rustc_builtin_macros/deriving/
clone.rs

1use rustc_ast::{self as ast, Generics, ItemKind, MetaItem, VariantData};
2use rustc_data_structures::fx::FxHashSet;
3use rustc_expand::base::{Annotatable, ExtCtxt};
4use rustc_span::{Ident, Span, kw, sym};
5use thin_vec::{ThinVec, thin_vec};
6
7use crate::deriving::generic::ty::*;
8use crate::deriving::generic::*;
9use crate::deriving::path_std;
10
11pub(crate) fn expand_deriving_clone(
12    cx: &ExtCtxt<'_>,
13    span: Span,
14    mitem: &MetaItem,
15    item: &Annotatable,
16    push: &mut dyn FnMut(Annotatable),
17    is_const: bool,
18) {
19    // The simple form is `fn clone(&self) -> Self { *self }`, possibly with
20    // some additional `AssertParamIsClone` assertions.
21    //
22    // We can use the simple form if either of the following are true.
23    // - The type derives Copy and there are no generic parameters. (If we
24    //   used the simple form with generics, we'd have to bound the generics
25    //   with Clone + Copy, and then there'd be no Clone impl at all if the
26    //   user fills in something that is Clone but not Copy. After
27    //   specialization we can remove this no-generics limitation.)
28    // - The item is a union. (Unions with generic parameters still can derive
29    //   Clone because they require Copy for deriving, Clone alone is not
30    //   enough. Whether Clone is implemented for fields is irrelevant so we
31    //   don't assert it.)
32    let bounds;
33    let substructure;
34    let is_simple;
35    match item {
36        Annotatable::Item(annitem) => match &annitem.kind {
37            ItemKind::Struct(_, Generics { params, .. }, _)
38            | ItemKind::Enum(_, Generics { params, .. }, _) => {
39                let container_id = cx.current_expansion.id.expn_data().parent.expect_local();
40                let has_derive_copy = cx.resolver.has_derive_copy(container_id);
41                if has_derive_copy
42                    && !params
43                        .iter()
44                        .any(|param| matches!(param.kind, ast::GenericParamKind::Type { .. }))
45                {
46                    bounds = vec![];
47                    is_simple = true;
48                    substructure = combine_substructure(Box::new(|c, s, sub| {
49                        cs_clone_simple("Clone", c, s, sub, false)
50                    }));
51                } else {
52                    bounds = vec![];
53                    is_simple = false;
54                    substructure =
55                        combine_substructure(Box::new(|c, s, sub| cs_clone("Clone", c, s, sub)));
56                }
57            }
58            ItemKind::Union(..) => {
59                bounds = vec![Path(path_std!(marker::Copy))];
60                is_simple = true;
61                substructure = combine_substructure(Box::new(|c, s, sub| {
62                    cs_clone_simple("Clone", c, s, sub, true)
63                }));
64            }
65            _ => cx.dcx().span_bug(span, "`#[derive(Clone)]` on wrong item kind"),
66        },
67
68        _ => cx.dcx().span_bug(span, "`#[derive(Clone)]` on trait item or impl item"),
69    }
70
71    let trait_def = TraitDef {
72        span,
73        path: path_std!(clone::Clone),
74        skip_path_as_bound: false,
75        needs_copy_as_bound_if_packed: true,
76        additional_bounds: bounds,
77        supports_unions: true,
78        methods: vec![MethodDef {
79            name: sym::clone,
80            generics: Bounds::empty(),
81            explicit_self: true,
82            nonself_args: Vec::new(),
83            ret_ty: Self_,
84            attributes: thin_vec![cx.attr_word(sym::inline, span)],
85            fieldless_variants_strategy: FieldlessVariantsStrategy::Default,
86            combine_substructure: substructure,
87        }],
88        associated_types: Vec::new(),
89        is_const,
90        is_staged_api_crate: cx.ecfg.features.staged_api(),
91    };
92
93    trait_def.expand_ext(cx, mitem, item, push, is_simple)
94}
95
96fn cs_clone_simple(
97    name: &str,
98    cx: &ExtCtxt<'_>,
99    trait_span: Span,
100    substr: &Substructure<'_>,
101    is_union: bool,
102) -> BlockOrExpr {
103    let mut stmts = ThinVec::new();
104    let mut seen_type_names = FxHashSet::default();
105    let mut process_variant = |variant: &VariantData| {
106        for field in variant.fields() {
107            // This basic redundancy checking only prevents duplication of
108            // assertions like `AssertParamIsClone<Foo>` where the type is a
109            // simple name. That's enough to get a lot of cases, though.
