charon_driver/translate/translate_traits.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
use super::translate_ctx::*;
use charon_lib::ast::*;
use charon_lib::formatter::IntoFormatter;
use charon_lib::meta::ItemMeta;
use charon_lib::pretty::FmtWithCtx;
use charon_lib::ullbc_ast as ast;
use hax_frontend_exporter as hax;
use indexmap::IndexMap;
use itertools::Itertools;
use std::mem;
use std::sync::Arc;
/// The context in which we are translating a clause, used to generate the appropriate ids and
/// trait references.
pub(crate) enum PredicateLocation {
/// We're translating the parent clauses of this trait.
Parent,
/// We're translating the item clauses of this trait.
Item(TraitItemName),
/// We're translating anything else.
Base,
}
impl<'tcx, 'ctx> TranslateCtx<'tcx> {
/// Remark: this **doesn't** register the def id (on purpose)
pub(crate) fn translate_trait_item_name(
&mut self,
def_id: &hax::DefId,
) -> Result<TraitItemName, Error> {
// Translate the name
let name = self.hax_def_id_to_name(def_id)?;
let (name, id) = name.name.last().unwrap().as_ident().unwrap();
assert!(id.is_zero());
Ok(TraitItemName(name.to_string()))
}
}
impl BodyTransCtx<'_, '_> {
#[tracing::instrument(skip(self, item_meta))]
pub fn translate_trait_decl(
mut self,
def_id: TraitDeclId,
item_meta: ItemMeta,
def: &hax::FullDef,
) -> Result<TraitDecl, Error> {
trace!("About to translate trait decl:\n{:?}", def.def_id);
trace!("Trait decl id:\n{:?}", def_id);
let span = item_meta.span;
if let hax::FullDefKind::TraitAlias { .. } = def.kind() {
raise_error!(self, span, "Trait aliases are not supported");
}
let hax::FullDefKind::Trait { items, .. } = &def.kind else {
raise_error!(self, span, "Unexpected definition: {def:?}");
};
let items: Vec<(TraitItemName, &hax::AssocItem, Arc<hax::FullDef>)> = items
.iter()
.map(|(item, def)| {
let name = TraitItemName(item.name.clone());
(name, item, def.clone())
})
.collect_vec();
// Translate the generics
// Note that in the generics returned by [translate_def_generics], the trait refs only
// contain the local trait clauses. The parent clauses are stored in
// `self.parent_trait_clauses`.
self.translate_def_generics(span, def)?;
// Translate the associated items
// We do something subtle here: TODO: explain
let mut consts = Vec::new();
let mut const_defaults = IndexMap::new();
let mut types = Vec::new();
let mut type_clauses = Vec::new();
let mut type_defaults = IndexMap::new();
let mut methods = Vec::new();
for (item_name, hax_item, hax_def) in &items {
let item_def_id = &hax_item.def_id;
let item_span = self.def_span(item_def_id);
match &hax_def.kind {
hax::FullDefKind::AssocFn { .. } => {
let fun_def = self.t_ctx.hax_def(item_def_id)?;
let binder_kind = BinderKind::TraitMethod(def_id, item_name.clone());
let fn_ref = self.translate_binder_for_def(
item_span,
binder_kind,
&fun_def,
|bt_ctx| {
// If the trait is opaque, we only translate the signature of a method
// with default body if it's overridden or used somewhere else.
// We insert the `Binder<FunDeclRef>` unconditionally here, and remove
// the ones that correspond to untranslated functions in the
// `remove_unused_methods` pass.
