rustc_target/callconv/
mod.rs

1use std::{fmt, iter};
2
3use rustc_abi::{
4    AddressSpace, Align, BackendRepr, CanonAbi, ExternAbi, HasDataLayout, Primitive, Reg, RegKind,
5    Scalar, Size, TyAbiInterface, TyAndLayout,
6};
7use rustc_macros::HashStable_Generic;
8
9pub use crate::spec::AbiMap;
10use crate::spec::{HasTargetSpec, HasX86AbiOpt};
11
12mod aarch64;
13mod amdgpu;
14mod arm;
15mod avr;
16mod bpf;
17mod csky;
18mod hexagon;
19mod loongarch;
20mod m68k;
21mod mips;
22mod mips64;
23mod msp430;
24mod nvptx64;
25mod powerpc;
26mod powerpc64;
27mod riscv;
28mod s390x;
29mod sparc;
30mod sparc64;
31mod wasm;
32mod x86;
33mod x86_64;
34mod x86_win32;
35mod x86_win64;
36mod xtensa;
37
38#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
39pub enum PassMode {
40    /// Ignore the argument.
41    ///
42    /// The argument is a ZST.
43    Ignore,
44    /// Pass the argument directly.
45    ///
46    /// The argument has a layout abi of `Scalar` or `Vector`.
47    /// Unfortunately due to past mistakes, in rare cases on wasm, it can also be `Aggregate`.
48    /// This is bad since it leaks LLVM implementation details into the ABI.
49    /// (Also see <https://github.com/rust-lang/rust/issues/115666>.)
50    Direct(ArgAttributes),
51    /// Pass a pair's elements directly in two arguments.
52    ///
53    /// The argument has a layout abi of `ScalarPair`.
54    Pair(ArgAttributes, ArgAttributes),
55    /// Pass the argument after casting it. See the `CastTarget` docs for details.
56    ///
57    /// `pad_i32` indicates if a `Reg::i32()` dummy argument is emitted before the real argument.
58    Cast { pad_i32: bool, cast: Box<CastTarget> },
59    /// Pass the argument indirectly via a hidden pointer.
60    ///
61    /// The `meta_attrs` value, if any, is for the metadata (vtable or length) of an unsized
62    /// argument. (This is the only mode that supports unsized arguments.)
63    ///
64    /// `on_stack` defines that the value should be passed at a fixed stack offset in accordance to
65    /// the ABI rather than passed using a pointer. This corresponds to the `byval` LLVM argument
66    /// attribute. The `byval` argument will use a byte array with the same size as the Rust type
67    /// (which ensures that padding is preserved and that we do not rely on LLVM's struct layout),
68    /// and will use the alignment specified in `attrs.pointee_align` (if `Some`) or the type's
69    /// alignment (if `None`). This means that the alignment will not always
70    /// match the Rust type's alignment; see documentation of `pass_by_stack_offset` for more info.
71    ///
72    /// `on_stack` cannot be true for unsized arguments, i.e., when `meta_attrs` is `Some`.
73    Indirect { attrs: ArgAttributes, meta_attrs: Option<ArgAttributes>, on_stack: bool },
74}
75
76impl PassMode {
77    /// Checks if these two `PassMode` are equal enough to be considered "the same for all
78    /// function call ABIs". However, the `Layout` can also impact ABI decisions,
79    /// so that needs to be compared as well!
