charon_driver/translate/
translate_types.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
use crate::translate::translate_traits::PredicateLocation;

use super::translate_ctx::*;
use charon_lib::ast::*;
use charon_lib::builtins;
use charon_lib::common::hash_by_addr::HashByAddr;
use charon_lib::ids::Vector;
use core::convert::*;
use hax::Visibility;
use hax_frontend_exporter as hax;

/// Small helper: we ignore some region names (when they are equal to "'_")
fn check_region_name(s: String) -> Option<String> {
    if s == "'_" {
        None
    } else {
        Some(s)
    }
}

pub fn translate_bound_region_kind_name(kind: &hax::BoundRegionKind) -> Option<String> {
    use hax::BoundRegionKind::*;
    let s = match kind {
        Anon => None,
        Named(_, symbol) => Some(symbol.clone()),
        ClosureEnv => Some("@env".to_owned()),
    };
    s.and_then(check_region_name)
}

pub fn translate_region_name(region: &hax::EarlyParamRegion) -> Option<String> {
    let s = region.name.clone();
    check_region_name(s)
}

impl<'tcx, 'ctx> BodyTransCtx<'tcx, 'ctx> {
    // Translate a region
    pub(crate) fn translate_region(
        &mut self,
        span: Span,
        region: &hax::Region,
    ) -> Result<Region, Error> {
        use hax::RegionKind::*;
        match &region.kind {
            ReErased => Ok(Region::Erased),
            ReStatic => Ok(Region::Static),
            ReBound(id, br) => {
                let var = self.lookup_bound_region(span, *id, br.var)?;
                Ok(Region::Var(var))
            }
            ReEarlyParam(region) => {
                let var = self.lookup_early_region(span, region)?;
                Ok(Region::Var(var))
            }
            ReVar(..) | RePlaceholder(..) => {
                // Shouldn't exist outside of type inference.
                raise_error!(
                    self,
                    span,
                    "Should not exist outside of type inference: {region:?}"
                )
            }
            ReLateParam(..) | ReError(..) => {
                raise_error!(self, span, "Unexpected region kind: {region:?}")
            }
        }
    }

    /// Translate a Ty.
    ///
    /// Typically used in this module to translate the fields of a structure/
    /// enumeration definition, or later to translate the type of a variable.
    ///
    /// Note that we take as parameter a function to translate regions, because
    /// regions can be translated in several manners (non-erased region or erased
    /// regions), in which case the return type is different.
    #[tracing::instrument(skip(self, span))]
    pub(crate) fn translate_ty(&mut self, span: Span, ty: &hax::Ty) -> Result<Ty, Error> {
        trace!("{:?}", ty);
        let cache_key = HashByAddr(ty.inner().clone());
        if let Some(ty) = self.lookup_cached_type(&cache_key) {
            return Ok(ty.clone());
        }

        let kind = match ty.kind() {
            hax::TyKind::Bool => TyKind::Literal(LiteralTy::Bool),
            hax::TyKind::Char => TyKind::Literal(LiteralTy::Char),
            hax::TyKind::Int(int_ty) => {
                use hax::IntTy;
                TyKind::Literal(LiteralTy::Integer(match int_ty {
                    IntTy::Isize => IntegerTy::Isize,
                    IntTy::I8 => IntegerTy::I8,
                    IntTy::I16 => IntegerTy::I16,
                    IntTy::I32 => IntegerTy::I32,
                    IntTy::I64 => IntegerTy::I64,
                    IntTy::I128 => IntegerTy::I128,
                }))
            }
            hax::TyKind::Uint(int_ty) => {
                use hax::UintTy;
                TyKind::Literal(LiteralTy::Integer(match int_ty {
                    UintTy::Usize => IntegerTy::Usize,
                    UintTy::U8 => IntegerTy::U8,
                    UintTy::U16 => IntegerTy::U16,
                    UintTy::U32 => IntegerTy::U32,
                    UintTy::U64 => IntegerTy::U64,
                    UintTy::U128 => IntegerTy::U128,
                }))
            }
            hax::TyKind::Float(float_ty) => {
                use hax::FloatTy;
                TyKind::Literal(LiteralTy::Float(match float_ty {
                    FloatTy::F16 => charon_lib::ast::types::FloatTy::F16,
                    FloatTy::F32 => charon_lib::ast::types::FloatTy::F32,
                    FloatTy::F64 => charon_lib::ast::types::FloatTy::F64,
                    FloatTy::F128 => charon_lib::ast::types::FloatTy::F128,
                }))
            }
            hax::TyKind::Never => TyKind::Never,

