charon_lib/ast/types.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
use crate::ids::Vector;
use crate::{ast::*, common::hash_consing::HashConsed};
use derive_visitor::{Drive, DriveMut, Event, Visitor, VisitorMut};
use macros::{EnumAsGetters, EnumIsA, EnumToGetters, VariantIndexArity, VariantName};
use serde::{Deserialize, Serialize};
pub type FieldName = String;
// We need to manipulate a lot of indices for the types, variables, definitions,
// etc. In order not to confuse them, we define an index type for every one of
// them (which is just a struct with a unique usize field), together with some
// utilities like a fresh index generator. Those structures and utilities are
// generated by using macros.
generate_index_type!(TypeVarId, "T");
generate_index_type!(VariantId, "Variant");
generate_index_type!(FieldId, "Field");
generate_index_type!(RegionId, "Region");
generate_index_type!(ConstGenericVarId, "Const");
/// Type variable.
/// We make sure not to mix variables and type variables by having two distinct
/// definitions.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub struct TypeVar {
/// Unique index identifying the variable
pub index: TypeVarId,
/// Variable name
pub name: String,
}
/// Region variable.
#[derive(
Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Hash, PartialOrd, Ord, Drive, DriveMut,
)]
pub struct RegionVar {
/// Unique index identifying the variable
pub index: RegionId,
/// Region name
pub name: Option<String>,
}
/// Const Generic Variable
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub struct ConstGenericVar {
/// Unique index identifying the variable
pub index: ConstGenericVarId,
/// Const generic name
pub name: String,
/// Type of the const generic
pub ty: LiteralTy,
}
#[derive(
Debug,
PartialEq,
Eq,
Copy,
Clone,
Hash,
PartialOrd,
Ord,
Serialize,
Deserialize,
Drive,
DriveMut,
)]
#[serde(transparent)]
pub struct DeBruijnId {
pub index: usize,
}
#[derive(
Debug,
PartialEq,
Eq,
Copy,
Clone,
Hash,
PartialOrd,
Ord,
EnumIsA,
EnumAsGetters,
Serialize,
Deserialize,
Drive,
DriveMut,
)]
#[charon::variants_prefix("R")]
pub enum Region {
/// Static region
Static,
/// Bound region variable.
///
/// **Important**:
/// ==============
/// Similarly to what the Rust compiler does, we use De Bruijn indices to
/// identify *groups* of bound variables, and variable identifiers to
/// identity the variables inside the groups.
///
/// For instance, we have the following:
/// ```text
/// we compute the De Bruijn indices from here
/// VVVVVVVVVVVVVVVVVVVVVVV
/// fn f<'a, 'b>(x: for<'c> fn(&'a u8, &'b u16, &'c u32) -> u64) {}
/// ^^^^^^ ^^ ^ ^ ^
/// | De Bruijn: 0 | | |
/// De Bruijn: 1 | | |
/// De Bruijn: 1 | De Bruijn: 0
/// Var id: 0 | Var id: 0
/// |
/// De Bruijn: 1
/// Var id: 1
/// ```
BVar(DeBruijnId, RegionId),
/// Erased region
Erased,
/// For error reporting.
#[charon::opaque]
Unknown,
}
/// Identifier of a trait instance.
/// This is derived from the trait resolution.
///
/// Should be read as a path inside the trait clauses which apply to the current
/// definition. Note that every path designated by [TraitInstanceId] refers
/// to a *trait instance*, which is why the [Clause] variant may seem redundant
/// with some of the other variants.
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash, Drive, DriveMut)]
#[charon::rename("TraitInstanceId")]
pub enum TraitRefKind {
/// A specific top-level implementation item.
TraitImpl(TraitImplId, GenericArgs),
/// One of the local clauses.
///
/// Example:
/// ```text
/// fn f<T>(...) where T : Foo
/// ^^^^^^^
/// Clause(0)
/// ```
Clause(TraitClauseId),
/// A parent clause
///
/// Remark: the [TraitDeclId] gives the trait declaration which is
/// implemented by the instance id from which we take the parent clause
/// (see example below). It is not necessary and included for convenience.
///
/// Remark: Ideally we should store a full `TraitRef` instead, but hax does not give us enough
/// information to get the right generic args.
