charon_lib/transform/index_to_function_calls.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
//! Desugar array/slice index operations to function calls.
use std::mem;
use derive_visitor::{DriveMut, VisitorMut};
use crate::ids::Vector;
use crate::llbc_ast::*;
use crate::transform::TransformCtx;
use super::ctx::LlbcPass;
/// Visitor to transform the operands by introducing intermediate let
/// statements.
///
/// We explore the statements without diving into substatements, and in particular explore
/// the places and operands. Places always appear as destinations we are writing to.
/// While we explore the places/operands present in a statement, We temporarily
/// store the new statements inside the visitor. Once we've finished exploring
/// the statement, we insert those before the statement.
#[derive(VisitorMut)]
#[visitor(
Place(enter),
Operand(enter),
Call(enter),
FnOperand(enter),
Rvalue(enter)
)]
struct Visitor<'a> {
locals: &'a mut Vector<VarId, Var>,
statements: Vec<Statement>,
// When we encounter a place, we remember when a given place is accessed mutably in this
// stack. Unfortunately this requires us to be very careful to catch all the cases where we
// see places.
place_mutability_stack: Vec<bool>,
// Span information of the statement
span: Span,
}
impl<'a> Visitor<'a> {
fn fresh_var(&mut self, name: Option<String>, ty: Ty) -> VarId {
self.locals.push_with(|index| Var { index, name, ty })
}
fn transform_place(&mut self, mut_access: bool, p: &mut Place) {
use ProjectionElem::*;
// Explore the place from the **end** to the beginning
for pe in mem::take(&mut p.projection) {
let (Index { ty, .. } | Subslice { ty, .. }) = &pe else {
// Just stack the projection element
p.projection.push(pe);
continue;
};
let TyKind::Adt(TypeId::Builtin(builtin_ty), generics) = ty.kind() else {
unreachable!()
};
// The built-in function to call.
let indexing_function = {
let builtin_fun = BuiltinFunId::Index(BuiltinIndexOp {
is_array: matches!(builtin_ty, BuiltinTy::Array),
mutability: RefKind::mutable(mut_access),
is_range: matches!(pe, Subslice { .. }),
});
// Same generics as the array/slice type, except for the extra lifetime.
let generics = GenericArgs {
regions: vec![Region::Erased].into(),
..generics.clone()
};
FnOperand::Regular(FnPtr {
func: FunIdOrTraitMethodRef::mk_builtin(builtin_fun),
generics,
})
};
let input_ty =
TyKind::Ref(Region::Erased, ty.clone(), RefKind::mutable(mut_access)).into_ty();
let output_ty = {
let elem_ty = generics.types[0].clone();
let output_inner_ty = if matches!(pe, Index { .. }) {
elem_ty
} else {
TyKind::Adt(
TypeId::Builtin(BuiltinTy::Slice),
GenericArgs::new_from_types(vec![elem_ty].into()),
)
.into_ty()
};
TyKind::Ref(
Region::Erased,
output_inner_ty,
RefKind::mutable(mut_access),
)
.into_ty()
};
// Push the statement:
//`tmp0 = &{mut}p`
let input_var = {
let input_var = self.fresh_var(None, input_ty);
let kind = RawStatement::Assign(
Place::new(input_var),
Rvalue::Ref(p.clone(), BorrowKind::mutable(mut_access)),
);
self.statements.push(Statement::new(self.span, kind));
input_var
};
// Construct the arguments to pass to the indexing function.
let mut args = vec![Operand::Move(Place::new(input_var))];
if let Subslice { from, .. } = &pe {
args.push(from.clone());
}
let (last_arg, from_end) = match &pe {
Index {
offset: x,
from_end,
..
}
| Subslice {
to: x, from_end, ..
} => (x.clone(), *from_end),
_ => unreachable!(),
};
if from_end {
let usize_ty = TyKind::Literal(LiteralTy::Integer(IntegerTy::Usize)).into_ty();
let len_var = self.fresh_var(None, usize_ty.clone());
let kind = RawStatement::Assign(
Place::new(len_var),
Rvalue::Len(
p.clone(),
ty.clone(),
generics.const_generics.get(0.into()).cloned(),
),
);
self.statements.push(Statement::new(self.span, kind));
// `index_var = len(p) - last_arg`
let index_var = self.fresh_var(None, usize_ty);
let kind = RawStatement::Assign(
Place::new(index_var),
Rvalue::BinaryOp(BinOp::Sub, Operand::Copy(Place::new(len_var)), last_arg),
);
self.statements.push(Statement::new(self.span, kind));
args.push(Operand::Copy(Place::new(index_var)));
} else {
args.push(last_arg);
}
// Call the indexing function:
// `tmp1 = {Array,Slice}{Mut,Shared}{Index,SubSlice}(move tmp0, <other args>)`
let output_var = {
let output_var = self.fresh_var(None, output_ty);
let index_call = Call {
func: indexing_function,
args,
dest: Place::new(output_var),
};
let kind = RawStatement::Call(index_call);
self.statements.push(Statement::new(self.span, kind));
output_var
};
// Update the place.