            hax::TyKind::Alias(alias) => match &alias.kind {
                hax::AliasKind::Projection {
                    impl_expr,
                    assoc_item,
                } => {
                    let trait_ref = self.translate_trait_impl_expr(span, impl_expr)?;
                    let name = TraitItemName(assoc_item.name.clone());
                    TyKind::TraitType(trait_ref, name)
                }
                hax::AliasKind::Opaque { hidden_ty, .. } => {
                    return self.translate_ty(span, hidden_ty)
                }
                _ => {
                    raise_error!(self, span, "Unsupported alias type: {:?}", alias.kind)
                }
            },

            hax::TyKind::Adt {
                generic_args: substs,
                trait_refs,
                def_id,
            } => {
                trace!("Adt: {:?}", def_id);

                // Retrieve the type identifier
                let type_id = self.translate_type_id(span, def_id)?;

                // Translate the type parameters instantiation
                let mut generics = self.translate_generic_args(
                    span,
                    substs,
                    trait_refs,
                    None,
                    type_id.generics_target(),
                )?;

                // Filter the type arguments.
                // TODO: do this in a micro-pass
                if let TypeId::Builtin(builtin_ty) = type_id {
                    let used_args = builtins::type_to_used_params(builtin_ty);
                    error_assert!(self, span, generics.types.elem_count() == used_args.len());
                    let types = std::mem::take(&mut generics.types)
                        .into_iter()
                        .zip(used_args)
                        .filter(|(_, used)| *used)
                        .map(|(ty, _)| ty)
                        .collect();
                    generics.types = types;
                }

                // Return the instantiated ADT
                TyKind::Adt(type_id, generics)
            }
            hax::TyKind::Str => {
                trace!("Str");

                let id = TypeId::Builtin(BuiltinTy::Str);
                TyKind::Adt(id, GenericArgs::empty(GenericsSource::Builtin))
            }
            hax::TyKind::Array(ty, const_param) => {
                trace!("Array");

                let c = self.translate_constant_expr_to_const_generic(span, const_param)?;
                let tys = vec![self.translate_ty(span, ty)?].into();
                let cgs = vec![c].into();
                let id = TypeId::Builtin(BuiltinTy::Array);
                TyKind::Adt(
                    id,
                    GenericArgs::new(
                        Vector::new(),
                        tys,
                        cgs,
                        Vector::new(),
                        GenericsSource::Builtin,
                    ),
                )
            }
            hax::TyKind::Slice(ty) => {
                trace!("Slice");

                let tys = vec![self.translate_ty(span, ty)?].into();
                let id = TypeId::Builtin(BuiltinTy::Slice);
                TyKind::Adt(id, GenericArgs::new_for_builtin(tys))
            }
            hax::TyKind::Ref(region, ty, mutability) => {
                trace!("Ref");

                let region = self.translate_region(span, region)?;
                let ty = self.translate_ty(span, ty)?;
                let kind = if *mutability {
                    RefKind::Mut
                } else {
                    RefKind::Shared
                };
                TyKind::Ref(region, ty, kind)
            }
            hax::TyKind::RawPtr(ty, mutbl) => {
                trace!("RawPtr: {:?}", (ty, mutbl));
                let ty = self.translate_ty(span, ty)?;
                let kind = if *mutbl {
                    RefKind::Mut
                } else {
                    RefKind::Shared
                };
                TyKind::RawPtr(ty, kind)
            }
            hax::TyKind::Tuple(substs) => {
                trace!("Tuple");

                let mut params = Vector::new();
                for param in substs.iter() {
                    let param_ty = self.translate_ty(span, param)?;
                    params.push(param_ty);
                }

