1use super::translate_ctx::*;
2use charon_lib::ast::*;
3use charon_lib::common::hash_by_addr::HashByAddr;
4use charon_lib::ids::Vector;
5use core::convert::*;
6use hax::{HasParamEnv, Visibility};
7use itertools::Itertools;
8
9impl<'tcx, 'ctx> ItemTransCtx<'tcx, 'ctx> {
10 pub(crate) fn translate_region(
12 &mut self,
13 span: Span,
14 region: &hax::Region,
15 ) -> Result<Region, Error> {
16 use hax::RegionKind::*;
17 match ®ion.kind {
18 ReErased => Ok(Region::Erased),
19 ReStatic => Ok(Region::Static),
20 ReBound(id, br) => {
21 let var = self.lookup_bound_region(span, *id, br.var)?;
22 Ok(Region::Var(var))
23 }
24 ReEarlyParam(region) => {
25 let var = self.lookup_early_region(span, region)?;
26 Ok(Region::Var(var))
27 }
28 ReVar(..) | RePlaceholder(..) => {
29 raise_error!(
31 self,
32 span,
33 "Should not exist outside of type inference: {region:?}"
34 )
35 }
36 ReLateParam(..) | ReError(..) => {
37 raise_error!(self, span, "Unexpected region kind: {region:?}")
38 }
39 }
40 }
41
42 pub(crate) fn translate_hax_int_ty(int_ty: &hax::IntTy) -> IntTy {
43 match int_ty {
44 hax::IntTy::Isize => IntTy::Isize,
45 hax::IntTy::I8 => IntTy::I8,
46 hax::IntTy::I16 => IntTy::I16,
47 hax::IntTy::I32 => IntTy::I32,
48 hax::IntTy::I64 => IntTy::I64,
49 hax::IntTy::I128 => IntTy::I128,
50 }
51 }
52
53 pub(crate) fn translate_hax_uint_ty(uint_ty: &hax::UintTy) -> UIntTy {
54 use hax::UintTy;
55 match uint_ty {
56 UintTy::Usize => UIntTy::Usize,
57 UintTy::U8 => UIntTy::U8,
58 UintTy::U16 => UIntTy::U16,
59 UintTy::U32 => UIntTy::U32,
60 UintTy::U64 => UIntTy::U64,
61 UintTy::U128 => UIntTy::U128,
62 }
63 }
64
65 #[tracing::instrument(skip(self, span))]
74 pub(crate) fn translate_ty(&mut self, span: Span, ty: &hax::Ty) -> Result<Ty, Error> {
75 let cache_key = HashByAddr(ty.inner().clone());
76 if let Some(ty) = self
77 .innermost_binder()
78 .type_trans_cache
79 .get(&cache_key)
80 .cloned()
81 {
82 return Ok(ty.clone());
83 }
84 let ty = self
86 .translate_ty_inner(span, ty)
87 .unwrap_or_else(|e| TyKind::Error(e.msg).into_ty());
88 self.innermost_binder_mut()
89 .type_trans_cache
90 .insert(cache_key, ty.clone());
91 Ok(ty)
92 }
93
94 fn translate_ty_inner(&mut self, span: Span, ty: &hax::Ty) -> Result<Ty, Error> {
95 trace!("{:?}", ty);
96 let kind = match ty.kind() {
97 hax::TyKind::Bool => TyKind::Literal(LiteralTy::Bool),
98 hax::TyKind::Char => TyKind::Literal(LiteralTy::Char),
99 hax::TyKind::Int(int_ty) => {
100 TyKind::Literal(LiteralTy::Int(Self::translate_hax_int_ty(int_ty)))
101 }
102 hax::TyKind::Uint(uint_ty) => {
103 TyKind::Literal(LiteralTy::UInt(Self::translate_hax_uint_ty(uint_ty)))
104 }
105 hax::TyKind::Float(float_ty) => {
106 use hax::FloatTy;
107 TyKind::Literal(LiteralTy::Float(match float_ty {
108 FloatTy::F16 => types::FloatTy::F16,
109 FloatTy::F32 => types::FloatTy::F32,
110 FloatTy::F64 => types::FloatTy::F64,
111 FloatTy::F128 => types::FloatTy::F128,
112 }))
113 }
114 hax::TyKind::Never => TyKind::Never,
115
116 hax::TyKind::Alias(alias) => match &alias.kind {
117 hax::AliasKind::Projection {
118 impl_expr,
119 assoc_item,
120 } => {
121 let trait_ref = self.translate_trait_impl_expr(span, impl_expr)?;