80    pub fn eq_abi(&self, other: &Self) -> bool {
81        match (self, other) {
82            (PassMode::Ignore, PassMode::Ignore) => true,
83            (PassMode::Direct(a1), PassMode::Direct(a2)) => a1.eq_abi(a2),
84            (PassMode::Pair(a1, b1), PassMode::Pair(a2, b2)) => a1.eq_abi(a2) && b1.eq_abi(b2),
85            (
86                PassMode::Cast { cast: c1, pad_i32: pad1 },
87                PassMode::Cast { cast: c2, pad_i32: pad2 },
88            ) => c1.eq_abi(c2) && pad1 == pad2,
89            (
90                PassMode::Indirect { attrs: a1, meta_attrs: None, on_stack: s1 },
91                PassMode::Indirect { attrs: a2, meta_attrs: None, on_stack: s2 },
92            ) => a1.eq_abi(a2) && s1 == s2,
93            (
94                PassMode::Indirect { attrs: a1, meta_attrs: Some(e1), on_stack: s1 },
95                PassMode::Indirect { attrs: a2, meta_attrs: Some(e2), on_stack: s2 },
96            ) => a1.eq_abi(a2) && e1.eq_abi(e2) && s1 == s2,
97            _ => false,
98        }
99    }
100}
101
102// Hack to disable non_upper_case_globals only for the bitflags! and not for the rest
103// of this module
104pub use attr_impl::ArgAttribute;
105
106#[allow(non_upper_case_globals)]
107#[allow(unused)]
108mod attr_impl {
109    use rustc_macros::HashStable_Generic;
110
111    // The subset of llvm::Attribute needed for arguments, packed into a bitfield.
112    #[derive(Clone, Copy, Default, Hash, PartialEq, Eq, HashStable_Generic)]
113    pub struct ArgAttribute(u8);
114    bitflags::bitflags! {
115        impl ArgAttribute: u8 {
116            const NoAlias   = 1 << 1;
117            const NoCapture = 1 << 2;
118            const NonNull   = 1 << 3;
119            const ReadOnly  = 1 << 4;
120            const InReg     = 1 << 5;
121            const NoUndef = 1 << 6;
122        }
123    }
124    rustc_data_structures::external_bitflags_debug! { ArgAttribute }
125}
126
127/// Sometimes an ABI requires small integers to be extended to a full or partial register. This enum
128/// defines if this extension should be zero-extension or sign-extension when necessary. When it is
129/// not necessary to extend the argument, this enum is ignored.
130#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
131pub enum ArgExtension {
132    None,
133    Zext,
134    Sext,
135}
136
137/// A compact representation of LLVM attributes (at least those relevant for this module)
138/// that can be manipulated without interacting with LLVM's Attribute machinery.
139#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
140pub struct ArgAttributes {
141    pub regular: ArgAttribute,
142    pub arg_ext: ArgExtension,
143    /// The minimum size of the pointee, guaranteed to be valid for the duration of the whole call
144    /// (corresponding to LLVM's dereferenceable_or_null attributes, i.e., it is okay for this to be
145    /// set on a null pointer, but all non-null pointers must be dereferenceable).
146    pub pointee_size: Size,
147    /// The minimum alignment of the pointee, if any.
148    pub pointee_align: Option<Align>,
149}
150
151impl ArgAttributes {
152    pub fn new() -> Self {
153        ArgAttributes {
154            regular: ArgAttribute::default(),
155            arg_ext: ArgExtension::None,
156            pointee_size: Size::ZERO,
157            pointee_align: None,
158        }
159    }
160
161    pub fn ext(&mut self, ext: ArgExtension) -> &mut Self {
162        assert!(
163            self.arg_ext == ArgExtension::None || self.arg_ext == ext,
164            "cannot set {:?} when {:?} is already set",
165            ext,
166            self.arg_ext
167        );
168        self.arg_ext = ext;
169        self
170    }
171
172    pub fn set(&mut self, attr: ArgAttribute) -> &mut Self {
173        self.regular |= attr;
174        self
175    }
176
177    pub fn contains(&self, attr: ArgAttribute) -> bool {
178        self.regular.contains(attr)
179    }
180
181    /// Checks if these two `ArgAttributes` are equal enough to be considered "the same for all
182    /// function call ABIs".
183    pub fn eq_abi(&self, other: &Self) -> bool {
184        // There's only one regular attribute that matters for the call ABI: InReg.
185        // Everything else is things like noalias, dereferenceable, nonnull, ...
186        // (This also applies to pointee_size, pointee_align.)