                TyKind::Adt(TypeId::Tuple, GenericArgs::new_for_builtin(params))
            }

            hax::TyKind::Param(param) => {
                // A type parameter, for example `T` in `fn f<T>(x : T) {}`.
                // Note that this type parameter may actually have been
                // instantiated (in our environment, we may map it to another
                // type): we just have to look it up.
                // Note that if we are using this function to translate a field
                // type in a type definition, it should actually map to a type
                // parameter.
                trace!("Param");

                // Retrieve the translation of the substituted type:
                let var = self.lookup_type_var(span, param)?;
                TyKind::TypeVar(var)
            }

            hax::TyKind::Foreign(def_id) => {
                trace!("Foreign");
                let adt_id = self.translate_type_id(span, def_id)?;
                TyKind::Adt(adt_id, GenericArgs::empty(adt_id.generics_target()))
            }
            hax::TyKind::Infer(_) => {
                trace!("Infer");
                raise_error!(self, span, "Unsupported type: infer type")
            }

            hax::TyKind::Dynamic(_existential_preds, _region, _) => {
                // TODO: we don't translate the predicates yet because our machinery can't handle
                // it.
                trace!("Dynamic");
                TyKind::DynTrait(ExistentialPredicate)
            }

            hax::TyKind::Coroutine(..) => {
                trace!("Coroutine");
                raise_error!(self, span, "Coroutine types are not supported yet")
            }

            hax::TyKind::Bound(_, _) => {
                trace!("Bound");
                raise_error!(self, span, "Unexpected type kind: bound")
            }
            hax::TyKind::Placeholder(_) => {
                trace!("PlaceHolder");
                raise_error!(self, span, "Unsupported type: placeholder")
            }
            hax::TyKind::Arrow(box sig)
            | hax::TyKind::Closure(
                _,
                hax::ClosureArgs {
                    untupled_sig: sig, ..
                },
            ) => {
                trace!("Arrow");
                trace!("bound vars: {:?}", sig.bound_vars);
                let sig = self.translate_region_binder(span, sig, |ctx, sig| {
                    let inputs = sig
                        .inputs
                        .iter()
                        .map(|x| ctx.translate_ty(span, x))
                        .try_collect()?;
                    let output = ctx.translate_ty(span, &sig.output)?;
                    Ok((inputs, output))
                })?;
                TyKind::Arrow(sig)
            }
            hax::TyKind::Error => {
                trace!("Error");
                raise_error!(self, span, "Type checking error")
            }
            hax::TyKind::Todo(s) => {
                trace!("Todo: {s}");
                raise_error!(self, span, "Unsupported type: {:?}", s)
            }
        };
        let ty = kind.into_ty();
        self.innermost_binder_mut()
            .type_trans_cache
            .insert(cache_key, ty.clone());
        Ok(ty)
    }

    pub fn translate_generic_args(
        &mut self,
        span: Span,
        substs: &[hax::GenericArg],
        trait_refs: &[hax::ImplExpr],
        late_bound: Option<hax::Binder<()>>,
        target: GenericsSource,
    ) -> Result<GenericArgs, Error> {
        use hax::GenericArg::*;
        trace!("{:?}", substs);

        let mut regions = Vector::new();
        let mut types = Vector::new();
        let mut const_generics = Vector::new();
        for param in substs {
            match param {
                Type(param_ty) => {
                    types.push(self.translate_ty(span, param_ty)?);
                }
                Lifetime(region) => {
                    regions.push(self.translate_region(span, region)?);
                }
                Const(c) => {
                    const_generics.push(self.translate_constant_expr_to_const_generic(span, c)?);
                }
            }
        }
        // Add the late-bounds lifetimes if any.
        if let Some(binder) = late_bound {
            for v in &binder.bound_vars {
                match v {
                    hax::BoundVariableKind::Region(_) => {
                        regions.push(Region::Erased);
                    }
                    hax::BoundVariableKind::Ty(_) => {
                        raise_error!(self, span, "Unexpected locally bound type variable")
                    }
                    hax::BoundVariableKind::Const => {
                        raise_error!(self, span, "Unexpected locally bound const generic")
                    }
                }
            }
        }
        let trait_refs = self.translate_trait_impl_exprs(span, trait_refs)?;

