charon_lib/ast/
types.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
use crate::ids::Vector;
use crate::{ast::*, common::hash_consing::HashConsed};
use derive_visitor::{Drive, DriveMut, Event, Visitor, VisitorMut};
use macros::{EnumAsGetters, EnumIsA, EnumToGetters, VariantIndexArity, VariantName};
use serde::{Deserialize, Serialize};

pub type FieldName = String;

// We need to manipulate a lot of indices for the types, variables, definitions,
// etc. In order not to confuse them, we define an index type for every one of
// them (which is just a struct with a unique usize field), together with some
// utilities like a fresh index generator. Those structures and utilities are
// generated by using macros.
generate_index_type!(TypeVarId, "T");
generate_index_type!(VariantId, "Variant");
generate_index_type!(FieldId, "Field");
generate_index_type!(RegionId, "Region");
generate_index_type!(ConstGenericVarId, "Const");

/// Type variable.
/// We make sure not to mix variables and type variables by having two distinct
/// definitions.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub struct TypeVar {
    /// Unique index identifying the variable
    pub index: TypeVarId,
    /// Variable name
    pub name: String,
}

/// Region variable.
#[derive(
    Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Hash, PartialOrd, Ord, Drive, DriveMut,
)]
pub struct RegionVar {
    /// Unique index identifying the variable
    pub index: RegionId,
    /// Region name
    pub name: Option<String>,
}

/// Const Generic Variable
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub struct ConstGenericVar {
    /// Unique index identifying the variable
    pub index: ConstGenericVarId,
    /// Const generic name
    pub name: String,
    /// Type of the const generic
    pub ty: LiteralTy,
}

#[derive(
    Debug,
    PartialEq,
    Eq,
    Copy,
    Clone,
    Hash,
    PartialOrd,
    Ord,
    Serialize,
    Deserialize,
    Drive,
    DriveMut,
)]
#[serde(transparent)]
pub struct DeBruijnId {
    pub index: usize,
}

#[derive(
    Debug,
    PartialEq,
    Eq,
    Copy,
    Clone,
    Hash,
    PartialOrd,
    Ord,
    EnumIsA,
    EnumAsGetters,
    Serialize,
    Deserialize,
    Drive,
    DriveMut,
)]
#[charon::variants_prefix("R")]
pub enum Region {
    /// Static region
    Static,
    /// Bound region variable.
    ///
    /// **Important**:
    /// ==============
    /// Similarly to what the Rust compiler does, we use De Bruijn indices to
    /// identify *groups* of bound variables, and variable identifiers to
    /// identity the variables inside the groups.
    ///
    /// For instance, we have the following:
    /// ```text
    ///                     we compute the De Bruijn indices from here
    ///                            VVVVVVVVVVVVVVVVVVVVVVV
    /// fn f<'a, 'b>(x: for<'c> fn(&'a u8, &'b u16, &'c u32) -> u64) {}
    ///      ^^^^^^         ^^       ^       ^        ^
    ///        |      De Bruijn: 0   |       |        |
    ///  De Bruijn: 1                |       |        |
    ///                        De Bruijn: 1  |    De Bruijn: 0
    ///                           Var id: 0  |       Var id: 0
    ///                                      |
    ///                                De Bruijn: 1
    ///                                   Var id: 1
    /// ```
    BVar(DeBruijnId, RegionId),
    /// Erased region
    Erased,
    /// For error reporting.
    #[charon::opaque]
    Unknown,
}

/// Identifier of a trait instance.
/// This is derived from the trait resolution.
///
/// Should be read as a path inside the trait clauses which apply to the current
/// definition. Note that every path designated by [TraitInstanceId] refers
/// to a *trait instance*, which is why the [Clause] variant may seem redundant
/// with some of the other variants.
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash, Drive, DriveMut)]
#[charon::rename("TraitInstanceId")]
pub enum TraitRefKind {
    /// A specific top-level implementation item.
    TraitImpl(TraitImplId, GenericArgs),