187        if self.regular.contains(ArgAttribute::InReg) != other.regular.contains(ArgAttribute::InReg)
188        {
189            return false;
190        }
191        // We also compare the sign extension mode -- this could let the callee make assumptions
192        // about bits that conceptually were not even passed.
193        if self.arg_ext != other.arg_ext {
194            return false;
195        }
196        true
197    }
198}
199
200impl From<ArgAttribute> for ArgAttributes {
201    fn from(value: ArgAttribute) -> Self {
202        Self {
203            regular: value,
204            arg_ext: ArgExtension::None,
205            pointee_size: Size::ZERO,
206            pointee_align: None,
207        }
208    }
209}
210
211/// An argument passed entirely registers with the
212/// same kind (e.g., HFA / HVA on PPC64 and AArch64).
213#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
214pub struct Uniform {
215    pub unit: Reg,
216
217    /// The total size of the argument, which can be:
218    /// * equal to `unit.size` (one scalar/vector),
219    /// * a multiple of `unit.size` (an array of scalar/vectors),
220    /// * if `unit.kind` is `Integer`, the last element can be shorter, i.e., `{ i64, i64, i32 }`
221    ///   for 64-bit integers with a total size of 20 bytes. When the argument is actually passed,
222    ///   this size will be rounded up to the nearest multiple of `unit.size`.
223    pub total: Size,
224
225    /// Indicate that the argument is consecutive, in the sense that either all values need to be
226    /// passed in register, or all on the stack. If they are passed on the stack, there should be
227    /// no additional padding between elements.
228    pub is_consecutive: bool,
229}
230
231impl From<Reg> for Uniform {
232    fn from(unit: Reg) -> Uniform {
233        Uniform { unit, total: unit.size, is_consecutive: false }
234    }
235}
236
237impl Uniform {
238    pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
239        self.unit.align(cx)
240    }
241
242    /// Pass using one or more values of the given type, without requiring them to be consecutive.
243    /// That is, some values may be passed in register and some on the stack.
244    pub fn new(unit: Reg, total: Size) -> Self {
245        Uniform { unit, total, is_consecutive: false }
246    }
247
248    /// Pass using one or more consecutive values of the given type. Either all values will be
249    /// passed in registers, or all on the stack.
250    pub fn consecutive(unit: Reg, total: Size) -> Self {
251        Uniform { unit, total, is_consecutive: true }
252    }
253}
254
255/// Describes the type used for `PassMode::Cast`.
256///
257/// Passing arguments in this mode works as follows: the registers in the `prefix` (the ones that
258/// are `Some`) get laid out one after the other (using `repr(C)` layout rules). Then the
259/// `rest.unit` register type gets repeated often enough to cover `rest.size`. This describes the
260/// actual type used for the call; the Rust type of the argument is then transmuted to this ABI type
261/// (and all data in the padding between the registers is dropped).
262#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
263pub struct CastTarget {
264    pub prefix: [Option<Reg>; 8],
265    /// The offset of `rest` from the start of the value. Currently only implemented for a `Reg`
266    /// pair created by the `offset_pair` method.
267    pub rest_offset: Option<Size>,
268    pub rest: Uniform,
269    pub attrs: ArgAttributes,
270}
271
272impl From<Reg> for CastTarget {
273    fn from(unit: Reg) -> CastTarget {
274        CastTarget::from(Uniform::from(unit))
275    }
276}
277
278impl From<Uniform> for CastTarget {
279    fn from(uniform: Uniform) -> CastTarget {
280        Self::prefixed([None; 8], uniform)
281    }
282}
283
284impl CastTarget {
285    pub fn prefixed(prefix: [Option<Reg>; 8], rest: Uniform) -> Self {
286        Self { prefix, rest_offset: None, rest, attrs: ArgAttributes::new() }
287    }
288
289    pub fn offset_pair(a: Reg, offset_from_start: Size, b: Reg) -> Self {
290        Self {
291            prefix: [Some(a), None, None, None, None, None, None, None],
292            rest_offset: Some(offset_from_start),
293            rest: b.into(),
294            attrs: ArgAttributes::new(),
295        }
296    }
297
298    pub fn with_attrs(mut self, attrs: ArgAttributes) -> Self {
299        self.attrs = attrs;
300        self
301    }
302
303    pub fn pair(a: Reg, b: Reg) -> CastTarget {
304        Self::prefixed([Some(a), None, None, None, None, None, None, None], Uniform::from(b))
305    }
306
307    /// When you only access the range containing valid data, you can use this unaligned size;
308    /// otherwise, use the safer `size` method.
