<TraitDeclRef, Error> {
        // we don't handle negative trait predicates.
        assert!(trait_pred.is_positive);
        self.translate_trait_ref(span, &trait_pred.trait_ref)
    }

    pub(crate) fn translate_trait_ref(
        &mut self,
        span: Span,
        trait_ref: &hax::TraitRef,
    ) -> Result<TraitDeclRef, Error> {
        let trait_id = self.register_trait_decl_id(span, &trait_ref.def_id);
        // For now a trait has no required bounds, so we pass an empty list.
        let generics = self.translate_generic_args(
            span,
            &trait_ref.generic_args,
            &[],
            None,
            GenericsSource::item(trait_id),
        )?;
        Ok(TraitDeclRef { trait_id, generics })
    }

    pub(crate) fn register_predicate(
        &mut self,
        clause: &hax::Clause,
        hspan: &hax::Span,
        origin: PredicateOrigin,
        location: &PredicateLocation,
    ) -> Result<(), Error> {
        use hax::ClauseKind;
        trace!("{:?}", clause);
        let span = self.translate_span_from_hax(hspan);
        match clause.kind.hax_skip_binder_ref() {
            ClauseKind::Trait(trait_pred) => {
                let pred = self.translate_region_binder(span, &clause.kind, |ctx, _| {
                    ctx.translate_trait_predicate(span, trait_pred)
                })?;
                let location = match location {
                    PredicateLocation::Base => &mut self.innermost_generics_mut().trait_clauses,
                    PredicateLocation::Parent => &mut self.parent_trait_clauses,
                    PredicateLocation::Item(item_name) => self
                        .item_trait_clauses
                        .entry(item_name.clone())
                        .or_default(),
                };
                location.push_with(|clause_id| TraitClause {
                    clause_id,
                    origin,
                    span: Some(span),
                    trait_: pred,
                });
            }
            ClauseKind::RegionOutlives(p) => {
                let pred = self.translate_region_binder(span, &clause.kind, |ctx, _| {
                    let r0 = ctx.translate_region(span, &p.lhs)?;
                    let r1 = ctx.translate_region(span, &p.rhs)?;
                    Ok(OutlivesPred(r0, r1))
                })?;
                self.innermost_generics_mut().regions_outlive.push(pred);
            }
            ClauseKind::TypeOutlives(p) => {
                let pred = self.translate_region_binder(span, &clause.kind, |ctx, _| {
                    let ty = ctx.translate_ty(span, &p.lhs)?;
                    let r = ctx.translate_region(span, &p.rhs)?;
                    Ok(OutlivesPred(ty, r))
                })?;
                self.innermost_generics_mut().types_outlive.push(pred);
            }
            ClauseKind::Projection(p) => {
                // This is used to express constraints over associated types.
                // For instance:
                // ```
                // T : Foo<S = String>
                //         ^^^^^^^^^^
                // ```
                let pred = self.translate_region_binder(span, &clause.kind, |ctx, _| {
                    let trait_ref = ctx.translate_trait_impl_expr(span, &p.impl_expr)?;
                    let ty = ctx.translate_ty(span, &p.ty)?;
                    let type_name = TraitItemName(p.assoc_item.name.clone());
                    Ok(TraitTypeConstraint {
                        trait_ref,
                        type_name,
                        ty,
                    })
                })?;
                self.innermost_generics_mut()
                    .trait_type_constraints
                    .push(pred);
            }
            ClauseKind::ConstArgHasType(..) => {
                // I don't really understand that one. Why don't they put
                // the type information in the const generic parameters
                // directly? For now we just ignore it.
            }
            ClauseKind::WellFormed(_) => {
                raise_error!(self, span, "Well-formedness clauses are unsupported")
            }
            kind => {
                raise_error!(self, span, "Unsupported clause: {:?}", kind)
            }
        }
        Ok(())
    }

    pub(crate) fn translate_trait_impl_exprs(
        &mut self,
        span: Span,
        impl_sources: &[hax::ImplExpr],
    ) -> Result<Vector<TraitClauseId, TraitRef>, Error> {
        impl_sources
            .iter()
            .map(|x| self.translate_trait_impl_expr(span, x))
            .try_collect()
    }