        Ok(GenericArgs {
            regions,
            types,
            const_generics,
            trait_refs,
            target,
        })
    }

    /// Checks whether the given id corresponds to a built-in type.
    fn recognize_builtin_type(&mut self, def_id: &hax::DefId) -> Result<Option<BuiltinTy>, Error> {
        let def = self.t_ctx.hax_def(def_id)?;
        let ty = if def.lang_item.as_deref() == Some("owned_box") {
            Some(BuiltinTy::Box)
        } else {
            None
        };
        Ok(ty)
    }

    /// Translate a type def id
    pub(crate) fn translate_type_id(
        &mut self,
        span: Span,
        def_id: &hax::DefId,
    ) -> Result<TypeId, Error> {
        trace!("{:?}", def_id);
        let type_id = match self.recognize_builtin_type(def_id)? {
            Some(id) => TypeId::Builtin(id),
            None => TypeId::Adt(self.register_type_decl_id(span, def_id)),
        };
        Ok(type_id)
    }

    /// Translate the body of a type declaration.
    ///
    /// Note that the type may be external, in which case we translate the body
    /// only if it is public (i.e., it is a public enumeration, or it is a
    /// struct with only public fields).
    fn translate_adt_def(
        &mut self,
        trans_id: TypeDeclId,
        def_span: Span,
        item_meta: &ItemMeta,
        adt: &hax::AdtDef,
    ) -> Result<TypeDeclKind, Error> {
        use hax::AdtKind;

        if item_meta.opacity.is_opaque() {
            return Ok(TypeDeclKind::Opaque);
        }

        trace!("{}", trans_id);

        // In case the type is external, check if we should consider the type as
        // transparent (i.e., extract its body). If it is an enumeration, then yes
        // (because the variants of public enumerations are public, together with their
        // fields). If it is a structure, we check if all the fields are public.
        let contents_are_public = match adt.adt_kind {
            AdtKind::Enum => true,
            AdtKind::Struct | AdtKind::Union => {
                // Check the unique variant
                error_assert!(self, def_span, adt.variants.len() == 1);
                adt.variants[0]
                    .fields
                    .iter()
                    .all(|f| matches!(f.vis, Visibility::Public))
            }
        };

        if item_meta
            .opacity
            .with_content_visibility(contents_are_public)
            .is_opaque()
        {
            return Ok(TypeDeclKind::Opaque);
        }

        // The type is transparent: explore the variants
        let mut variants: Vector<VariantId, Variant> = Default::default();
        for (i, var_def) in adt.variants.iter().enumerate() {
            trace!("variant {i}: {var_def:?}");

            let mut fields: Vector<FieldId, Field> = Default::default();
            /* This is for sanity: check that either all the fields have names, or
             * none of them has */
            let mut have_names: Option<bool> = None;
            for (j, field_def) in var_def.fields.iter().enumerate() {
                trace!("variant {i}: field {j}: {field_def:?}");
                let field_span = self.t_ctx.translate_span_from_hax(&field_def.span);
                // Translate the field type
                let ty = self.translate_ty(field_span, &field_def.ty)?;
                let field_full_def = self.t_ctx.hax_def(&field_def.did)?;
                let field_attrs = self.t_ctx.translate_attr_info(&field_full_def);

                // Retrieve the field name.
                let field_name = field_def.name.clone();
                // Sanity check
                match &have_names {
                    None => {
                        have_names = match &field_name {
                            None => Some(false),
                            Some(_) => Some(true),
                        }
                    }
                    Some(b) => {
                        error_assert!(self, field_span, *b == field_name.is_some());
                    }
                };