309    pub fn unaligned_size<C: HasDataLayout>(&self, _cx: &C) -> Size {
310        // Prefix arguments are passed in specific designated registers
311        let prefix_size = if let Some(offset_from_start) = self.rest_offset {
312            offset_from_start
313        } else {
314            self.prefix
315                .iter()
316                .filter_map(|x| x.map(|reg| reg.size))
317                .fold(Size::ZERO, |acc, size| acc + size)
318        };
319        // Remaining arguments are passed in chunks of the unit size
320        let rest_size =
321            self.rest.unit.size * self.rest.total.bytes().div_ceil(self.rest.unit.size.bytes());
322
323        prefix_size + rest_size
324    }
325
326    pub fn size<C: HasDataLayout>(&self, cx: &C) -> Size {
327        self.unaligned_size(cx).align_to(self.align(cx))
328    }
329
330    pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
331        self.prefix
332            .iter()
333            .filter_map(|x| x.map(|reg| reg.align(cx)))
334            .fold(cx.data_layout().aggregate_align.abi.max(self.rest.align(cx)), |acc, align| {
335                acc.max(align)
336            })
337    }
338
339    /// Checks if these two `CastTarget` are equal enough to be considered "the same for all
340    /// function call ABIs".
341    pub fn eq_abi(&self, other: &Self) -> bool {
342        let CastTarget {
343            prefix: prefix_l,
344            rest_offset: rest_offset_l,
345            rest: rest_l,
346            attrs: attrs_l,
347        } = self;
348        let CastTarget {
349            prefix: prefix_r,
350            rest_offset: rest_offset_r,
351            rest: rest_r,
352            attrs: attrs_r,
353        } = other;
354        prefix_l == prefix_r
355            && rest_offset_l == rest_offset_r
356            && rest_l == rest_r
357            && attrs_l.eq_abi(attrs_r)
358    }
359}
360
361/// Information about how to pass an argument to,
362/// or return a value from, a function, under some ABI.
363#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
364pub struct ArgAbi<'a, Ty> {
365    pub layout: TyAndLayout<'a, Ty>,
366    pub mode: PassMode,
367}
368
369// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
370impl<'a, Ty: fmt::Display> fmt::Debug for ArgAbi<'a, Ty> {
371    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
372        let ArgAbi { layout, mode } = self;
373        f.debug_struct("ArgAbi").field("layout", layout).field("mode", mode).finish()
374    }
375}
376
377impl<'a, Ty> ArgAbi<'a, Ty> {
378    /// This defines the "default ABI" for that type, that is then later adjusted in `fn_abi_adjust_for_abi`.