122 let name = self.t_ctx.translate_trait_item_name(&assoc_item.def_id)?;
123 TyKind::TraitType(trait_ref, name)
124 }
125 hax::AliasKind::Opaque { hidden_ty, .. } => {
126 return self.translate_ty(span, hidden_ty);
127 }
128 _ => {
129 raise_error!(self, span, "Unsupported alias type: {:?}", alias.kind)
130 }
131 },
132
133 hax::TyKind::Adt(item) => {
134 let tref = self.translate_type_decl_ref(span, item)?;
135 TyKind::Adt(tref)
136 }
137 hax::TyKind::Str => {
138 let tref = TypeDeclRef::new(TypeId::Builtin(BuiltinTy::Str), GenericArgs::empty());
139 TyKind::Adt(tref)
140 }
141 hax::TyKind::Array(ty, const_param) => {
142 let c = self.translate_constant_expr_to_const_generic(span, const_param)?;
143 let ty = self.translate_ty(span, ty)?;
144 let tref = TypeDeclRef::new(
145 TypeId::Builtin(BuiltinTy::Array),
146 GenericArgs::new(Vector::new(), [ty].into(), [c].into(), Vector::new()),
147 );
148 TyKind::Adt(tref)
149 }
150 hax::TyKind::Slice(ty) => {
151 let ty = self.translate_ty(span, ty)?;
152 let tref = TypeDeclRef::new(
153 TypeId::Builtin(BuiltinTy::Slice),
154 GenericArgs::new_for_builtin([ty].into()),
155 );
156 TyKind::Adt(tref)
157 }
158 hax::TyKind::Ref(region, ty, mutability) => {
159 trace!("Ref");
160
161 let region = self.translate_region(span, region)?;
162 let ty = self.translate_ty(span, ty)?;
163 let kind = if *mutability {
164 RefKind::Mut
165 } else {
166 RefKind::Shared
167 };
168 TyKind::Ref(region, ty, kind)
169 }
170 hax::TyKind::RawPtr(ty, mutbl) => {
171 trace!("RawPtr: {:?}", (ty, mutbl));
172 let ty = self.translate_ty(span, ty)?;
173 let kind = if *mutbl {
174 RefKind::Mut
175 } else {
176 RefKind::Shared
177 };
178 TyKind::RawPtr(ty, kind)
179 }
180 hax::TyKind::Tuple(substs) => {
181 let mut params = Vector::new();
182 for param in substs.iter() {
183 let param_ty = self.translate_ty(span, param)?;
184 params.push(param_ty);
185 }
186 let tref = TypeDeclRef::new(TypeId::Tuple, GenericArgs::new_for_builtin(params));
187 TyKind::Adt(tref)
188 }
189
190 hax::TyKind::Param(param) => {
191 trace!("Param");
199
200 let var = self.lookup_type_var(span, param)?;
202 TyKind::TypeVar(var)
203 }
204
205 hax::TyKind::Foreign(item) => {
206 let tref = self.translate_type_decl_ref(span, item)?;
207 TyKind::Adt(tref)
208 }
209
210 hax::TyKind::Arrow(sig) => {
211 trace!("Arrow");
212 trace!("bound vars: {:?}", sig.bound_vars);
213 let sig = self.translate_fun_sig(span, sig)?;
214 TyKind::FnPtr(sig)
215 }
216 hax::TyKind::FnDef { item, .. } => {
217 let fnref = self.translate_fn_ptr(span, item)?;
218 TyKind::FnDef(fnref)
219 }
220 hax::TyKind::Closure(args) => {
221 let tref = self.translate_closure_type_ref(span, args)?;
222 TyKind::Adt(tref)
223 }
224
225 hax::TyKind::Dynamic(self_ty, preds, region) => {
226 if self.monomorphize() {
227 raise_error!(
228 self,
229 span,
230 "`dyn Trait` is not yet supported with `--monomorphize`; \
231 use `--monomorphize-conservative` instead"
232 )
233 }
234 let pred = self.translate_existential_predicates(span, self_ty, preds, region)?;
235 if let hax::ClauseKind::Trait(trait_predicate) =
236 preds.predicates[0].0.kind.hax_skip_binder_ref()
237 {
238 if self.trait_is_dyn_compatible(&trait_predicate.trait_ref.def_id)? {