                // Store the field
                let field = Field {
                    span: field_span,
                    attr_info: field_attrs,
                    name: field_name.clone(),
                    ty,
                };
                fields.push(field);
            }

            let discriminant = self.translate_discriminant(def_span, &var_def.discr_val)?;
            let variant_span = self.t_ctx.translate_span_from_hax(&var_def.span);
            let variant_name = var_def.name.clone();
            let variant_full_def = self.t_ctx.hax_def(&var_def.def_id)?;
            let variant_attrs = self.t_ctx.translate_attr_info(&variant_full_def);

            let mut variant = Variant {
                span: variant_span,
                attr_info: variant_attrs,
                name: variant_name,
                fields,
                discriminant,
            };
            // Propagate a `#[charon::variants_prefix(..)]` or `#[charon::variants_suffix(..)]` attribute to the variants.
            if variant.attr_info.rename.is_none() {
                let prefix = item_meta
                    .attr_info
                    .attributes
                    .iter()
                    .filter_map(|a| a.as_variants_prefix())
                    .next()
                    .map(|attr| attr.as_str());
                let suffix = item_meta
                    .attr_info
                    .attributes
                    .iter()
                    .filter_map(|a| a.as_variants_suffix())
                    .next()
                    .map(|attr| attr.as_str());
                if prefix.is_some() || suffix.is_some() {
                    let prefix = prefix.unwrap_or_default();
                    let suffix = suffix.unwrap_or_default();
                    let name = &variant.name;
                    variant.attr_info.rename = Some(format!("{prefix}{name}{suffix}"));
                }
            }
            variants.push(variant);
        }

        // Register the type
        let type_def_kind: TypeDeclKind = match adt.adt_kind {
            AdtKind::Struct => TypeDeclKind::Struct(variants[0].fields.clone()),
            AdtKind::Enum => TypeDeclKind::Enum(variants),
            AdtKind::Union => TypeDeclKind::Union(variants[0].fields.clone()),
        };

        Ok(type_def_kind)
    }

    fn translate_discriminant(
        &mut self,
        def_span: Span,
        discr: &hax::DiscriminantValue,
    ) -> Result<ScalarValue, Error> {
        let ty = self.translate_ty(def_span, &discr.ty)?;
        let int_ty = *ty.kind().as_literal().unwrap().as_integer().unwrap();
        Ok(ScalarValue::from_bits(int_ty, discr.val))
    }

    /// Translate the generics and predicates of this item and its parents.
    pub(crate) fn translate_def_generics(
        &mut self,
        span: Span,
        def: &hax::FullDef,
    ) -> Result<(), Error> {
        assert!(self.binding_levels.len() == 0);
        self.binding_levels.push(BindingLevel::new(true));
        self.push_generics_for_def(span, def, false)?;
        self.innermost_binder_mut().params.check_consistency();
        Ok(())
    }

    /// Translate the generics and predicates of this item without its parents.
    pub(crate) fn translate_def_generics_without_parents(
        &mut self,
        span: Span,
        def: &hax::FullDef,
    ) -> Result<(), Error> {
        self.binding_levels.push(BindingLevel::new(true));
        self.push_generics_for_def_without_parents(span, def, true, true)?;
        self.innermost_binder().params.check_consistency();
        Ok(())
    }

    pub(crate) fn into_generics(mut self) -> GenericParams {
        assert!(self.binding_levels.len() == 1);
        self.binding_levels.pop().unwrap().params
    }