379    pub fn new(
380        cx: &impl HasDataLayout,
381        layout: TyAndLayout<'a, Ty>,
382        scalar_attrs: impl Fn(&TyAndLayout<'a, Ty>, Scalar, Size) -> ArgAttributes,
383    ) -> Self {
384        let mode = match layout.backend_repr {
385            BackendRepr::Scalar(scalar) => {
386                PassMode::Direct(scalar_attrs(&layout, scalar, Size::ZERO))
387            }
388            BackendRepr::ScalarPair(a, b) => PassMode::Pair(
389                scalar_attrs(&layout, a, Size::ZERO),
390                scalar_attrs(&layout, b, a.size(cx).align_to(b.align(cx).abi)),
391            ),
392            BackendRepr::SimdVector { .. } => PassMode::Direct(ArgAttributes::new()),
393            BackendRepr::Memory { .. } => Self::indirect_pass_mode(&layout),
394        };
395        ArgAbi { layout, mode }
396    }
397
398    fn indirect_pass_mode(layout: &TyAndLayout<'a, Ty>) -> PassMode {
399        let mut attrs = ArgAttributes::new();
400
401        // For non-immediate arguments the callee gets its own copy of
402        // the value on the stack, so there are no aliases. It's also
403        // program-invisible so can't possibly capture
404        attrs
405            .set(ArgAttribute::NoAlias)
406            .set(ArgAttribute::NoCapture)
407            .set(ArgAttribute::NonNull)
408            .set(ArgAttribute::NoUndef);
409        attrs.pointee_size = layout.size;
410        attrs.pointee_align = Some(layout.align.abi);
411
412        let meta_attrs = layout.is_unsized().then_some(ArgAttributes::new());
413
414        PassMode::Indirect { attrs, meta_attrs, on_stack: false }
415    }
416
417    /// Pass this argument directly instead. Should NOT be used!
418    /// Only exists because of past ABI mistakes that will take time to fix
419    /// (see <https://github.com/rust-lang/rust/issues/115666>).
420    #[track_caller]
421    pub fn make_direct_deprecated(&mut self) {
422        match self.mode {
423            PassMode::Indirect { .. } => {
424                self.mode = PassMode::Direct(ArgAttributes::new());
425            }
426            PassMode::Ignore | PassMode::Direct(_) | PassMode::Pair(_, _) => {} // already direct
427            _ => panic!("Tried to make {:?} direct", self.mode),
428        }
429    }
430
431    /// Pass this argument indirectly, by passing a (thin or wide) pointer to the argument instead.
432    /// This is valid for both sized and unsized arguments.
433    #[track_caller]
434    pub fn make_indirect(&mut self) {
435        match self.mode {
436            PassMode::Direct(_) | PassMode::Pair(_, _) => {
437                self.mode = Self::indirect_pass_mode(&self.layout);
438            }
439            PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
440                // already indirect
441            }
442            _ => panic!("Tried to make {:?} indirect", self.mode),
443        }
444    }
445
446    /// Same as `make_indirect`, but for arguments that are ignored. Only needed for ABIs that pass
447    /// ZSTs indirectly.
448    #[track_caller]
449    pub fn make_indirect_from_ignore(&mut self) {
450        match self.mode {
451            PassMode::Ignore => {
452                self.mode = Self::indirect_pass_mode(&self.layout);
453            }
454            PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
455                // already indirect
456            }
457            _ => panic!("Tried to make {:?} indirect (expected `PassMode::Ignore`)", self.mode),
458        }
459    }
460
461    /// Pass this argument indirectly, by placing it at a fixed stack offset.
462    /// This corresponds to the `byval` LLVM argument attribute.
463    /// This is only valid for sized arguments.
464    ///
465    /// `byval_align` specifies the alignment of the `byval` stack slot, which does not need to
466    /// correspond to the type's alignment. This will be `Some` if the target's ABI specifies that
467    /// stack slots used for arguments passed by-value have specific alignment requirements which
468    /// differ from the alignment used in other situations.
469    ///
470    /// If `None`, the type's alignment is used.
471    ///
472    /// If the resulting alignment differs from the type's alignment,
473    /// the argument will be copied to an alloca with sufficient alignment,
474    /// either in the caller (if the type's alignment is lower than the byval alignment)
475    /// or in the callee (if the type's alignment is higher than the byval alignment),
476    /// to ensure that Rust code never sees an underaligned pointer.
477    pub fn pass_by_stack_offset(&mut self, byval_align: Option<Align>) {
478        assert!(!self.layout.is_unsized(), "used byval ABI for unsized layout");
479        self.make_indirect();
480        match self.mode {
481            PassMode::Indirect { ref mut attrs, meta_attrs: _, ref mut on_stack } => {
482                *on_stack = true;
483
484                // Some platforms, like 32-bit x86, change the alignment of the type when passing
485                // `byval`. Account for that.