    /// One of the local clauses.
    ///
    /// Example:
    /// ```text
    /// fn f<T>(...) where T : Foo
    ///                    ^^^^^^^
    ///                    Clause(0)
    /// ```
    Clause(TraitClauseId),

    /// A parent clause
    ///
    /// Remark: the [TraitDeclId] gives the trait declaration which is
    /// implemented by the instance id from which we take the parent clause
    /// (see example below). It is not necessary and included for convenience.
    ///
    /// Remark: Ideally we should store a full `TraitRef` instead, but hax does not give us enough
    /// information to get the right generic args.
    ///
    /// Example:
    /// ```text
    /// trait Foo1 {}
    /// trait Foo2 { fn f(); }
    ///
    /// trait Bar : Foo1 + Foo2 {}
    ///             ^^^^   ^^^^
    ///                    parent clause 1
    ///     parent clause 0
    ///
    /// fn g<T : Bar>(x : T) {
    ///   x.f()
    ///   ^^^^^
    ///   Parent(Clause(0), Bar, 1)::f(x)
    ///                          ^
    ///                          parent clause 1 of clause 0
    ///                     ^^^
    ///              clause 0 implements Bar
    /// }
    /// ```
    ParentClause(Box<TraitRefKind>, TraitDeclId, TraitClauseId),

    /// A clause defined on an associated type. This variant is only used during translation; after
    /// the `lift_associated_item_clauses` pass, clauses on items become `ParentClause`s.
    ///
    /// Remark: the [TraitDeclId] gives the trait declaration which is
    /// implemented by the trait implementation from which we take the item
    /// (see below). It is not necessary and provided for convenience.
    ///
    /// Example:
    /// ```text
    /// trait Foo {
    ///   type W: Bar0 + Bar1 // Bar1 contains a method bar1
    ///                  ^^^^
    ///               this is the clause 1 applying to W
    /// }
    ///
    /// fn f<T : Foo>(x : T::W) {
    ///   x.bar1();
    ///   ^^^^^^^
    ///   ItemClause(Clause(0), Foo, W, 1)
    ///                              ^^^^
    ///                              clause 1 from item W (from local clause 0)
    ///                         ^^^
    ///                local clause 0 implements Foo
    /// }
    /// ```
    #[charon::opaque]
    ItemClause(Box<TraitRefKind>, TraitDeclId, TraitItemName, TraitClauseId),

    /// Self, in case of trait declarations/implementations.
    ///
    /// Putting [Self] at the end on purpose, so that when ordering the clauses
    /// we start with the other clauses (in particular, the local clauses). It
    /// is useful to give priority to the local clauses when solving the trait
    /// obligations which are fullfilled by the trait parameters.
    #[charon::rename("Self")]
    SelfId,

    /// A specific builtin trait implementation like [core::marker::Sized] or
    /// auto trait implementation like [core::marker::Syn].
    BuiltinOrAuto(PolyTraitDeclRef),

    /// The automatically-generated implementation for `dyn Trait`.
    Dyn(PolyTraitDeclRef),

    /// For error reporting.
    #[charon::rename("UnknownTrait")]
    Unknown(String),
}

/// A reference to a trait
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash, Drive, DriveMut)]
pub struct TraitRef {
    #[charon::rename("trait_id")]
    pub kind: TraitRefKind,
    /// Not necessary, but useful
    pub trait_decl_ref: PolyTraitDeclRef,
}

/// A predicate of the form `Type: Trait<Args>`.
///
/// About the generics, if we write:
/// ```text
/// impl Foo<bool> for String { ... }
/// ```
///
/// The substitution is: `[String, bool]`.
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash, Drive, DriveMut)]
pub struct TraitDeclRef {
    #[charon::rename("trait_decl_id")]
    pub trait_id: TraitDeclId,
    #[charon::rename("decl_generics")]
    pub generics: GenericArgs,
}