    /// Add the generics and predicates of this item and its parents to the current context.
    fn push_generics_for_def(
        &mut self,
        span: Span,
        def: &hax::FullDef,
        is_parent: bool,
    ) -> Result<(), Error> {
        use hax::FullDefKind;
        // Add generics from the parent item, recursively (recursivity is important for closures,
        // as they could be nested).
        match &def.kind {
            FullDefKind::AssocTy { .. }
            | FullDefKind::AssocFn { .. }
            | FullDefKind::AssocConst { .. }
            | FullDefKind::Closure { .. }
            | FullDefKind::Ctor { .. }
            | FullDefKind::Variant { .. } => {
                let parent_def_id = def.parent.as_ref().unwrap();
                let parent_def = self.t_ctx.hax_def(parent_def_id)?;
                self.push_generics_for_def(span, &parent_def, true)?;
            }
            _ => {}
        }
        self.push_generics_for_def_without_parents(span, def, !is_parent, !is_parent)?;
        Ok(())
    }

    /// Add the generics and predicates of this item. This does not include the parent generics;
    /// use `push_generics_for_def` to get the full list.
    fn push_generics_for_def_without_parents(
        &mut self,
        span: Span,
        def: &hax::FullDef,
        include_late_bound: bool,
        include_assoc_ty_clauses: bool,
    ) -> Result<(), Error> {
        use hax::FullDefKind;
        if let Some(param_env) = def.param_env() {
            // Add the generic params.
            self.push_generic_params(&param_env.generics)?;
            // Add the self trait clause.
            match &def.kind {
                FullDefKind::TraitImpl {
                    trait_pred: self_predicate,
                    ..
                }
                | FullDefKind::Trait { self_predicate, .. } => {
                    self.register_trait_decl_id(span, &self_predicate.trait_ref.def_id);
                    let _ = self.translate_trait_predicate(span, self_predicate)?;
                }
                _ => {}
            }
            // Add the predicates.
            let origin = match &def.kind {
                FullDefKind::Struct { .. }
                | FullDefKind::Union { .. }
                | FullDefKind::Enum { .. }
                | FullDefKind::TyAlias { .. }
                | FullDefKind::AssocTy { .. } => PredicateOrigin::WhereClauseOnType,
                FullDefKind::Fn { .. }
                | FullDefKind::AssocFn { .. }
                | FullDefKind::Const { .. }
                | FullDefKind::AssocConst { .. }
                | FullDefKind::Static { .. } => PredicateOrigin::WhereClauseOnFn,
                FullDefKind::TraitImpl { .. } | FullDefKind::InherentImpl { .. } => {
                    PredicateOrigin::WhereClauseOnImpl
                }
                FullDefKind::Trait { .. } => {
                    let _ = self.register_trait_decl_id(span, &def.def_id);
                    PredicateOrigin::WhereClauseOnTrait
                }
                _ => panic!("Unexpected def: {def:?}"),
            };
            self.register_predicates(
                &param_env.predicates,
                origin.clone(),
                &PredicateLocation::Base,
            )?;
            // Also register implied predicates.
            if let FullDefKind::Trait {
                implied_predicates, ..
            }
            | FullDefKind::AssocTy {
                implied_predicates, ..
            } = &def.kind
            {
                self.register_predicates(implied_predicates, origin, &PredicateLocation::Parent)?;
            }

            if let hax::FullDefKind::Trait { items, .. } = &def.kind
                && include_assoc_ty_clauses
            {
                // Also add the predicates on associated types.
                // FIXME(gat): don't skip GATs.
                // FIXME: don't mix up implied and required predicates.
                for (item, item_def) in items {
                    if let hax::FullDefKind::AssocTy {
                        param_env,
                        implied_predicates,
                        ..
                    } = &item_def.kind
                        && param_env.generics.params.is_empty()
                    {
                        let name = TraitItemName(item.name.clone());
                        self.register_predicates(
                            &implied_predicates,
                            PredicateOrigin::TraitItem(name.clone()),
                            &PredicateLocation::Item(name),
                        )?;
                    }
                }
            }
        }