242 let _: TypeDeclId = self.register_item(
245 span,
246 &trait_predicate.trait_ref,
247 TransItemSourceKind::VTable,
248 );
249 }
250 }
251 TyKind::DynTrait(pred)
252 }
253
254 hax::TyKind::Infer(_) => {
255 raise_error!(self, span, "Unsupported type: infer type")
256 }
257 hax::TyKind::Coroutine(..) => {
258 raise_error!(self, span, "Coroutine types are not supported yet")
259 }
260 hax::TyKind::Bound(_, _) => {
261 raise_error!(self, span, "Unexpected type kind: bound")
262 }
263 hax::TyKind::Placeholder(_) => {
264 raise_error!(self, span, "Unsupported type: placeholder")
265 }
266
267 hax::TyKind::Error => {
268 raise_error!(self, span, "Type checking error")
269 }
270 hax::TyKind::Todo(s) => {
271 raise_error!(self, span, "Unsupported type: {:?}", s)
272 }
273 };
274 Ok(kind.into_ty())
275 }
276
277 pub fn translate_fun_sig(
278 &mut self,
279 span: Span,
280 sig: &hax::Binder<hax::TyFnSig>,
281 ) -> Result<RegionBinder<(Vec<Ty>, Ty)>, Error> {
282 self.translate_region_binder(span, sig, |ctx, sig| {
283 let inputs = sig
284 .inputs
285 .iter()
286 .map(|x| ctx.translate_ty(span, x))
287 .try_collect()?;
288 let output = ctx.translate_ty(span, &sig.output)?;
289 Ok((inputs, output))
290 })
291 }
292
293 pub fn translate_generic_args(
295 &mut self,
296 span: Span,
297 substs: &[hax::GenericArg],
298 trait_refs: &[hax::ImplExpr],
299 ) -> Result<GenericArgs, Error> {
300 use hax::GenericArg::*;
301 trace!("{:?}", substs);
302
303 let mut regions = Vector::new();
304 let mut types = Vector::new();
305 let mut const_generics = Vector::new();
306 for param in substs {
307 match param {
308 Type(param_ty) => {
309 types.push(self.translate_ty(span, param_ty)?);
310 }
311 Lifetime(region) => {
312 regions.push(self.translate_region(span, region)?);
313 }
314 Const(c) => {
315 const_generics.push(self.translate_constant_expr_to_const_generic(span, c)?);
316 }
317 }
318 }
319 let trait_refs = self.translate_trait_impl_exprs(span, trait_refs)?;
320
321 Ok(GenericArgs {
322 regions,
323 types,
324 const_generics,
325 trait_refs,
326 })
327 }
328
329 pub fn append_late_bound_to_generics(
331 &mut self,
332 span: Span,
333 generics: GenericArgs,
334 late_bound: Option<hax::Binder<()>>,
335 ) -> Result<RegionBinder<GenericArgs>, Error> {
336 let late_bound = late_bound.unwrap_or(hax::Binder {
337 value: (),
338 bound_vars: vec![],
339 });
340 self.translate_region_binder(span, &late_bound, |ctx, _| {
341 Ok(generics
342 .move_under_binder()
343 .concat(&ctx.innermost_binder().params.identity_args()))
344 })
345 }
346
347 pub(crate) fn recognize_builtin_type(
349 &mut self,
350 item: &hax::ItemRef,
351 ) -> Result<Option<BuiltinTy>, Error> {
352 let def = self.hax_def(item)?;
353 let ty = if def.lang_item.as_deref() == Some("owned_box") && !self.t_ctx.options.raw_boxes {
354 Some(BuiltinTy::Box)
355 } else {
356 None
357 };
358 Ok(ty)
359 }
360
361 pub fn translate_ptr_metadata(&self, item: &hax::ItemRef) -> Option<PtrMetadata> {
365 use rustc_middle::ty;
367 let tcx = self.t_ctx.tcx;
368 let rdefid = item.def_id.as_rust_def_id().unwrap();
369 let hax_state = &self.hax_state_with_id();
370 let ty_env = hax_state.typing_env();