/// A quantified trait predicate, e.g. `for<'a> Type<'a>: Trait<'a, Args>`.
pub type PolyTraitDeclRef = RegionBinder<TraitDeclRef>;

/// .0 outlives .1
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq)]
pub struct OutlivesPred<T, U>(pub T, pub U);

// The derive macro doesn't handle generics well.
impl<T: Drive, U: Drive> Drive for OutlivesPred<T, U> {
    fn drive<V: Visitor>(&self, visitor: &mut V) {
        visitor.visit(self, Event::Enter);
        self.0.drive(visitor);
        self.1.drive(visitor);
        visitor.visit(self, Event::Exit);
    }
}
impl<T: DriveMut, U: DriveMut> DriveMut for OutlivesPred<T, U> {
    fn drive_mut<V: VisitorMut>(&mut self, visitor: &mut V) {
        visitor.visit(self, Event::Enter);
        self.0.drive_mut(visitor);
        self.1.drive_mut(visitor);
        visitor.visit(self, Event::Exit);
    }
}

pub type RegionOutlives = OutlivesPred<Region, Region>;
pub type TypeOutlives = OutlivesPred<Ty, Region>;

/// A constraint over a trait associated type.
///
/// Example:
/// ```text
/// T : Foo<S = String>
///         ^^^^^^^^^^
/// ```
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Drive, DriveMut)]
pub struct TraitTypeConstraint {
    pub trait_ref: TraitRef,
    pub type_name: TraitItemName,
    pub ty: Ty,
}

#[derive(Default, Clone, Eq, PartialEq, Serialize, Deserialize, Hash, Drive, DriveMut)]
pub struct GenericArgs {
    pub regions: Vector<RegionId, Region>,
    pub types: Vector<TypeVarId, Ty>,
    pub const_generics: Vector<ConstGenericVarId, ConstGeneric>,
    // TODO: rename to match [GenericParams]?
    pub trait_refs: Vector<TraitClauseId, TraitRef>,
}

/// A value of type `T` bound by generic parameters. Used in any context where we're adding generic
/// parameters that aren't on the top-level item, e.g. `for<'a>` clauses, trait methods (TODO),
/// GATs (TODO).
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash)]
pub struct RegionBinder<T> {
    #[charon::rename("binder_regions")]
    pub regions: Vector<RegionId, RegionVar>,
    /// Named this way to highlight accesses to the inner value that might be handling parameters
    /// incorrectly. Prefer using helper methods.
    #[charon::rename("binder_value")]
    pub skip_binder: T,
}

/// Generic parameters for a declaration.
/// We group the generics which come from the Rust compiler substitutions
/// (the regions, types and const generics) as well as the trait clauses.
/// The reason is that we consider that those are parameters that need to
/// be filled. We group in a different place the predicates which are not
/// trait clauses, because those enforce constraints but do not need to
/// be filled with witnesses/instances.
#[derive(Debug, Default, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub struct GenericParams {
    pub regions: Vector<RegionId, RegionVar>,
    pub types: Vector<TypeVarId, TypeVar>,
    pub const_generics: Vector<ConstGenericVarId, ConstGenericVar>,
    // TODO: rename to match [GenericArgs]?
    pub trait_clauses: Vector<TraitClauseId, TraitClause>,
    /// The first region in the pair outlives the second region
    pub regions_outlive: Vec<RegionBinder<RegionOutlives>>,
    /// The type outlives the region
    pub types_outlive: Vec<RegionBinder<TypeOutlives>>,
    /// Constraints over trait associated types
    pub trait_type_constraints: Vec<RegionBinder<TraitTypeConstraint>>,
}

/// A predicate of the form `exists<T> where T: Trait`.
///
/// TODO: store something useful here
#[derive(Debug, Default, Clone, Hash, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub struct ExistentialPredicate;

generate_index_type!(TraitClauseId, "TraitClause");