        // The parameters (and in particular the lifetimes) are split between
        // early bound and late bound parameters. See those blog posts for explanations:
        // https://smallcultfollowing.com/babysteps/blog/2013/10/29/intermingled-parameter-lists/
        // https://smallcultfollowing.com/babysteps/blog/2013/11/04/intermingled-parameter-lists/
        // Note that only lifetimes can be late bound.
        //
        // [TyCtxt.generics_of] gives us the early-bound parameters. We add the late-bound
        // parameters here.
        let signature = match &def.kind {
            hax::FullDefKind::Closure { args, .. } => Some(&args.tupled_sig),
            hax::FullDefKind::Fn { sig, .. } => Some(sig),
            hax::FullDefKind::AssocFn { sig, .. } => Some(sig),
            _ => None,
        };
        if let Some(signature) = signature
            && include_late_bound
        {
            let innermost_binder = self.innermost_binder_mut();
            assert!(innermost_binder.bound_region_vars.is_empty());
            innermost_binder.push_params_from_binder(signature.rebind(()))?;
        }

        Ok(())
    }

    pub(crate) fn push_generic_params(&mut self, generics: &hax::TyGenerics) -> Result<(), Error> {
        for param in &generics.params {
            self.push_generic_param(param)?;
        }
        Ok(())
    }

    pub(crate) fn push_generic_param(&mut self, param: &hax::GenericParamDef) -> Result<(), Error> {
        match &param.kind {
            hax::GenericParamDefKind::Lifetime => {
                let region = hax::EarlyParamRegion {
                    index: param.index,
                    name: param.name.clone(),
                };
                let _ = self.innermost_binder_mut().push_early_region(region);
            }
            hax::GenericParamDefKind::Type { .. } => {
                let _ = self
                    .innermost_binder_mut()
                    .push_type_var(param.index, param.name.clone());
            }
            hax::GenericParamDefKind::Const { ty, .. } => {
                let span = self.def_span(&param.def_id);
                // The type should be primitive, meaning it shouldn't contain variables,
                // non-primitive adts, etc. As a result, we can use an empty context.
                let ty = self.translate_ty(span, ty)?;
                match ty.kind().as_literal() {
                    Some(ty) => self.innermost_binder_mut().push_const_generic_var(
                        param.index,
                        *ty,
                        param.name.clone(),
                    ),
                    None => raise_error!(
                        self,
                        span,
                        "Constant parameters of non-literal type are not supported"
                    ),
                }
            }
        }

        Ok(())
    }
}

impl BodyTransCtx<'_, '_> {
    /// Translate a type definition.
    ///
    /// Note that we translate the types one by one: we don't need to take into
    /// account the fact that some types are mutually recursive at this point
    /// (we will need to take that into account when generating the code in a file).
    #[tracing::instrument(skip(self, item_meta))]
    pub fn translate_type(
        mut self,
        trans_id: TypeDeclId,
        item_meta: ItemMeta,
        def: &hax::FullDef,
    ) -> Result<TypeDecl, Error> {
        let span = item_meta.span;

        // Translate generics and predicates
        self.translate_def_generics(span, def)?;

        // Translate type body
        let kind = match &def.kind {
            _ if item_meta.opacity.is_opaque() => Ok(TypeDeclKind::Opaque),
            hax::FullDefKind::OpaqueTy | hax::FullDefKind::ForeignTy => Ok(TypeDeclKind::Opaque),
            hax::FullDefKind::TyAlias { ty, .. } => {
                // Don't error on missing trait refs.
                self.error_on_impl_expr_error = false;
                // We only translate crate-local type aliases so the `unwrap` is ok.
                let ty = ty.as_ref().unwrap();
                self.translate_ty(span, ty).map(TypeDeclKind::Alias)
            }
            hax::FullDefKind::Struct { def, .. }
            | hax::FullDefKind::Enum { def, .. }
            | hax::FullDefKind::Union { def, .. } => {
                self.translate_adt_def(trans_id, span, &item_meta, def)
            }
            _ => panic!("Unexpected item when translating types: {def:?}"),
        };

        let kind = match kind {
            Ok(kind) => kind,
            Err(err) => TypeDeclKind::Error(err.msg),
        };
        let type_def = TypeDecl {
            def_id: trans_id,
            item_meta,
            generics: self.into_generics(),
            kind,
        };

        Ok(type_def)
    }
}