371 let ty = tcx
372 .type_of(rdefid)
373 .instantiate(tcx, item.rustc_args(hax_state));
374
375 match tcx
377 .struct_tail_raw(
378 ty,
379 |ty| tcx.try_normalize_erasing_regions(ty_env, ty).unwrap_or(ty),
380 || {},
381 )
382 .kind()
383 {
384 ty::Foreign(..) => Some(PtrMetadata::None),
385 ty::Str | ty::Slice(..) => Some(PtrMetadata::Length),
386 ty::Dynamic(..) => Some(PtrMetadata::VTable(VTable)),
387 ty::Placeholder(..) | ty::Infer(..) | ty::Param(..) | ty::Bound(..) => None,
391 _ => Some(PtrMetadata::None),
392 }
393 }
394
395 #[tracing::instrument(skip(self))]
400 pub fn translate_layout(&self, item: &hax::ItemRef) -> Option<Layout> {
401 use rustc_abi as r_abi;
402 fn translate_variant_layout(
404 variant_layout: &r_abi::LayoutData<r_abi::FieldIdx, r_abi::VariantIdx>,
405 tag: Option<ScalarValue>,
406 ) -> VariantLayout {
407 match &variant_layout.fields {
408 r_abi::FieldsShape::Arbitrary { offsets, .. } => {
409 let mut v = Vector::with_capacity(offsets.len());
410 for o in offsets.iter() {
411 v.push(o.bytes());
412 }
413 VariantLayout {
414 field_offsets: v,
415 uninhabited: variant_layout.is_uninhabited(),
416 tag,
417 }
418 }
419 r_abi::FieldsShape::Primitive
420 | r_abi::FieldsShape::Union(_)
421 | r_abi::FieldsShape::Array { .. } => panic!("Unexpected layout shape"),
422 }
423 }
424
425 fn translate_primitive_int(int_ty: r_abi::Integer, signed: bool) -> IntegerTy {
426 if signed {
427 IntegerTy::Signed(match int_ty {
428 r_abi::Integer::I8 => IntTy::I8,
429 r_abi::Integer::I16 => IntTy::I16,
430 r_abi::Integer::I32 => IntTy::I32,
431 r_abi::Integer::I64 => IntTy::I64,
432 r_abi::Integer::I128 => IntTy::I128,
433 })
434 } else {
435 IntegerTy::Unsigned(match int_ty {
436 r_abi::Integer::I8 => UIntTy::U8,
437 r_abi::Integer::I16 => UIntTy::U16,
438 r_abi::Integer::I32 => UIntTy::U32,
439 r_abi::Integer::I64 => UIntTy::U64,
440 r_abi::Integer::I128 => UIntTy::U128,
441 })
442 }
443 }
444
445 let tcx = self.t_ctx.tcx;
446 let rdefid = item.def_id.as_rust_def_id().unwrap();
447 let hax_state = &self.hax_state_with_id();
448 let ty_env = hax_state.typing_env();
449 let ty = tcx
450 .type_of(rdefid)
451 .instantiate(tcx, item.rustc_args(hax_state));
452 let pseudo_input = ty_env.as_query_input(ty);
453
454 let layout = tcx.layout_of(pseudo_input).ok()?.layout;
456 let (size, align) = if layout.is_sized() {
457 (
458 Some(layout.size().bytes()),
459 Some(layout.align().abi.bytes()),
460 )
461 } else {
462 (None, None)
463 };
464
465 let discriminant_layout = match layout.variants() {
467 r_abi::Variants::Multiple {
468 tag,
469 tag_encoding,
470 tag_field,
471 ..
472 } => {
473 let r_abi::FieldsShape::Arbitrary { offsets, .. } = layout.fields() else {
475 unreachable!()
476 };
477
478 let tag_ty = match tag.primitive() {
479 r_abi::Primitive::Int(int_ty, signed) => {
480 translate_primitive_int(int_ty, signed)
481 }
482 r_abi::Primitive::Pointer(_) => IntegerTy::Signed(IntTy::Isize),
484 r_abi::Primitive::Float(_) => {
485 unreachable!()
486 }
487 };
488
489 let encoding = match tag_encoding {
490 r_abi::TagEncoding::Direct => TagEncoding::Direct,
491 r_abi::TagEncoding::Niche {
492 untagged_variant, ..