486                if let Some(byval_align) = byval_align {
487                    // On all targets with byval align this is currently true, so let's assert it.
488                    debug_assert!(byval_align >= Align::from_bytes(4).unwrap());
489                    attrs.pointee_align = Some(byval_align);
490                }
491            }
492            _ => unreachable!(),
493        }
494    }
495
496    pub fn extend_integer_width_to(&mut self, bits: u64) {
497        // Only integers have signedness
498        if let BackendRepr::Scalar(scalar) = self.layout.backend_repr {
499            if let Primitive::Int(i, signed) = scalar.primitive() {
500                if i.size().bits() < bits {
501                    if let PassMode::Direct(ref mut attrs) = self.mode {
502                        if signed {
503                            attrs.ext(ArgExtension::Sext)
504                        } else {
505                            attrs.ext(ArgExtension::Zext)
506                        };
507                    }
508                }
509            }
510        }
511    }
512
513    pub fn cast_to<T: Into<CastTarget>>(&mut self, target: T) {
514        self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32: false };
515    }
516
517    pub fn cast_to_and_pad_i32<T: Into<CastTarget>>(&mut self, target: T, pad_i32: bool) {
518        self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32 };
519    }
520
521    pub fn is_indirect(&self) -> bool {
522        matches!(self.mode, PassMode::Indirect { .. })
523    }
524
525    pub fn is_sized_indirect(&self) -> bool {
526        matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ })
527    }
528
529    pub fn is_unsized_indirect(&self) -> bool {
530        matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ })
531    }
532
533    pub fn is_ignore(&self) -> bool {
534        matches!(self.mode, PassMode::Ignore)
535    }
536
537    /// Checks if these two `ArgAbi` are equal enough to be considered "the same for all
538    /// function call ABIs".
539    pub fn eq_abi(&self, other: &Self) -> bool
540    where
541        Ty: PartialEq,
542    {
543        // Ideally we'd just compare the `mode`, but that is not enough -- for some modes LLVM will look
544        // at the type.
545        self.layout.eq_abi(&other.layout) && self.mode.eq_abi(&other.mode) && {
546            // `fn_arg_sanity_check` accepts `PassMode::Direct` for some aggregates.
547            // That elevates any type difference to an ABI difference since we just use the
548            // full Rust type as the LLVM argument/return type.
549            if matches!(self.mode, PassMode::Direct(..))
550                && matches!(self.layout.backend_repr, BackendRepr::Memory { .. })
551            {
552                // For aggregates in `Direct` mode to be compatible, the types need to be equal.
553                self.layout.ty == other.layout.ty
554            } else {
555                true
556            }
557        }
558    }
559}
560
561#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
562pub enum RiscvInterruptKind {
563    Machine,
564    Supervisor,
565}
566
567impl RiscvInterruptKind {
568    pub fn as_str(&self) -> &'static str {
569        match self {
570            Self::Machine => "machine",
571            Self::Supervisor => "supervisor",
572        }
573    }
574}
575
576/// Metadata describing how the arguments to a native function
577/// should be passed in order to respect the native ABI.
578///
579/// The signature represented by this type may not match the MIR function signature.
580/// Certain attributes, like `#[track_caller]` can introduce additional arguments, which are present in [`FnAbi`], but not in `FnSig`.
581/// While this difference is rarely relevant, it should still be kept in mind.
582///
583/// I will do my best to describe this structure, but these
584/// comments are reverse-engineered and may be inaccurate. -NDM
585#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
586pub struct FnAbi<'a, Ty> {
587    /// The type, layout, and information about how each argument is passed.
588    pub args: Box<[ArgAbi<'a, Ty>]>,
589
590    /// The layout, type, and the way a value is returned from this function.
591    pub ret: ArgAbi<'a, Ty>,
592
593    /// Marks this function as variadic (accepting a variable number of arguments).
594    pub c_variadic: bool,
595
596    /// The count of non-variadic arguments.
