charon_lib/name_matcher/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
use std::cmp::Ordering;

use itertools::{EitherOrBoth, Itertools};
use serde::{Deserialize, Serialize};

use crate::ast::*;

mod parser;

pub use Pattern as NamePattern;

#[derive(Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct Pattern {
    elems: Vec<PatElem>,
}

#[derive(Clone, PartialEq, Eq, Serialize, Deserialize)]
enum PatElem {
    /// An identifier, optionally with generic arguments. E.g. `std` or `Box<_>`.
    Ident {
        name: String,
        generics: Vec<PatTy>,
        /// For pretty-printing only: whether this is the name of a trait.
        is_trait: bool,
    },
    /// An inherent or trait implementation block. For traits, the implemented type is the first
    /// element of the pattern generics.
    Impl(Box<Pattern>),
    /// A `*` or `_`.
    Glob,
}

#[derive(Clone, PartialEq, Eq, Serialize, Deserialize)]
enum PatTy {
    /// A path, like `my_crate::foo::Type<_, usize>`
    Pat(Pattern),
    /// `&T`, `&mut T`
    Ref(RefKind, Box<Self>),
}

impl Pattern {
    pub fn parse(i: &str) -> Result<Self, nom_supreme::error::ErrorTree<String>> {
        use std::str::FromStr;
        Self::from_str(i)
    }

    fn len(&self) -> usize {
        self.elems.len()
    }

    pub fn matches(&self, ctx: &TranslatedCrate, name: &Name) -> bool {
        self.matches_with_generics(ctx, name, None)
    }

    pub fn matches_item(&self, ctx: &TranslatedCrate, item: AnyTransItem<'_>) -> bool {
        let generics = item.identity_args();
        let name = &item.item_meta().name;
        self.matches_with_generics(ctx, name, Some(&generics))
    }

    pub fn matches_with_generics(
        &self,
        ctx: &TranslatedCrate,
        name: &Name,
        args: Option<&GenericArgs>,
    ) -> bool {
        let zipped = self.elems.iter().zip_longest(&name.name).collect_vec();
        let zipped_len = zipped.len();
        for (i, x) in zipped.into_iter().enumerate() {
            let is_last = i + 1 == zipped_len;
            match x {
                EitherOrBoth::Both(pat, elem) => {
                    let args = if is_last { args } else { None };
                    if !pat.matches_with_generics(ctx, elem, args) {
                        return false;
                    }
                }
                // The pattern is shorter than the scrutinee and the previous elements match: we
                // count that as matching.
                EitherOrBoth::Right(_) => return true,
                // The pattern is longer than the scrutinee; they don't match.
                EitherOrBoth::Left(_) => return false,
            }
        }
        // Both had the same length and all the elements matched.
        true
    }

    pub fn matches_ty(&self, ctx: &TranslatedCrate, ty: &Ty) -> bool {
        if let [PatElem::Glob] = self.elems.as_slice() {
            return true;
        }
        match ty.kind() {
            TyKind::Adt(TypeId::Adt(type_id), args) => {
                let Some(type_name) = ctx.item_name(*type_id) else {
                    return false;
                };
                self.matches_with_generics(ctx, type_name, Some(args))
            }
            TyKind::Adt(TypeId::Builtin(builtin_ty), args) => {
                let name = builtin_ty.get_name();
                self.matches_with_generics(ctx, &name, Some(args))
            }
            TyKind::Adt(TypeId::Tuple, _)
            | TyKind::TypeVar(..)
            | TyKind::Literal(..)
            | TyKind::Never
            | TyKind::Ref(..)
            | TyKind::RawPtr(..)
            | TyKind::TraitType(..)
            | TyKind::DynTrait(..)
            | TyKind::Arrow(..) => false,
        }
    }

    pub fn matches_const(&self, _ctx: &TranslatedCrate, _c: &ConstGeneric) -> bool {
        if let [PatElem::Glob] = self.elems.as_slice() {
            return true;
        }
        todo!("non-trivial const generics patterns aren't implemented")
    }