///
/// Example:
/// ```text
/// trait Foo1 {}
/// trait Foo2 { fn f(); }
///
/// trait Bar : Foo1 + Foo2 {}
/// ^^^^ ^^^^
/// parent clause 1
/// parent clause 0
///
/// fn g<T : Bar>(x : T) {
/// x.f()
/// ^^^^^
/// Parent(Clause(0), Bar, 1)::f(x)
/// ^
/// parent clause 1 of clause 0
/// ^^^
/// clause 0 implements Bar
/// }
/// ```
ParentClause(Box<TraitRefKind>, TraitDeclId, TraitClauseId),
/// A clause defined on an associated type. This variant is only used during translation; after
/// the `lift_associated_item_clauses` pass, clauses on items become `ParentClause`s.
///
/// Remark: the [TraitDeclId] gives the trait declaration which is
/// implemented by the trait implementation from which we take the item
/// (see below). It is not necessary and provided for convenience.
///
/// Example:
/// ```text
/// trait Foo {
/// type W: Bar0 + Bar1 // Bar1 contains a method bar1
/// ^^^^
/// this is the clause 1 applying to W
/// }
///
/// fn f<T : Foo>(x : T::W) {
/// x.bar1();
/// ^^^^^^^
/// ItemClause(Clause(0), Foo, W, 1)
/// ^^^^
/// clause 1 from item W (from local clause 0)
/// ^^^
/// local clause 0 implements Foo
/// }
/// ```
#[charon::opaque]
ItemClause(Box<TraitRefKind>, TraitDeclId, TraitItemName, TraitClauseId),
/// Self, in case of trait declarations/implementations.
///
/// Putting [Self] at the end on purpose, so that when ordering the clauses
/// we start with the other clauses (in particular, the local clauses). It
/// is useful to give priority to the local clauses when solving the trait
/// obligations which are fullfilled by the trait parameters.
#[charon::rename("Self")]
SelfId,
/// A specific builtin trait implementation like [core::marker::Sized] or
/// auto trait implementation like [core::marker::Syn].
BuiltinOrAuto(PolyTraitDeclRef),
/// The automatically-generated implementation for `dyn Trait`.
Dyn(PolyTraitDeclRef),
/// For error reporting.
#[charon::rename("UnknownTrait")]
Unknown(String),
}
/// A reference to a trait
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash, Drive, DriveMut)]
pub struct TraitRef {
#[charon::rename("trait_id")]
pub kind: TraitRefKind,
/// Not necessary, but useful
pub trait_decl_ref: PolyTraitDeclRef,
}
/// A predicate of the form `Type: Trait<Args>`.
///
/// About the generics, if we write:
/// ```text
/// impl Foo<bool> for String { ... }
/// ```
///
/// The substitution is: `[String, bool]`.
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash, Drive, DriveMut)]
pub struct TraitDeclRef {
#[charon::rename("trait_decl_id")]
pub trait_id: TraitDeclId,
#[charon::rename("decl_generics")]
pub generics: GenericArgs,
}
/// A quantified trait predicate, e.g. `for<'a> Type<'a>: Trait<'a, Args>`.
pub type PolyTraitDeclRef = RegionBinder<TraitDeclRef>;
/// .0 outlives .1
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq)]
pub struct OutlivesPred<T, U>(pub T, pub U);
// The derive macro doesn't handle generics well.
impl<T: Drive, U: Drive> Drive for OutlivesPred<T, U> {
fn drive<V: Visitor>(&self, visitor: &mut V) {
visitor.visit(self, Event::Enter);
self.0.drive(visitor);
self.1.drive(visitor);
visitor.visit(self, Event::Exit);
}
}
impl<T: DriveMut, U: DriveMut> DriveMut for OutlivesPred<T, U> {
fn drive_mut<V: VisitorMut>(&mut self, visitor: &mut V) {
visitor.visit(self, Event::Enter);
self.0.drive_mut(visitor);
self.1.drive_mut(visitor);
visitor.visit(self, Event::Exit);
}
}
pub type RegionOutlives = OutlivesPred<Region, Region>;
pub type TypeOutlives = OutlivesPred<Ty, Region>;
/// A constraint over a trait associated type.