/// A predicate of the form `Type: Trait<Args>`.
#[derive(Debug, Clone, Serialize, Deserialize, Drive, DriveMut)]
pub struct TraitClause {
    /// We use this id when solving trait constraints, to be able to refer
    /// to specific where clauses when the selected trait actually is linked
    /// to a parameter.
    pub clause_id: TraitClauseId,
    // TODO: does not need to be an option.
    pub span: Option<Span>,
    /// Where the predicate was written, relative to the item that requires it.
    #[charon::opaque]
    pub origin: PredicateOrigin,
    /// The trait that is implemented.
    #[charon::rename("trait")]
    pub trait_: PolyTraitDeclRef,
}

impl PartialEq for TraitClause {
    fn eq(&self, other: &Self) -> bool {
        // Skip `span` and `origin`
        self.clause_id == other.clause_id && self.trait_ == other.trait_
    }
}

impl Eq for TraitClause {}

/// Where a given predicate came from.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub enum PredicateOrigin {
    // Note: we use this for globals too, but that's only available with an unstable feature.
    // ```
    // fn function<T: Clone>() {}
    // fn function<T>() where T: Clone {}
    // const NONE<T: Copy>: Option<T> = None;
    // ```
    WhereClauseOnFn,
    // ```
    // struct Struct<T: Clone> {}
    // struct Struct<T> where T: Clone {}
    // type TypeAlias<T: Clone> = ...;
    // ```
    WhereClauseOnType,
    // Note: this is both trait impls and inherent impl blocks.
    // ```
    // impl<T: Clone> Type<T> {}
    // impl<T> Type<T> where T: Clone {}
    // impl<T> Trait for Type<T> where T: Clone {}
    // ```
    WhereClauseOnImpl,
    // The special `Self: Trait` clause which is in scope inside the definition of `Foo` or an
    // implementation of it.
    // ```
    // trait Trait {}
    // ```
    TraitSelf,
    // Note: this also includes supertrait constraings.
    // ```
    // trait Trait<T: Clone> {}
    // trait Trait<T> where T: Clone {}
    // trait Trait: Clone {}
    // ```
    WhereClauseOnTrait,
    // ```
    // trait Trait {
    //     type AssocType: Clone;
    // }
    // ```
    TraitItem(TraitItemName),
}

/// A type declaration.
///
/// Types can be opaque or transparent.
///
/// Transparent types are local types not marked as opaque.
/// Opaque types are the others: local types marked as opaque, and non-local
/// types (coming from external dependencies).
///
/// In case the type is transparent, the declaration also contains the
/// type definition (see [TypeDeclKind]).
///
/// A type can only be an ADT (structure or enumeration), as type aliases are
/// inlined in MIR.
#[derive(Debug, Clone, Serialize, Deserialize, Drive, DriveMut)]
pub struct TypeDecl {
    #[drive(skip)]
    pub def_id: TypeDeclId,
    /// Meta information associated with the item.
    pub item_meta: ItemMeta,
    pub generics: GenericParams,
    /// The type kind: enum, struct, or opaque.
    pub kind: TypeDeclKind,
}

#[derive(Debug, Clone, EnumIsA, EnumAsGetters, Serialize, Deserialize, Drive, DriveMut)]
pub enum TypeDeclKind {
    Struct(Vector<FieldId, Field>),
    Enum(Vector<VariantId, Variant>),
    Union(Vector<FieldId, Field>),
    /// An opaque type.
    ///
    /// Either a local type marked as opaque, or an external type.
    Opaque,
    /// An alias to another type. This only shows up in the top-level list of items, as rustc
    /// inlines uses of type aliases everywhere else.
    Alias(Ty),
    /// Used if an error happened during the extraction, and we don't panic
    /// on error.
    Error(String),
}