// FIXME: this triggers the translation of traits used in the method
// clauses, despite the fact that we may end up not needing them.
let fun_id = if bt_ctx.t_ctx.options.translate_all_methods
|| item_meta.opacity.is_transparent()
|| !hax_item.has_value
{
bt_ctx.register_fun_decl_id(item_span, item_def_id)
} else {
bt_ctx.register_fun_decl_id_no_enqueue(item_span, item_def_id)
};
// TODO: there's probably a cleaner way to write this
assert_eq!(bt_ctx.binding_levels.len(), 2);
let fun_generics = bt_ctx
.outermost_binder()
.params
.identity_args_at_depth(
GenericsSource::item(def_id),
DeBruijnId::one(),
)
.concat(
GenericsSource::item(fun_id),
&bt_ctx.innermost_binder().params.identity_args_at_depth(
GenericsSource::Method(def_id.into(), item_name.clone()),
DeBruijnId::zero(),
),
);
Ok(FunDeclRef {
id: fun_id,
generics: fun_generics,
})
},
)?;
methods.push((item_name.clone(), fn_ref));
}
hax::FullDefKind::AssocConst { ty, .. } => {
// Check if the constant has a value (i.e., a body).
if hax_item.has_value {
// The parameters of the constant are the same as those of the item that
// declares them.
let id = self.register_global_decl_id(item_span, item_def_id);
let generics_target = GenericsSource::item(id);
let gref = GlobalDeclRef {
id,
generics: self.the_only_binder().params.identity_args(generics_target),
};
const_defaults.insert(item_name.clone(), gref);
};
let ty = self.translate_ty(item_span, ty)?;
consts.push((item_name.clone(), ty));
}
hax::FullDefKind::AssocTy { param_env, .. }
if !param_env.generics.params.is_empty() =>
{
raise_error!(
self,
item_span,
"Generic associated types are not supported"
);
}
hax::FullDefKind::AssocTy { value, .. } => {
// TODO: handle generics (i.e. GATs).
if let Some(clauses) = self.item_trait_clauses.get(item_name) {
type_clauses.push((item_name.clone(), clauses.clone()));
}
if let Some(ty) = value {
let ty = self.translate_ty(item_span, &ty)?;
type_defaults.insert(item_name.clone(), ty);
};
types.push(item_name.clone());
}
_ => panic!("Unexpected definition for trait item: {hax_def:?}"),
}
}
// In case of a trait implementation, some values may not have been
// provided, in case the declaration provided default values. We
// check those, and lookup the relevant values.
Ok(ast::TraitDecl {
def_id,
item_meta,
parent_clauses: mem::take(&mut self.parent_trait_clauses),
generics: self.into_generics(),
type_clauses,
consts,
const_defaults,
types,
type_defaults,
methods,
})
}
#[tracing::instrument(skip(self, item_meta))]
pub fn translate_trait_impl(
mut self,
def_id: TraitImplId,
item_meta: ItemMeta,
def: &hax::FullDef,
) -> Result<TraitImpl, Error> {
trace!("About to translate trait impl:\n{:?}", def.def_id);
trace!("Trait impl id:\n{:?}", def_id);
let span = item_meta.span;
self.translate_def_generics(span, def)?;
let hax::FullDefKind::TraitImpl {
trait_pred,
implied_impl_exprs,
items: impl_items,
..
} = &def.kind
else {
unreachable!()
};
// Retrieve the information about the implemented trait.
let implemented_trait_id = &trait_pred.trait_ref.def_id;
let trait_id = self.register_trait_decl_id(span, implemented_trait_id);
let implemented_trait = {
let implemented_trait = &trait_pred.trait_ref;
let generics = self.translate_generic_args(
span,
&implemented_trait.generic_args,
&[],
None,
GenericsSource::item(trait_id),
)?;
TraitDeclRef { trait_id, generics }
};
// The trait refs which implement the parent clauses of the implemented trait decl.