110            if let Some(name) = field.ty.kind.is_simple_path()
111                && !seen_type_names.insert(name)
112            {
113                // Already produced an assertion for this type.
114                // Anonymous structs or unions must be eliminated as they cannot be
115                // type parameters.
116            } else {
117                // let _: AssertParamIsClone<FieldTy>;
118                super::assert_ty_bounds(
119                    cx,
120                    &mut stmts,
121                    field.ty.clone(),
122                    field.span,
123                    &[sym::clone, sym::AssertParamIsClone],
124                );
125            }
126        }
127    };
128
129    if is_union {
130        // Just a single assertion for unions, that the union impls `Copy`.
131        // let _: AssertParamIsCopy<Self>;
132        let self_ty = cx.ty_path(cx.path_ident(trait_span, Ident::with_dummy_span(kw::SelfUpper)));
133        super::assert_ty_bounds(
134            cx,
135            &mut stmts,
136            self_ty,
137            trait_span,
138            &[sym::clone, sym::AssertParamIsCopy],
139        );
140    } else {
141        match *substr.fields {
142            StaticStruct(vdata, ..) => {
143                process_variant(vdata);
144            }
145            StaticEnum(enum_def, ..) => {
146                for variant in &enum_def.variants {
147                    process_variant(&variant.data);
148                }
149            }
150            _ => cx.dcx().span_bug(
151                trait_span,
152                format!("unexpected substructure in simple `derive({name})`"),
153            ),
154        }
155    }
156    BlockOrExpr::new_mixed(stmts, Some(cx.expr_deref(trait_span, cx.expr_self(trait_span))))
157}
158
159fn cs_clone(
160    name: &str,
161    cx: &ExtCtxt<'_>,
162    trait_span: Span,
163    substr: &Substructure<'_>,
164) -> BlockOrExpr {
165    let ctor_path;
166    let all_fields;
167    let fn_path = cx.std_path(&[sym::clone, sym::Clone, sym::clone]);
168    let subcall = |cx: &ExtCtxt<'_>, field: &FieldInfo| {
169        let args = thin_vec![field.self_expr.clone()];
170        cx.expr_call_global(field.span, fn_path.clone(), args)
171    };
172
173    let vdata;
174    match substr.fields {
175        Struct(vdata_, af) => {
176            ctor_path = cx.path(trait_span, vec![substr.type_ident]);
177            all_fields = af;
178            vdata = *vdata_;
179        }
180        EnumMatching(.., variant, af) => {
181            ctor_path = cx.path(trait_span, vec![substr.type_ident, variant.ident]);
182            all_fields = af;
183            vdata = &variant.data;
184        }
185        EnumDiscr(..) | AllFieldlessEnum(..) => {
186            cx.dcx().span_bug(trait_span, format!("enum discriminants in `derive({name})`",))
187        }
188        StaticEnum(..) | StaticStruct(..) => {
189            cx.dcx().span_bug(trait_span, format!("associated function in `derive({name})`"))
190        }
191    }
192
193    let expr = match *vdata {
194        VariantData::Struct { .. } => {
195            let fields = all_fields
196                .iter()
197                .map(|field| {
198                    let Some(ident) = field.name else {
199                        cx.dcx().span_bug(
200                            trait_span,
201                            format!("unnamed field in normal struct in `derive({name})`",),
202                        );
203                    };
204                    let call = subcall(cx, field);
205                    cx.field_imm(field.span, ident, call)
206                })
207                .collect::<ThinVec<_>>();
208
209            cx.expr_struct(trait_span, ctor_path, fields)
210        }
211        VariantData::Tuple(..) => {
212            let subcalls = all_fields.iter().map(|f| subcall(cx, f)).collect();
213            let path = cx.expr_path(ctor_path);
214            cx.expr_call(trait_span, path, subcalls)
215        }
216        VariantData::Unit(..) => cx.expr_path(ctor_path),
217    };
218    BlockOrExpr::new_expr(expr)
219}