493 } => TagEncoding::Niche {
494 untagged_variant: VariantId::from_usize(r_abi::VariantIdx::as_usize(
495 *untagged_variant,
496 )),
497 },
498 };
499 offsets.get(*tag_field).map(|s| DiscriminantLayout {
500 offset: r_abi::Size::bytes(*s),
501 tag_ty,
502 encoding,
503 })
504 }
505 r_abi::Variants::Single { .. } | r_abi::Variants::Empty => None,
506 };
507
508 let mut variant_layouts = Vector::new();
509 match layout.variants() {
510 r_abi::Variants::Multiple { variants, .. } => {
511 let tag_ty = discriminant_layout
512 .as_ref()
513 .expect("No discriminant layout for enum?")
514 .tag_ty;
515 let ptr_size = self.t_ctx.translated.target_information.target_pointer_size;
516 let tag_size = r_abi::Size::from_bytes(tag_ty.target_size(ptr_size));
517
518 for (id, variant_layout) in variants.iter_enumerated() {
519 let tag = if variant_layout.is_uninhabited() {
520 None
521 } else {
522 tcx.tag_for_variant(ty_env.as_query_input((ty, id)))
523 .map(|s| match tag_ty {
524 IntegerTy::Signed(int_ty) => {
525 ScalarValue::from_int(ptr_size, int_ty, s.to_int(tag_size))
526 .unwrap()
527 }
528 IntegerTy::Unsigned(uint_ty) => {
529 ScalarValue::from_uint(ptr_size, uint_ty, s.to_uint(tag_size))
530 .unwrap()
531 }
532 })
533 };
534 variant_layouts.push(translate_variant_layout(variant_layout, tag));
535 }
536 }
537 r_abi::Variants::Single { index } => {
538 assert!(*index == r_abi::VariantIdx::ZERO);
539 if let r_abi::FieldsShape::Arbitrary { .. } = layout.fields() {
542 variant_layouts.push(translate_variant_layout(&layout, None));
543 }
544 }
545 r_abi::Variants::Empty => {}
546 }
547
548 Some(Layout {
549 size,
550 align,
551 discriminant_layout,
552 uninhabited: layout.is_uninhabited(),
553 variant_layouts,
554 })
555 }
556
557 pub fn generate_naive_layout(&self, span: Span, ty: &TypeDeclKind) -> Result<Layout, Error> {
559 match ty {
560 TypeDeclKind::Struct(fields) => {
561 let mut size = 0;
562 let mut align = 0;
563 let ptr_size = self.t_ctx.translated.target_information.target_pointer_size;
564 let field_offsets = fields.map_ref(|field| {
565 let offset = size;
566 let size_of_ty = match field.ty.kind() {
567 TyKind::Literal(literal_ty) => literal_ty.target_size(ptr_size) as u64,
568 TyKind::Ref(..) | TyKind::RawPtr(..) | TyKind::FnPtr(..) => ptr_size,
570 _ => panic!("Unsupported type for `generate_naive_layout`: {ty:?}"),
571 };
572 size += size_of_ty;
573 align = std::cmp::max(align, size);
575 offset
576 });
577
578 Ok(Layout {
579 size: Some(size),
580 align: Some(align),
581 discriminant_layout: None,
582 uninhabited: false,
583 variant_layouts: [VariantLayout {
584 field_offsets,
585 tag: None,
586 uninhabited: false,
587 }]
588 .into(),
589 })
590 }
591 _ => raise_error!(
592 self,
593 span,
594 "`generate_naive_layout` only supports structs at the moment"
595 ),
596 }
597 }
598
599 pub(crate) fn translate_adt_def(
605 &mut self,
606 trans_id: TypeDeclId,
607 def_span: Span,
608 item_meta: &ItemMeta,
609 def: &hax::FullDef,
610 ) -> Result<TypeDeclKind, Error> {
611 use hax::AdtKind;
612 let hax::FullDefKind::Adt {
613 adt_kind, variants, ..