let parent_trait_refs = self.translate_trait_impl_exprs(span, &implied_impl_exprs)?;
{
// Debugging
let ctx = self.into_fmt();
let refs = parent_trait_refs
.iter()
.map(|c| c.fmt_with_ctx(&ctx))
.collect::<Vec<String>>()
.join("\n");
trace!(
"Trait impl: {:?}\n- parent_trait_refs:\n{}",
def.def_id,
refs
);
}
// Explore the associated items
let mut consts = Vec::new();
let mut types: Vec<(TraitItemName, Ty)> = Vec::new();
let mut methods = Vec::new();
let mut type_clauses = Vec::new();
for impl_item in impl_items {
use hax::ImplAssocItemValue::*;
let name = TraitItemName(impl_item.name.clone());
let item_def = impl_item.def(); // The impl item or the corresponding trait default.
let item_span = self.def_span(item_def.rust_def_id());
let item_def_id = item_def.rust_def_id();
match item_def.kind() {
hax::FullDefKind::AssocFn { .. } => {
match &impl_item.value {
Provided { is_override, .. } => {
let fun_def = self.t_ctx.hax_def(item_def_id)?;
let binder_kind = BinderKind::TraitMethod(trait_id, name.clone());
let fn_ref = self.translate_binder_for_def(
item_span,
binder_kind,
&fun_def,
|bt_ctx| {
// If the impl is opaque, we only translate the signature of a
// method with a default body if it's directly used somewhere
// else.
// We insert the `Binder<FunDeclRef>` unconditionally here, and
// remove the ones that correspond to untranslated functions in
// the `remove_unused_methods` pass.
let fun_id = if bt_ctx.t_ctx.options.translate_all_methods
|| item_meta.opacity.is_transparent()
|| !*is_override
{
bt_ctx.register_fun_decl_id(item_span, item_def_id)
} else {
bt_ctx
.register_fun_decl_id_no_enqueue(item_span, item_def_id)
};
// TODO: there's probably a cleaner way to write this
assert_eq!(bt_ctx.binding_levels.len(), 2);
let fun_generics = bt_ctx
.outermost_binder()
.params
.identity_args_at_depth(
GenericsSource::item(def_id),
DeBruijnId::one(),
)
.concat(
GenericsSource::item(fun_id),
&bt_ctx
.innermost_binder()
.params
.identity_args_at_depth(
GenericsSource::Method(
trait_id.into(),
name.clone(),
),
DeBruijnId::zero(),
),
);
Ok(FunDeclRef {
id: fun_id,
generics: fun_generics,
})
},
)?;
methods.push((name, fn_ref));
}
DefaultedFn { .. } => {
// TODO: handle defaulted methods
}
_ => unreachable!(),
}
}
hax::FullDefKind::AssocConst { .. } => {
let id = self.register_global_decl_id(item_span, item_def_id);
let generics_target = GenericsSource::item(id);
// The parameters of the constant are the same as those of the item that
// declares them.
let generics = match &impl_item.value {
Provided { .. } => {
self.the_only_binder().params.identity_args(generics_target)
}
_ => implemented_trait
.generics
.clone()
.with_target(generics_target),
};
let gref = GlobalDeclRef { id, generics };
consts.push((name, gref));
}
hax::FullDefKind::AssocTy { param_env, .. }
if !param_env.generics.params.is_empty() =>
{
// We don't support GATs; the error was already reported in the trait declaration.
}
hax::FullDefKind::AssocTy { value, .. } => {
let ty = match &impl_item.value {
Provided { .. } => value.as_ref().unwrap(),
DefaultedTy { ty, .. } => ty,
_ => unreachable!(),
};
let ty = self.translate_ty(item_span, &ty)?;
types.push((name.clone(), ty));
let trait_refs =
self.translate_trait_impl_exprs(item_span, &impl_item.required_impl_exprs)?;
type_clauses.push((name, trait_refs));
}
_ => panic!("Unexpected definition for trait item: {item_def:?}"),
}
}
Ok(ast::TraitImpl {
def_id,
item_meta,
impl_trait: implemented_trait,
generics: self.into_generics(),
parent_trait_refs,
type_clauses,
consts,
types,
methods,
})
}
}