#[derive(Debug, Clone, Serialize, Deserialize, Drive, DriveMut)]
pub struct Variant {
    pub span: Span,
    pub attr_info: AttrInfo,
    #[charon::rename("variant_name")]
    pub name: String,
    pub fields: Vector<FieldId, Field>,
    /// The discriminant used at runtime. This is used in `remove_read_discriminant` to match up
    /// `SwitchInt` targets with the corresponding `Variant`.
    pub discriminant: ScalarValue,
}

#[derive(Debug, Clone, Serialize, Deserialize, Drive, DriveMut)]
pub struct Field {
    pub span: Span,
    pub attr_info: AttrInfo,
    #[charon::rename("field_name")]
    pub name: Option<String>,
    #[charon::rename("field_ty")]
    pub ty: Ty,
}

#[derive(
    Debug,
    PartialEq,
    Eq,
    Copy,
    Clone,
    EnumIsA,
    VariantName,
    Serialize,
    Deserialize,
    Drive,
    DriveMut,
    Hash,
    Ord,
    PartialOrd,
)]
#[charon::rename("IntegerType")]
pub enum IntegerTy {
    Isize,
    I8,
    I16,
    I32,
    I64,
    I128,
    Usize,
    U8,
    U16,
    U32,
    U64,
    U128,
}

#[derive(
    Debug,
    PartialEq,
    Eq,
    Copy,
    Clone,
    EnumIsA,
    VariantName,
    Serialize,
    Deserialize,
    Drive,
    DriveMut,
    Hash,
    Ord,
    PartialOrd,
)]
#[charon::rename("FloatType")]
pub enum FloatTy {
    F16,
    F32,
    F64,
    F128,
}

#[derive(
    Debug,
    PartialEq,
    Eq,
    Clone,
    Copy,
    Hash,
    VariantName,
    EnumIsA,
    Serialize,
    Deserialize,
    Drive,
    DriveMut,
    Ord,
    PartialOrd,
)]
#[charon::variants_prefix("R")]
pub enum RefKind {
    Mut,
    Shared,
}

/// Type identifier.
///
/// Allows us to factorize the code for built-in types, adts and tuples
#[derive(
    Debug,
    PartialEq,
    Eq,
    Clone,
    Copy,
    VariantName,
    EnumAsGetters,
    EnumIsA,
    Serialize,
    Deserialize,
    Drive,
    DriveMut,
    Hash,
    Ord,
    PartialOrd,
)]
#[charon::variants_prefix("T")]
pub enum TypeId {
    /// A "regular" ADT type.
    ///
    /// Includes transparent ADTs and opaque ADTs (local ADTs marked as opaque,
    /// and external ADTs).
    #[charon::rename("TAdtId")]
    Adt(TypeDeclId),
    Tuple,
    /// Built-in type. Either a primitive type like array or slice, or a
    /// non-primitive type coming from a standard library
    /// and that we handle like a primitive type. Types falling into this
    /// category include: Box, Vec, Cell...
    /// The Array and Slice types were initially modelled as primitive in
    /// the [Ty] type. We decided to move them to built-in types as it allows
    /// for more uniform treatment throughout the codebase.
    #[charon::rename("TBuiltin")]
    Builtin(BuiltinTy),
}

/// Types of primitive values. Either an integer, bool, char
#[derive(
    Debug,
    PartialEq,
    Eq,
    Clone,
    Copy,
    VariantName,
    EnumIsA,
    EnumAsGetters,
    VariantIndexArity,
    Serialize,
    Deserialize,
    Drive,
    DriveMut,
    Hash,
    Ord,
    PartialOrd,
)]
#[charon::rename("LiteralType")]
#[charon::variants_prefix("T")]
pub enum LiteralTy {
    Integer(IntegerTy),
    Float(FloatTy),
    Bool,
    Char,
}

/// Const Generic Values. Either a primitive value, or a variable corresponding to a primitve value
#[derive(
    Debug,
    PartialEq,
    Eq,
    Clone,
    VariantName,
    EnumIsA,
    EnumAsGetters,
    VariantIndexArity,
    Serialize,
    Deserialize,
    Drive,
    DriveMut,
    Hash,
)]
#[charon::variants_prefix("Cg")]
pub enum ConstGeneric {
    /// A global constant
    Global(GlobalDeclId),
    /// A const generic variable
    Var(ConstGenericVarId),
    /// A concrete value
    Value(Literal),
}