614 } = def.kind()
615 else {
616 unreachable!()
617 };
618
619 if item_meta.opacity.is_opaque() {
620 return Ok(TypeDeclKind::Opaque);
621 }
622
623 trace!("{}", trans_id);
624
625 let contents_are_public = match adt_kind {
630 AdtKind::Enum => true,
631 AdtKind::Struct | AdtKind::Union => {
632 error_assert!(self, def_span, variants.len() == 1);
634 variants[0]
635 .fields
636 .iter()
637 .all(|f| matches!(f.vis, Visibility::Public))
638 }
639 };
640
641 if item_meta
642 .opacity
643 .with_content_visibility(contents_are_public)
644 .is_opaque()
645 {
646 return Ok(TypeDeclKind::Opaque);
647 }
648
649 let mut translated_variants: Vector<VariantId, Variant> = Default::default();
651 for (i, var_def) in variants.iter().enumerate() {
652 trace!("variant {i}: {var_def:?}");
653
654 let mut fields: Vector<FieldId, Field> = Default::default();
655 let mut have_names: Option<bool> = None;
658 for (j, field_def) in var_def.fields.iter().enumerate() {
659 trace!("variant {i}: field {j}: {field_def:?}");
660 let field_span = self.t_ctx.translate_span_from_hax(&field_def.span);
661 let ty = self.translate_ty(field_span, &field_def.ty)?;
663 let field_full_def =
664 self.hax_def(&def.this().with_def_id(self.hax_state(), &field_def.did))?;
665 let field_attrs = self.t_ctx.translate_attr_info(&field_full_def);
666
667 let field_name = field_def.name.clone();
669 match &have_names {
671 None => {
672 have_names = match &field_name {
673 None => Some(false),
674 Some(_) => Some(true),
675 }
676 }
677 Some(b) => {
678 error_assert!(self, field_span, *b == field_name.is_some());
679 }
680 };
681
682 let field = Field {
684 span: field_span,
685 attr_info: field_attrs,
686 name: field_name.clone(),
687 ty,
688 };
689 fields.push(field);
690 }
691
692 let discriminant = self.translate_discriminant(def_span, &var_def.discr_val)?;
693 let variant_span = self.t_ctx.translate_span_from_hax(&var_def.span);
694 let variant_name = var_def.name.clone();
695 let variant_full_def =
696 self.hax_def(&def.this().with_def_id(self.hax_state(), &var_def.def_id))?;
697 let variant_attrs = self.t_ctx.translate_attr_info(&variant_full_def);
698
699 let mut variant = Variant {
700 span: variant_span,
701 attr_info: variant_attrs,
702 name: variant_name,
703 fields,
704 discriminant,
705 };
706 if variant.attr_info.rename.is_none() {
708 let prefix = item_meta
709 .attr_info
710 .attributes
711 .iter()
712 .filter_map(|a| a.as_variants_prefix())
713 .next()
714 .map(|attr| attr.as_str());
715 let suffix = item_meta
716 .attr_info
717 .attributes
718 .iter()
719 .filter_map(|a| a.as_variants_suffix())
720 .next()
721 .map(|attr| attr.as_str());
722 if prefix.is_some() || suffix.is_some() {
723 let prefix = prefix.unwrap_or_default();
724 let suffix = suffix.unwrap_or_default();
725 let name = &variant.name;
726 variant.attr_info.rename = Some(format!("{prefix}{name}{suffix}"));
727 }
728 }
729 translated_variants.push(variant);
730 }
731
732 let type_def_kind: TypeDeclKind = match adt_kind {
734 AdtKind::Struct => TypeDeclKind::Struct(translated_variants[0].fields.clone()),
735 AdtKind::Enum => TypeDeclKind::Enum(translated_variants),
736 AdtKind::Union => TypeDeclKind::Union(translated_variants[0].fields.clone()),
737 };
738
739 Ok(type_def_kind)
740 }
741
742 fn translate_discriminant(
743 &mut self,
744 def_span: Span,
745 discr: &hax::DiscriminantValue,
746 ) -> Result<ScalarValue, Error> {
747 let ty = self.translate_ty(def_span, &discr.ty)?;
748 let int_ty = ty.kind().as_literal().unwrap().to_integer_ty().unwrap();
749 Ok(ScalarValue::from_bits(int_ty, discr.val))
750 }
751}