    /// Compares two patterns that match the same name, in terms of precision. A pattern that is
    /// fully included in another (i.e. matches a subset of values) is considered "less precise".
    /// Returns nonsense if the patterns don't match the same name.
    pub fn compare(&self, other: &Self) -> Ordering {
        use Ordering::*;
        use PatElem::*;
        match self.len().cmp(&other.len()) {
            o @ (Less | Greater) => return o,
            _ if self.len() == 0 => return Equal,
            Equal => {}
        }
        match (self.elems.last().unwrap(), other.elems.last().unwrap()) {
            (Glob, Glob) => Equal,
            (Glob, _) => Less,
            (_, Glob) => Greater,
            // TODO: compare precision of the generics.
            _ => Equal,
        }
    }
}

/// Orders patterns by precision: the maximal pattern is the most precise. COmparing patterns only
/// makes sense if they match the same name.
impl Ord for Pattern {
    fn cmp(&self, other: &Self) -> Ordering {
        self.compare(other)
    }
}
impl PartialOrd for Pattern {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.compare(other))
    }
}

impl PatElem {
    fn matches_with_generics(
        &self,
        ctx: &TranslatedCrate,
        elem: &PathElem,
        args: Option<&GenericArgs>,
    ) -> bool {
        match (self, elem) {
            (PatElem::Glob, _) => true,
            (
                PatElem::Ident {
                    name: pat_ident,
                    generics,
                    ..
                },
                PathElem::Ident(ident, _),
            ) => {
                // `crate` is a special keyword that referes to the current crate.
                let same_ident =
                    pat_ident == ident || (pat_ident == "crate" && ident == &ctx.real_crate_name);
                same_ident && PatTy::matches_generics(ctx, generics, args)
            }
            (PatElem::Impl(_pat), PathElem::Impl(ImplElem::Ty(..), _)) => {
                // TODO
                false
            }
            (PatElem::Impl(pat), PathElem::Impl(ImplElem::Trait(impl_id), _)) => {
                let Some(timpl) = ctx.trait_impls.get(*impl_id) else {
                    return false;
                };
                let Some(trait_name) = ctx.item_name(timpl.impl_trait.trait_id) else {
                    return false;
                };
                pat.matches_with_generics(ctx, trait_name, Some(&timpl.impl_trait.generics))
            }
            _ => false,
        }
    }
}

impl PatTy {
    pub fn matches_generics(
        ctx: &TranslatedCrate,
        pats: &[Self],
        generics: Option<&GenericArgs>,
    ) -> bool {
        let Some(generics) = generics else {
            // If we'r ematching on a plain name without generics info, we ignore pattern generics.
            return true;
        };
        if pats.is_empty() {
            // If no generics are provided, this counts as a match.
            return true;
        }
        // We don't include regions in patterns.
        if pats.len() != generics.types.len() + generics.const_generics.len() {
            return false;
        }
        let (type_pats, const_pats) = pats.split_at(generics.types.len());
        let types_match = generics
            .types
            .iter()
            .zip(type_pats)
            .all(|(ty, pat)| pat.matches_ty(ctx, ty));
        let consts_match = generics
            .const_generics
            .iter()
            .zip(const_pats)
            .all(|(c, pat)| pat.matches_const(ctx, c));
        types_match && consts_match
    }

    pub fn matches_ty(&self, ctx: &TranslatedCrate, ty: &Ty) -> bool {
        match (self, ty.kind()) {
            (PatTy::Pat(p), _) => p.matches_ty(ctx, ty),
            (PatTy::Ref(pat_mtbl, p_ty), TyKind::Ref(_, ty, ty_mtbl)) => {
                pat_mtbl == ty_mtbl && p_ty.matches_ty(ctx, ty)
            }
            _ => false,
        }
    }

    pub fn matches_const(&self, ctx: &TranslatedCrate, c: &ConstGeneric) -> bool {
        match self {
            PatTy::Pat(p) => p.matches_const(ctx, c),
            PatTy::Ref(..) => false,
        }
    }
}

#[test]
fn test_compare() {
    use Ordering::*;
    let tests = [
        ("_", Less, "crate"),
        ("crate::_", Less, "crate::foo"),
        ("crate::foo", Less, "crate::foo::_"),
    ];
    for (x, o, y) in tests {
        let x = Pattern::parse(x).unwrap();
        let y = Pattern::parse(y).unwrap();
        assert_eq!(x.compare(&y), o);
    }
}