    #[tracing::instrument(skip(self, span, impl_expr))]
    pub(crate) fn translate_trait_impl_expr(
        &mut self,
        span: Span,
        impl_expr: &hax::ImplExpr,
    ) -> Result<TraitRef, Error> {
        let trait_decl_ref = self.translate_poly_trait_ref(span, &impl_expr.r#trait)?;

        match self.translate_trait_impl_expr_aux(span, impl_expr, trait_decl_ref.clone()) {
            Ok(res) => Ok(res),
            Err(err) => {
                register_error!(self, span, "Error during trait resolution: {}", &err.msg);
                Ok(TraitRef {
                    kind: TraitRefKind::Unknown(err.msg),
                    trait_decl_ref,
                })
            }
        }
    }

    pub(crate) fn translate_trait_impl_expr_aux(
        &mut self,
        span: Span,
        impl_source: &hax::ImplExpr,
        trait_decl_ref: PolyTraitDeclRef,
    ) -> Result<TraitRef, Error> {
        trace!("impl_expr: {:#?}", impl_source);
        use hax::ImplExprAtom;

        let trait_ref = match &impl_source.r#impl {
            ImplExprAtom::Concrete {
                id: impl_def_id,
                generics,
                impl_exprs,
            } => {
                let impl_id = self.register_trait_impl_id(span, impl_def_id);
                let generics = self.translate_generic_args(
                    span,
                    generics,
                    impl_exprs,
                    None,
                    GenericsSource::item(impl_id),
                )?;
                TraitRef {
                    kind: TraitRefKind::TraitImpl(impl_id, generics),
                    trait_decl_ref,
                }
            }
            // The self clause and the other clauses are handled in a similar manner
            ImplExprAtom::SelfImpl {
                r#trait: trait_ref,
                path,
            }
            | ImplExprAtom::LocalBound {
                r#trait: trait_ref,
                path,
                ..
            } => {
                trace!(
                    "impl source (self or clause): param:\n- trait_ref: {:?}\n- path: {:?}",
                    trait_ref,
                    path,
                );
                // If we are refering to a trait clause, we need to find the
                // relevant one.
                let mut trait_id = match &impl_source.r#impl {
                    ImplExprAtom::SelfImpl { .. } => TraitRefKind::SelfId,
                    ImplExprAtom::LocalBound { index, .. } => {
                        let var = self.lookup_clause_var(span, *index)?;
                        TraitRefKind::Clause(var)
                    }
                    _ => unreachable!(),
                };

                let mut current_trait_decl_id =
                    self.register_trait_decl_id(span, &trait_ref.hax_skip_binder_ref().def_id);

                // Apply the path
                for path_elem in path {
                    use hax::ImplExprPathChunk::*;
                    match path_elem {
                        AssocItem {
                            item,
                            generic_args,
                            predicate,
                            index,
                            ..
                        } => {
                            if !generic_args.is_empty() {
                                raise_error!(
                                    self,
                                    span,
                                    "Found unsupported GAT `{}` when resolving trait `{}`",
                                    item.name,
                                    trait_decl_ref.fmt_with_ctx(&self.into_fmt())
                                )
                            }
                            trait_id = TraitRefKind::ItemClause(
                                Box::new(trait_id),
                                current_trait_decl_id,
                                TraitItemName(item.name.clone()),
                                TraitClauseId::new(*index),
                            );
                            current_trait_decl_id = self.register_trait_decl_id(
                                span,
                                &predicate.hax_skip_binder_ref().trait_ref.def_id,
                            );
                        }
                        Parent {
                            predicate, index, ..
                        } => {
                            trait_id = TraitRefKind::ParentClause(
                                Box::new(trait_id),
                                current_trait_decl_id,
                                TraitClauseId::new(*index),
                            );
                            current_trait_decl_id = self.register_trait_decl_id(
                                span,
                                &predicate.hax_skip_binder_ref().trait_ref.def_id,
                            );
                        }
                    }
                }

                // Ignore the arguments: we forbid using universal quantifiers
                // on the trait clauses for now.
                TraitRef {
                    kind: trait_id,
                    trait_decl_ref,
                }
            }
            ImplExprAtom::Dyn => TraitRef {
                kind: TraitRefKind::Dyn(trait_decl_ref.clone()),
                trait_decl_ref,
            },
            ImplExprAtom::Builtin {
                impl_exprs, types, ..
            } => {
                let parent_trait_refs = self.translate_trait_impl_exprs(span, &impl_exprs)?;
                let types = types
                    .iter()
                    .map(|(def_id, ty)| {
                        let item_def = self.hax_def(def_id)?;
                        let ty = self.translate_ty(span, ty)?;
                        let hax::FullDefKind::AssocTy {
                            associated_item, ..
                        } = item_def.kind()
                        else {
                            unreachable!()
                        };
                        let name = TraitItemName(associated_item.name.clone());
                        Ok((name, ty))
                    })
                    .try_collect()?;
                TraitRef {
                    kind: TraitRefKind::BuiltinOrAuto {
                        trait_decl_ref: trait_decl_ref.clone(),
                        parent_trait_refs,
                        types,
                    },
                    trait_decl_ref,
                }
            }
            ImplExprAtom::Error(msg) => {
                let trait_ref = TraitRef {
                    kind: TraitRefKind::Unknown(msg.clone()),
                    trait_decl_ref,
                };
                if self.error_on_impl_expr_error {
                    register_error!(self, span, "Error during trait resolution: {}", msg);
                }
                trait_ref
            }
        };
        Ok(trait_ref)
    }
}