/// A type.
///
/// Warning: for performance reasons, the `Drive` and `DriveMut` impls of `Ty` don't explore the
/// contents of the type, they only yield a pointer to the type itself. To recurse into the type,
/// use `drive_inner{_mut}` or `visit_inside`.
#[derive(Debug, Clone, Hash, PartialEq, Eq, Serialize, Deserialize)]
pub struct Ty(HashConsed<TyKind>);

impl Ty {
    pub fn new(kind: TyKind) -> Self {
        Ty(HashConsed::new(kind))
    }

    pub fn kind(&self) -> &TyKind {
        self.0.inner()
    }

    pub fn drive_inner<V: Visitor>(&self, visitor: &mut V) {
        self.0.drive(visitor)
    }
    pub fn drive_inner_mut<V: VisitorMut>(&mut self, visitor: &mut V) {
        self.0.drive_mut(visitor)
    }
}

#[derive(
    Debug,
    Clone,
    PartialEq,
    Eq,
    Hash,
    VariantName,
    EnumIsA,
    EnumAsGetters,
    EnumToGetters,
    VariantIndexArity,
    Serialize,
    Deserialize,
    Drive,
    DriveMut,
)]
#[charon::variants_prefix("T")]
#[charon::rename("Ty")]
pub enum TyKind {
    /// An ADT.
    /// Note that here ADTs are very general. They can be:
    /// - user-defined ADTs
    /// - tuples (including `unit`, which is a 0-tuple)
    /// - built-in types (includes some primitive types, e.g., arrays or slices)
    /// The information on the nature of the ADT is stored in (`TypeId`)[TypeId].
    /// The last list is used encode const generics, e.g., the size of an array
    ///
    /// Note: this is incorrectly named: this can refer to any valid `TypeDecl` including extern
    /// types.
    Adt(TypeId, GenericArgs),
    #[charon::rename("TVar")]
    TypeVar(TypeVarId),
    Literal(LiteralTy),
    /// The never type, for computations which don't return. It is sometimes
    /// necessary for intermediate variables. For instance, if we do (coming
    /// from the rust documentation):
    /// ```text
    /// let num: u32 = match get_a_number() {
    ///     Some(num) => num,
    ///     None => break,
    /// };
    /// ```
    /// the second branch will have type `Never`. Also note that `Never`
    /// can be coerced to any type.
    ///
    /// Note that we eliminate the variables which have this type in a micro-pass.
    /// As statements don't have types, this type disappears eventually disappears
    /// from the AST.
    Never,
    // We don't support floating point numbers on purpose (for now)
    /// A borrow
    Ref(Region, Ty, RefKind),
    /// A raw pointer.
    RawPtr(Ty, RefKind),
    /// A trait associated type
    ///
    /// Ex.:
    /// ```text
    /// trait Foo {
    ///   type Bar; // type associated to the trait Foo
    /// }
    /// ```
    TraitType(TraitRef, TraitItemName),
    /// `dyn Trait`
    ///
    /// This carries an existentially quantified list of predicates, e.g. `exists<T> where T:
    /// Into<u64>`. The predicate must quantify over a single type and no any regions or constants.
    ///
    /// TODO: we don't translate this properly yet.
    DynTrait(ExistentialPredicate),
    /// Arrow type, used in particular for the local function pointers.
    /// This is essentially a "constrained" function signature:
    /// arrow types can only contain generic lifetime parameters
    /// (no generic types), no predicates, etc.
    Arrow(Vector<RegionId, RegionVar>, Vec<Ty>, Ty),
}