///
/// Example:
/// ```text
/// T : Foo<S = String>
/// ^^^^^^^^^^
/// ```
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Drive, DriveMut)]
pub struct TraitTypeConstraint {
pub trait_ref: TraitRef,
pub type_name: TraitItemName,
pub ty: Ty,
}
#[derive(Default, Clone, Eq, PartialEq, Serialize, Deserialize, Hash, Drive, DriveMut)]
pub struct GenericArgs {
pub regions: Vector<RegionId, Region>,
pub types: Vector<TypeVarId, Ty>,
pub const_generics: Vector<ConstGenericVarId, ConstGeneric>,
// TODO: rename to match [GenericParams]?
pub trait_refs: Vector<TraitClauseId, TraitRef>,
}
/// A value of type `T` bound by generic parameters. Used in any context where we're adding generic
/// parameters that aren't on the top-level item, e.g. `for<'a>` clauses, trait methods (TODO),
/// GATs (TODO).
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash)]
pub struct RegionBinder<T> {
#[charon::rename("binder_regions")]
pub regions: Vector<RegionId, RegionVar>,
/// Named this way to highlight accesses to the inner value that might be handling parameters
/// incorrectly. Prefer using helper methods.
#[charon::rename("binder_value")]
pub skip_binder: T,
}
/// Generic parameters for a declaration.
/// We group the generics which come from the Rust compiler substitutions
/// (the regions, types and const generics) as well as the trait clauses.
/// The reason is that we consider that those are parameters that need to
/// be filled. We group in a different place the predicates which are not
/// trait clauses, because those enforce constraints but do not need to
/// be filled with witnesses/instances.
#[derive(Debug, Default, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub struct GenericParams {
pub regions: Vector<RegionId, RegionVar>,
pub types: Vector<TypeVarId, TypeVar>,
pub const_generics: Vector<ConstGenericVarId, ConstGenericVar>,
// TODO: rename to match [GenericArgs]?
pub trait_clauses: Vector<TraitClauseId, TraitClause>,
/// The first region in the pair outlives the second region
pub regions_outlive: Vec<RegionBinder<RegionOutlives>>,
/// The type outlives the region
pub types_outlive: Vec<RegionBinder<TypeOutlives>>,
/// Constraints over trait associated types
pub trait_type_constraints: Vec<RegionBinder<TraitTypeConstraint>>,
}
/// A predicate of the form `exists<T> where T: Trait`.
///
/// TODO: store something useful here
#[derive(Debug, Default, Clone, Hash, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub struct ExistentialPredicate;
generate_index_type!(TraitClauseId, "TraitClause");
/// A predicate of the form `Type: Trait<Args>`.
#[derive(Debug, Clone, Serialize, Deserialize, Drive, DriveMut)]
pub struct TraitClause {
/// We use this id when solving trait constraints, to be able to refer
/// to specific where clauses when the selected trait actually is linked
/// to a parameter.
pub clause_id: TraitClauseId,
// TODO: does not need to be an option.
pub span: Option<Span>,
/// Where the predicate was written, relative to the item that requires it.
#[charon::opaque]
pub origin: PredicateOrigin,
/// The trait that is implemented.
#[charon::rename("trait")]
pub trait_: PolyTraitDeclRef,
}
impl PartialEq for TraitClause {
fn eq(&self, other: &Self) -> bool {
// Skip `span` and `origin`
self.clause_id == other.clause_id && self.trait_ == other.trait_
}
}
impl Eq for TraitClause {}
/// Where a given predicate came from.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub enum PredicateOrigin {
// Note: we use this for globals too, but that's only available with an unstable feature.
// ```
// fn function<T: Clone>() {}
// fn function<T>() where T: Clone {}
// const NONE<T: Copy>: Option<T> = None;
// ```
WhereClauseOnFn,
// ```
// struct Struct<T: Clone> {}
// struct Struct<T> where T: Clone {}
// type TypeAlias<T: Clone> = ...;
// ```
WhereClauseOnType,
// Note: this is both trait impls and inherent impl blocks.
// ```
// impl<T: Clone> Type<T> {}
// impl<T> Type<T> where T: Clone {}
// impl<T> Trait for Type<T> where T: Clone {}
// ```
WhereClauseOnImpl,
// The special `Self: Trait` clause which is in scope inside the definition of `Foo` or an
// implementation of it.
// ```
// trait Trait {}
// ```
TraitSelf,
// Note: this also includes supertrait constraings.