597    ///
598    /// Should only be different from args.len() when c_variadic is true.
599    /// This can be used to know whether an argument is variadic or not.
600    pub fixed_count: u32,
601    /// The calling convention of this function.
602    pub conv: CanonAbi,
603    /// Indicates if an unwind may happen across a call to this function.
604    pub can_unwind: bool,
605}
606
607// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
608impl<'a, Ty: fmt::Display> fmt::Debug for FnAbi<'a, Ty> {
609    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
610        let FnAbi { args, ret, c_variadic, fixed_count, conv, can_unwind } = self;
611        f.debug_struct("FnAbi")
612            .field("args", args)
613            .field("ret", ret)
614            .field("c_variadic", c_variadic)
615            .field("fixed_count", fixed_count)
616            .field("conv", conv)
617            .field("can_unwind", can_unwind)
618            .finish()
619    }
620}
621
622impl<'a, Ty> FnAbi<'a, Ty> {
623    pub fn adjust_for_foreign_abi<C>(&mut self, cx: &C, abi: ExternAbi)
624    where
625        Ty: TyAbiInterface<'a, C> + Copy,
626        C: HasDataLayout + HasTargetSpec + HasX86AbiOpt,
627    {
628        if abi == ExternAbi::X86Interrupt {
629            if let Some(arg) = self.args.first_mut() {
630                arg.pass_by_stack_offset(None);
631            }
632            return;
633        }
634
635        let spec = cx.target_spec();
636        match &spec.arch[..] {
637            "x86" => {
638                let (flavor, regparm) = match abi {
639                    ExternAbi::Fastcall { .. } | ExternAbi::Vectorcall { .. } => {
640                        (x86::Flavor::FastcallOrVectorcall, None)
641                    }
642                    ExternAbi::C { .. } | ExternAbi::Cdecl { .. } | ExternAbi::Stdcall { .. } => {
643                        (x86::Flavor::General, cx.x86_abi_opt().regparm)
644                    }
645                    _ => (x86::Flavor::General, None),
646                };
647                let reg_struct_return = cx.x86_abi_opt().reg_struct_return;
648                let opts = x86::X86Options { flavor, regparm, reg_struct_return };
649                if spec.is_like_msvc {
650                    x86_win32::compute_abi_info(cx, self, opts);
651                } else {
652                    x86::compute_abi_info(cx, self, opts);
653                }
654            }
655            "x86_64" => match abi {
656                ExternAbi::SysV64 { .. } => x86_64::compute_abi_info(cx, self),
657                ExternAbi::Win64 { .. } | ExternAbi::Vectorcall { .. } => {
658                    x86_win64::compute_abi_info(cx, self)
659                }
660                _ => {
661                    if cx.target_spec().is_like_windows {
662                        x86_win64::compute_abi_info(cx, self)
663                    } else {
664                        x86_64::compute_abi_info(cx, self)
665                    }
666                }
667            },
668            "aarch64" | "arm64ec" => {
669                let kind = if cx.target_spec().is_like_darwin {
670                    aarch64::AbiKind::DarwinPCS
671                } else if cx.target_spec().is_like_windows {
672                    aarch64::AbiKind::Win64
673                } else {
674                    aarch64::AbiKind::AAPCS
675                };
676                aarch64::compute_abi_info(cx, self, kind)
677            }
678            "amdgpu" => amdgpu::compute_abi_info(cx, self),
679            "arm" => arm::compute_abi_info(cx, self),
680            "avr" => avr::compute_abi_info(self),
681            "loongarch32" | "loongarch64" => loongarch::compute_abi_info(cx, self),
682            "m68k" => m68k::compute_abi_info(self),
683            "csky" => csky::compute_abi_info(self),
684            "mips" | "mips32r6" => mips::compute_abi_info(cx, self),
685            "mips64" | "mips64r6" => mips64::compute_abi_info(cx, self),
686            "powerpc" => powerpc::compute_abi_info(cx, self),
687            "powerpc64" => powerpc64::compute_abi_info(cx, self),
688            "s390x" => s390x::compute_abi_info(cx, self),
689            "msp430" => msp430::compute_abi_info(self),
690            "sparc" => sparc::compute_abi_info(cx, self),
691            "sparc64" => sparc64::compute_abi_info(cx, self),
692            "nvptx64" => {