/// Builtin types identifiers.
///
/// WARNING: for now, all the built-in types are covariant in the generic
/// parameters (if there are). Adding types which don't satisfy this
/// will require to update the code abstracting the signatures (to properly
/// take into account the lifetime constraints).
///
/// TODO: update to not hardcode the types (except `Box` maybe) and be more
/// modular.
/// TODO: move to builtins.rs?
#[derive(
    Debug,
    PartialEq,
    Eq,
    Clone,
    Copy,
    EnumIsA,
    EnumAsGetters,
    VariantName,
    Serialize,
    Deserialize,
    Drive,
    DriveMut,
    Hash,
    Ord,
    PartialOrd,
)]
#[charon::variants_prefix("T")]
pub enum BuiltinTy {
    /// Boxes are de facto a primitive type.
    Box,
    /// Primitive type
    Array,
    /// Primitive type
    Slice,
    /// Primitive type
    Str,
}

/// We use this to store information about the parameters in parent blocks.
/// This is necessary because in the definitions we store *all* the generics,
/// including those coming from the outer impl block.
///
/// For instance:
/// ```text
/// impl Foo<T> {
///         ^^^
///       outer block generics
///   fn bar<U>(...)  { ... }
///         ^^^
///       generics local to the function bar
/// }
/// ```
///
/// In `bar` we store the generics: `[T, U]`.
///
/// We however sometimes need to make a distinction between those two kinds
/// of generics, in particular when manipulating traits. For instance:
///
/// ```text
/// impl<T> Foo for Bar<T> {
///   fn baz<U>(...)  { ... }
/// }
///
/// fn test(...) {
///    x.baz(...); // Here, we refer to the call as:
///                // > Foo<T>::baz<U>(...)
///                // If baz hadn't been a method implementation of a trait,
///                // we would have refered to it as:
///                // > baz<T, U>(...)
///                // The reason is that with traits, we refer to the whole
///                // trait implementation (as if it were a structure), then
///                // pick a specific method inside (as if projecting a field
///                // from a structure).
/// }
/// ```
///
/// **Remark**: Rust only allows refering to the generics of the immediately
/// outer block. For this reason, when we need to store the information about
/// the generics of the outer block(s), we need to do it only for one level
/// (this definitely makes things simpler).
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub struct ParamsInfo {
    pub num_region_params: usize,
    pub num_type_params: usize,
    pub num_const_generic_params: usize,
    pub num_trait_clauses: usize,
    pub num_regions_outlive: usize,
    pub num_types_outlive: usize,
    pub num_trait_type_constraints: usize,
}

#[derive(Debug, Copy, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub enum ClosureKind {
    Fn,
    FnMut,
    FnOnce,
}

/// Additional information for closures.
/// We mostly use it in micro-passes like [crate::update_closure_signature].
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub struct ClosureInfo {
    pub kind: ClosureKind,
    /// Contains the types of the fields in the closure state.
    /// More precisely, for every place captured by the
    /// closure, the state has one field (typically a ref).
    ///
    /// For instance, below the closure has a state with two fields of type `&u32`:
    /// ```text
    /// pub fn test_closure_capture(x: u32, y: u32) -> u32 {
    ///   let f = &|z| x + y + z;
    ///   (f)(0)
    /// }
    /// ```
    pub state: Vector<TypeVarId, Ty>,
}

/// A function signature.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub struct FunSig {
    /// Is the function unsafe or not
    pub is_unsafe: bool,
    /// `true` if the signature is for a closure.
    ///
    /// Importantly: if the signature is for a closure, then:
    /// - the type and const generic params actually come from the parent function
    ///   (the function in which the closure is defined)
    /// - the region variables are local to the closure
    pub is_closure: bool,
    /// Additional information if this is the signature of a closure.
    pub closure_info: Option<ClosureInfo>,
    pub generics: GenericParams,
    /// Optional fields, for trait methods only (see the comments in [ParamsInfo]).
    pub parent_params_info: Option<ParamsInfo>,
    pub inputs: Vec<Ty>,
    pub output: Ty,
}