// ```
// trait Trait<T: Clone> {}
// trait Trait<T> where T: Clone {}
// trait Trait: Clone {}
// ```
WhereClauseOnTrait,
// ```
// trait Trait {
// type AssocType: Clone;
// }
// ```
TraitItem(TraitItemName),
}
/// A type declaration.
///
/// Types can be opaque or transparent.
///
/// Transparent types are local types not marked as opaque.
/// Opaque types are the others: local types marked as opaque, and non-local
/// types (coming from external dependencies).
///
/// In case the type is transparent, the declaration also contains the
/// type definition (see [TypeDeclKind]).
///
/// A type can only be an ADT (structure or enumeration), as type aliases are
/// inlined in MIR.
#[derive(Debug, Clone, Serialize, Deserialize, Drive, DriveMut)]
pub struct TypeDecl {
#[drive(skip)]
pub def_id: TypeDeclId,
/// Meta information associated with the item.
pub item_meta: ItemMeta,
pub generics: GenericParams,
/// The type kind: enum, struct, or opaque.
pub kind: TypeDeclKind,
}
#[derive(Debug, Clone, EnumIsA, EnumAsGetters, Serialize, Deserialize, Drive, DriveMut)]
pub enum TypeDeclKind {
Struct(Vector<FieldId, Field>),
Enum(Vector<VariantId, Variant>),
Union(Vector<FieldId, Field>),
/// An opaque type.
///
/// Either a local type marked as opaque, or an external type.
Opaque,
/// An alias to another type. This only shows up in the top-level list of items, as rustc
/// inlines uses of type aliases everywhere else.
Alias(Ty),
/// Used if an error happened during the extraction, and we don't panic
/// on error.
Error(String),
}
#[derive(Debug, Clone, Serialize, Deserialize, Drive, DriveMut)]
pub struct Variant {
pub span: Span,
pub attr_info: AttrInfo,
#[charon::rename("variant_name")]
pub name: String,
pub fields: Vector<FieldId, Field>,
/// The discriminant used at runtime. This is used in `remove_read_discriminant` to match up
/// `SwitchInt` targets with the corresponding `Variant`.
pub discriminant: ScalarValue,
}
#[derive(Debug, Clone, Serialize, Deserialize, Drive, DriveMut)]
pub struct Field {
pub span: Span,
pub attr_info: AttrInfo,
#[charon::rename("field_name")]
pub name: Option<String>,
#[charon::rename("field_ty")]
pub ty: Ty,
}
#[derive(
Debug,
PartialEq,
Eq,
Copy,
Clone,
EnumIsA,
VariantName,
Serialize,
Deserialize,
Drive,
DriveMut,
Hash,
Ord,
PartialOrd,
)]
#[charon::rename("IntegerType")]
pub enum IntegerTy {
Isize,
I8,
I16,
I32,
I64,
I128,
Usize,
U8,
U16,
U32,
U64,
U128,
}
#[derive(
Debug,
PartialEq,
Eq,
Copy,
Clone,
EnumIsA,
VariantName,
Serialize,
Deserialize,
Drive,
DriveMut,
Hash,
Ord,
PartialOrd,
)]
#[charon::rename("FloatType")]
pub enum FloatTy {
F16,
F32,
F64,
F128,
}
#[derive(
Debug,
PartialEq,
Eq,
Clone,
Copy,
Hash,
VariantName,
EnumIsA,
Serialize,
Deserialize,
Drive,
DriveMut,
Ord,
PartialOrd,
)]
#[charon::variants_prefix("R")]
pub enum RefKind {
Mut,
Shared,
}
/// Type identifier.
///
/// Allows us to factorize the code for built-in types, adts and tuples
#[derive(
Debug,
PartialEq,
Eq,
Clone,
Copy,
VariantName,
EnumAsGetters,
EnumIsA,
Serialize,
Deserialize,
Drive,
DriveMut,
Hash,
Ord,
PartialOrd,
)]
#[charon::variants_prefix("T")]
pub enum TypeId {
/// A "regular" ADT type.
///
/// Includes transparent ADTs and opaque ADTs (local ADTs marked as opaque,
/// and external ADTs).
#[charon::rename("TAdtId")]
Adt(TypeDeclId),
Tuple,
/// Built-in type. Either a primitive type like array or slice, or a
/// non-primitive type coming from a standard library
/// and that we handle like a primitive type. Types falling into this
/// category include: Box, Vec, Cell...
