charon_lib/transform/
remove_dynamic_checks.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
//! # Micro-pass: remove the dynamic checks for array/slice bounds, overflow, and division by zero.
//! Note that from a semantic point of view, an out-of-bound access or a division by zero
//! must lead to a panic in Rust (which is why those checks are always present, even when
//! compiling for release). In our case, we take this into account in the semantics of our
//! array/slice manipulation and arithmetic functions, on the verification side.

use crate::ast::*;
use crate::transform::TransformCtx;
use crate::ullbc_ast::{ExprBody, RawStatement, Statement};

use super::ctx::UllbcPass;

/// Rustc inserts dybnamic checks during MIR lowering. They all end in an `Assert` statement (and
/// this is the only use of this statement).
fn remove_dynamic_checks(_ctx: &mut TransformCtx, statements: &mut [Statement]) {
    // We return the statements we want to keep, which must be a prefix of `block.statements`.
    let statements_to_keep = match statements {
        // Bounds checks for arrays/slices. They look like:
        //   l := len(a)
        //   b := copy x < copy l
        //   assert(move b == true)
        [Statement {
            content: RawStatement::Assign(len, Rvalue::Len(..)),
            ..
        }, Statement {
            content:
                RawStatement::Assign(
                    is_in_bounds,
                    Rvalue::BinaryOp(BinOp::Lt, _, Operand::Copy(lt_op2)),
                ),
            ..
        }, Statement {
            content:
                RawStatement::Assert(Assert {
                    cond: Operand::Move(cond),
                    expected,
                }),
            ..
        }, rest @ ..]
            if lt_op2 == len && cond == is_in_bounds && *expected == true =>
        {
            rest
        }

        // Zero checks for division and remainder. They look like:
        //   b := copy x == const 0
        //   assert(move b == false)
        [Statement {
            content:
                RawStatement::Assign(is_zero, Rvalue::BinaryOp(BinOp::Eq, _, Operand::Const(_zero))),
            ..
        }, Statement {
            content:
                RawStatement::Assert(Assert {
                    cond: Operand::Move(cond),
                    expected,
                }),
            ..
        }, rest @ ..]
            if cond == is_zero && *expected == false =>
        {
            rest
        }

        // Overflow checks for signed division and remainder. They look like:
        //   is_neg_1 := y == (-1)
        //   is_min := x == INT::min
        //   has_overflow := move (is_neg_1) & move (is_min)
        //   assert(move has_overflow == false)
        [Statement {
            content: RawStatement::Assign(is_neg_1, Rvalue::BinaryOp(BinOp::Eq, _y_op, _minus_1)),
            ..
        }, Statement {
            content: RawStatement::Assign(is_min, Rvalue::BinaryOp(BinOp::Eq, _x_op, _int_min)),
            ..
        }, Statement {
            content:
                RawStatement::Assign(
                    has_overflow,
                    Rvalue::BinaryOp(BinOp::BitAnd, Operand::Move(and_op1), Operand::Move(and_op2)),
                ),
            ..
        }, Statement {
            content:
                RawStatement::Assert(Assert {
                    cond: Operand::Move(cond),
                    expected,
                }),
            ..
        }, rest @ ..]
            if and_op1 == is_neg_1
                && and_op2 == is_min
                && cond == has_overflow
                && *expected == false =>
        {
            rest
        }

        // Overflow checks for right/left shift. They can look like:
        //   x := ...;
        //   b := move x < const 32; // or another constant
        //   assert(move b == true);
        [Statement {
            content: RawStatement::Assign(x, _),
            ..
        }, Statement {
            content:
                RawStatement::Assign(
                    has_overflow,
                    Rvalue::BinaryOp(BinOp::Lt, Operand::Move(lt_op2), Operand::Const(..)),
                ),
            ..
        }, Statement {
            content:
                RawStatement::Assert(Assert {
                    cond: Operand::Move(cond),
                    expected,
                }),
            ..
        }, rest @ ..]
            if lt_op2 == x && cond == has_overflow && *expected == true =>
        {
            rest
        }
        // They can also look like:
        //   b := const c < const 32; // or another constant
        //   assert(move b == true);
        [Statement {
            content:
                RawStatement::Assign(
                    has_overflow,
                    Rvalue::BinaryOp(BinOp::Lt, Operand::Const(..), Operand::Const(..)),
                ),
            ..
        }, Statement {
            content:
                RawStatement::Assert(Assert {
                    cond: Operand::Move(cond),
                    expected,
                }),
            ..
        }, rest @ ..]
            if cond == has_overflow && *expected == true =>
        {
            rest
        }

        // Overflow checks for addition/subtraction/multiplication. They look like:
        //   r := x checked.+ y;
        //   assert(move r.1 == false);
        // They only happen in constants because we compile with `-C opt-level=3`. They span two
        // blocks so we remove them in a later pass.
        [Statement {
            content:
                RawStatement::Assign(
                    result,
                    Rvalue::BinaryOp(BinOp::CheckedAdd | BinOp::CheckedSub | BinOp::CheckedMul, ..),
                ),
            ..
        }, Statement {
            content:
                RawStatement::Assert(Assert {
                    cond: Operand::Move(cond),
                    expected,
                }),
            ..
        }, ..]
            if cond.var_id == result.var_id
                && result.projection.is_empty()
                && let [ProjectionElem::Field(FieldProjKind::Tuple(2), p_id)] =
                    cond.projection.as_slice()
                && p_id.index() == 1
                && *expected == false =>
        {
            // We leave this assert intact; it will be simplified in
            // [`remove_arithmetic_overflow_checks`].
            return;
        }

        _ => return,
    };

    // Remove the statements.
    let keep_len = statements_to_keep.len();
    for i in 0..statements.len() - keep_len {
        statements[i].content = RawStatement::Nop;
    }
}

pub struct Transform;
impl UllbcPass for Transform {
    fn transform_body(&self, ctx: &mut TransformCtx<'_>, b: &mut ExprBody) {
        for block in b.body.iter_mut() {
            block.transform_sequences(&mut |seq| {
                remove_dynamic_checks(ctx, seq);
                Vec::new()
            });
        }
    }
}