*p = Place {
var_id: output_var,
projection: vec![ProjectionElem::Deref],
};
}
}
}
/// The visitor methods.
impl<'a> Visitor<'a> {
fn enter_place(&mut self, p: &mut Place) {
// We intercept every traversal that would reach a place and push the correct mutability on
// the stack. If we missed one this will panic.
let mut_access = *self.place_mutability_stack.last().unwrap();
self.transform_place(mut_access, p);
self.place_mutability_stack.pop();
}
fn enter_operand(&mut self, op: &mut Operand) {
match op {
Operand::Move(_) => {
self.place_mutability_stack.push(true);
}
Operand::Copy(_) => {
self.place_mutability_stack.push(false);
}
Operand::Const(..) => {}
}
}
fn enter_call(&mut self, _c: &mut Call) {
self.place_mutability_stack.push(true);
}
fn enter_fn_operand(&mut self, fn_op: &mut FnOperand) {
match fn_op {
FnOperand::Regular(_) => {}
FnOperand::Move(_) => {
self.place_mutability_stack.push(true);
}
}
}
fn enter_rvalue(&mut self, rv: &mut Rvalue) {
use Rvalue::*;
match rv {
Use(_) | NullaryOp(..) | UnaryOp(..) | BinaryOp(..) | Aggregate(..) | Global(..)
| GlobalRef(..) | Repeat(..) | ShallowInitBox(..) => {}
RawPtr(_, ptrkind) => match *ptrkind {
RefKind::Mut => {
self.place_mutability_stack.push(true);
}
RefKind::Shared => {
self.place_mutability_stack.push(false);
}
},
Ref(_, bkind) => match *bkind {
// `UniqueImmutable` de facto gives mutable access and only shows up if there is
// nested mutable access.
BorrowKind::Mut | BorrowKind::TwoPhaseMut | BorrowKind::UniqueImmutable => {
self.place_mutability_stack.push(true);
}
BorrowKind::Shared | BorrowKind::Shallow => {
self.place_mutability_stack.push(false);
}
},
Discriminant(..) | Len(..) => {
// We access places, but those places are used to access
// elements without mutating them
self.place_mutability_stack.push(false);
}
}
}
}
pub struct Transform;
/// We do the following.
///
/// If `p` is a projection (for instance: `var`, `*var`, `var.f`, etc.), we
/// detect:
/// - whether it operates on a slice or an array (we keep track of the types)
/// - whether the access might mutate the value or not (it is
/// the case if it is in a `move`, `&mut` or at the lhs of an assignment),
/// and do the following transformations
///
/// ```text
/// // If array and mutable access:
/// ... p[i] ...
/// ~~>
/// tmp0 = &mut p
/// tmp1 = ArrayIndexMut(move p, i)
/// ... *tmp1 ...
///
/// // If array and non-mutable access:
/// ... p[i] ...
/// ~~>
/// tmp0 := & p
/// tmp1 := ArrayIndexShared(move tmp0, i)
/// ... *tmp1 ...
///
/// // Omitting the slice cases, which are similar
/// ```
///
/// For instance, it leads to the following transformations:
/// ```text
/// // x : [u32; N]
/// y : u32 = copy x[i]
/// ~~>
/// tmp0 : & [u32; N] := &x
/// tmp1 : &u32 = ArrayIndexShared(move tmp0, i)
/// y : u32 = copy (*tmp1)
///
/// // x : &[T; N]
/// y : &T = & (*x)[i]
/// ~~>
/// tmp0 : & [T; N] := & (*x)
/// tmp1 : &T = ArrayIndexShared(move tmp0, i)
/// y : &T = & (*tmp1)
///
/// // x : [u32; N]
/// y = &mut x[i]
/// ~~>
/// tmp0 : &mut [u32; N] := &mut x
/// tmp1 : &mut u32 := ArrayIndexMut(move tmp0, i)
/// y = &mut (*tmp)
///
/// // When using an index on the lhs:
/// // y : [T; N]
/// y[i] = x
/// ~~>
/// tmp0 : &mut [T; N] := &mut y;
/// tmp1 : &mut T = ArrayIndexMut(move y, i)
/// *tmp1 = x
/// ```
impl LlbcPass for Transform {
fn transform_body(&self, _ctx: &mut TransformCtx<'_>, b: &mut ExprBody) {
b.body.transform(&mut |st: &mut Statement| {
let mut visitor = Visitor {
locals: &mut b.locals,
statements: Vec::new(),
place_mutability_stack: Vec::new(),
span: st.span,
};
// We don't explore sub-statements.
use llbc_ast::Switch::*;
use RawStatement::*;
match &mut st.content {
Loop(..) => {}
Switch(If(op, ..) | SwitchInt(op, ..)) => op.drive_mut(&mut visitor),
Switch(Match(place, ..)) => {
visitor.place_mutability_stack.push(false); // Unsure why we do this
place.drive_mut(&mut visitor)
}
Abort(..) | Return | Break(..) | Continue(..) | Nop | Error(..) | Assert(..)
| Call(..) => {
st.drive_mut(&mut visitor);
}
FakeRead(place) => {
visitor.place_mutability_stack.push(false);
place.drive_mut(&mut visitor);
}
Assign(..) | SetDiscriminant(..) | Drop(..) => {
visitor.place_mutability_stack.push(true);
st.drive_mut(&mut visitor);
}
}
visitor.statements
});
}
}