/// The Array and Slice types were initially modelled as primitive in
/// the [Ty] type. We decided to move them to built-in types as it allows
/// for more uniform treatment throughout the codebase.
#[charon::rename("TBuiltin")]
Builtin(BuiltinTy),
}
/// Types of primitive values. Either an integer, bool, char
#[derive(
Debug,
PartialEq,
Eq,
Clone,
Copy,
VariantName,
EnumIsA,
EnumAsGetters,
VariantIndexArity,
Serialize,
Deserialize,
Drive,
DriveMut,
Hash,
Ord,
PartialOrd,
)]
#[charon::rename("LiteralType")]
#[charon::variants_prefix("T")]
pub enum LiteralTy {
Integer(IntegerTy),
Float(FloatTy),
Bool,
Char,
}
/// Const Generic Values. Either a primitive value, or a variable corresponding to a primitve value
#[derive(
Debug,
PartialEq,
Eq,
Clone,
VariantName,
EnumIsA,
EnumAsGetters,
VariantIndexArity,
Serialize,
Deserialize,
Drive,
DriveMut,
Hash,
)]
#[charon::variants_prefix("Cg")]
pub enum ConstGeneric {
/// A global constant
Global(GlobalDeclId),
/// A const generic variable
Var(ConstGenericVarId),
/// A concrete value
Value(Literal),
}
/// A type.
///
/// Warning: for performance reasons, the `Drive` and `DriveMut` impls of `Ty` don't explore the
/// contents of the type, they only yield a pointer to the type itself. To recurse into the type,
/// use `drive_inner{_mut}` or `visit_inside`.
#[derive(Debug, Clone, Hash, PartialEq, Eq, Serialize, Deserialize)]
pub struct Ty(HashConsed<TyKind>);
impl Ty {
pub fn new(kind: TyKind) -> Self {
Ty(HashConsed::new(kind))
}
pub fn kind(&self) -> &TyKind {
self.0.inner()
}
pub fn drive_inner<V: Visitor>(&self, visitor: &mut V) {
self.0.drive(visitor)
}
pub fn drive_inner_mut<V: VisitorMut>(&mut self, visitor: &mut V) {
self.0.drive_mut(visitor)
}
}
#[derive(
Debug,
Clone,
PartialEq,
Eq,
Hash,
VariantName,
EnumIsA,
EnumAsGetters,
EnumToGetters,
VariantIndexArity,
Serialize,
Deserialize,
Drive,
DriveMut,
)]
#[charon::variants_prefix("T")]
#[charon::rename("Ty")]
pub enum TyKind {
/// An ADT.
/// Note that here ADTs are very general. They can be:
/// - user-defined ADTs
/// - tuples (including `unit`, which is a 0-tuple)
/// - built-in types (includes some primitive types, e.g., arrays or slices)
/// The information on the nature of the ADT is stored in (`TypeId`)[TypeId].
/// The last list is used encode const generics, e.g., the size of an array
///
/// Note: this is incorrectly named: this can refer to any valid `TypeDecl` including extern
/// types.
Adt(TypeId, GenericArgs),
#[charon::rename("TVar")]
TypeVar(TypeVarId),
Literal(LiteralTy),
/// The never type, for computations which don't return. It is sometimes
/// necessary for intermediate variables. For instance, if we do (coming
/// from the rust documentation):
/// ```text
/// let num: u32 = match get_a_number() {
/// Some(num) => num,
/// None => break,
/// };
/// ```
/// the second branch will have type `Never`. Also note that `Never`
/// can be coerced to any type.
///
/// Note that we eliminate the variables which have this type in a micro-pass.
/// As statements don't have types, this type disappears eventually disappears
/// from the AST.
Never,
// We don't support floating point numbers on purpose (for now)
/// A borrow
Ref(Region, Ty, RefKind),
/// A raw pointer.
RawPtr(Ty, RefKind),
/// A trait associated type
///
/// Ex.:
/// ```text
/// trait Foo {
/// type Bar; // type associated to the trait Foo
/// }
/// ```
TraitType(TraitRef, TraitItemName),
/// `dyn Trait`
///
/// This carries an existentially quantified list of predicates, e.g. `exists<T> where T:
/// Into<u64>`. The predicate must quantify over a single type and no any regions or constants.
///
/// TODO: we don't translate this properly yet.
DynTrait(ExistentialPredicate),
/// Arrow type, used in particular for the local function pointers.
/// This is essentially a "constrained" function signature:
/// arrow types can only contain generic lifetime parameters
/// (no generic types), no predicates, etc.
Arrow(Vector<RegionId, RegionVar>, Vec<Ty>, Ty),
}
/// Builtin types identifiers.
///
/// WARNING: for now, all the built-in types are covariant in the generic
/// parameters (if there are). Adding types which don't satisfy this
/// will require to update the code abstracting the signatures (to properly
/// take into account the lifetime constraints).
///
/// TODO: update to not hardcode the types (except `Box` maybe) and be more
/// modular.
/// TODO: move to builtins.rs?
#[derive(
Debug,
PartialEq,
Eq,
Clone,
Copy,
EnumIsA,
EnumAsGetters,
VariantName,
Serialize,
Deserialize,
Drive,
DriveMut,
Hash,
Ord,
PartialOrd,
)]
#[charon::variants_prefix("T")]
pub enum BuiltinTy {
/// Boxes are de facto a primitive type.
Box,
/// Primitive type
Array,
/// Primitive type
Slice,
/// Primitive type
Str,
}
/// We use this to store information about the parameters in parent blocks.
/// This is necessary because in the definitions we store *all* the generics,
/// including those coming from the outer impl block.
///
/// For instance:
/// ```text
/// impl Foo<T> {
/// ^^^
/// outer block generics
/// fn bar<U>(...) { ... }
/// ^^^
/// generics local to the function bar
/// }
/// ```
///
/// In `bar` we store the generics: `[T, U]`.
///
/// We however sometimes need to make a distinction between those two kinds
/// of generics, in particular when manipulating traits. For instance:
///
/// ```text
/// impl<T> Foo for Bar<T> {
/// fn baz<U>(...) { ... }
/// }
///
/// fn test(...) {
/// x.baz(...); // Here, we refer to the call as:
/// // > Foo<T>::baz<U>(...)
/// // If baz hadn't been a method implementation of a trait,
/// // we would have refered to it as:
/// // > baz<T, U>(...)
/// // The reason is that with traits, we refer to the whole
/// // trait implementation (as if it were a structure), then
/// // pick a specific method inside (as if projecting a field
/// // from a structure).
/// }
/// ```
///
/// **Remark**: Rust only allows refering to the generics of the immediately
/// outer block. For this reason, when we need to store the information about
/// the generics of the outer block(s), we need to do it only for one level
/// (this definitely makes things simpler).
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub struct ParamsInfo {
pub num_region_params: usize,
pub num_type_params: usize,
pub num_const_generic_params: usize,
pub num_trait_clauses: usize,
pub num_regions_outlive: usize,
pub num_types_outlive: usize,
pub num_trait_type_constraints: usize,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub enum ClosureKind {
Fn,
FnMut,
FnOnce,
}
/// Additional information for closures.
/// We mostly use it in micro-passes like [crate::update_closure_signature].
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub struct ClosureInfo {
pub kind: ClosureKind,
/// Contains the types of the fields in the closure state.
/// More precisely, for every place captured by the
/// closure, the state has one field (typically a ref).
///
/// For instance, below the closure has a state with two fields of type `&u32`:
/// ```text
/// pub fn test_closure_capture(x: u32, y: u32) -> u32 {
/// let f = &|z| x + y + z;
/// (f)(0)
/// }
/// ```
pub state: Vector<TypeVarId, Ty>,
}
/// A function signature.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Drive, DriveMut)]
pub struct FunSig {
/// Is the function unsafe or not
pub is_unsafe: bool,
/// `true` if the signature is for a closure.
///
/// Importantly: if the signature is for a closure, then:
/// - the type and const generic params actually come from the parent function
/// (the function in which the closure is defined)
/// - the region variables are local to the closure
pub is_closure: bool,
/// Additional information if this is the signature of a closure.
pub closure_info: Option<ClosureInfo>,
pub generics: GenericParams,
/// Optional fields, for trait methods only (see the comments in [ParamsInfo]).
pub parent_params_info: Option<ParamsInfo>,
pub inputs: Vec<Ty>,
pub output: Ty,
}