693                if abi == ExternAbi::PtxKernel || abi == ExternAbi::GpuKernel {
694                    nvptx64::compute_ptx_kernel_abi_info(cx, self)
695                } else {
696                    nvptx64::compute_abi_info(self)
697                }
698            }
699            "hexagon" => hexagon::compute_abi_info(self),
700            "xtensa" => xtensa::compute_abi_info(cx, self),
701            "riscv32" | "riscv64" => riscv::compute_abi_info(cx, self),
702            "wasm32" | "wasm64" => wasm::compute_abi_info(cx, self),
703            "bpf" => bpf::compute_abi_info(self),
704            arch => panic!("no lowering implemented for {arch}"),
705        }
706    }
707
708    pub fn adjust_for_rust_abi<C>(&mut self, cx: &C)
709    where
710        Ty: TyAbiInterface<'a, C> + Copy,
711        C: HasDataLayout + HasTargetSpec,
712    {
713        let spec = cx.target_spec();
714        match &*spec.arch {
715            "x86" => x86::compute_rust_abi_info(cx, self),
716            "riscv32" | "riscv64" => riscv::compute_rust_abi_info(cx, self),
717            "loongarch32" | "loongarch64" => loongarch::compute_rust_abi_info(cx, self),
718            "aarch64" => aarch64::compute_rust_abi_info(cx, self),
719            _ => {}
720        };
721
722        for (arg_idx, arg) in self
723            .args
724            .iter_mut()
725            .enumerate()
726            .map(|(idx, arg)| (Some(idx), arg))
727            .chain(iter::once((None, &mut self.ret)))
728        {
729            // If the logic above already picked a specific type to cast the argument to, leave that
730            // in place.
731            if matches!(arg.mode, PassMode::Ignore | PassMode::Cast { .. }) {
732                continue;
733            }
734
735            if arg_idx.is_none()
736                && arg.layout.size > Primitive::Pointer(AddressSpace::ZERO).size(cx) * 2
737                && !matches!(arg.layout.backend_repr, BackendRepr::SimdVector { .. })
738            {
739                // Return values larger than 2 registers using a return area
740                // pointer. LLVM and Cranelift disagree about how to return
741                // values that don't fit in the registers designated for return
742                // values. LLVM will force the entire return value to be passed
743                // by return area pointer, while Cranelift will look at each IR level
744                // return value independently and decide to pass it in a
745                // register or not, which would result in the return value
746                // being passed partially in registers and partially through a
747                // return area pointer. For large IR-level values such as `i128`,
748                // cranelift will even split up the value into smaller chunks.
749                //
750                // While Cranelift may need to be fixed as the LLVM behavior is
751                // generally more correct with respect to the surface language,
752                // forcing this behavior in rustc itself makes it easier for
753                // other backends to conform to the Rust ABI and for the C ABI
754                // rustc already handles this behavior anyway.
755                //
756                // In addition LLVM's decision to pass the return value in
757                // registers or using a return area pointer depends on how
758                // exactly the return type is lowered to an LLVM IR type. For
759                // example `Option<u128>` can be lowered as `{ i128, i128 }`
760                // in which case the x86_64 backend would use a return area
761                // pointer, or it could be passed as `{ i32, i128 }` in which
762                // case the x86_64 backend would pass it in registers by taking
763                // advantage of an LLVM ABI extension that allows using 3
764                // registers for the x86_64 sysv call conv rather than the
765                // officially specified 2 registers.
766                //
767                // FIXME: Technically we should look at the amount of available
768                // return registers rather than guessing that there are 2
769                // registers for return values. In practice only a couple of
770                // architectures have less than 2 return registers. None of
771                // which supported by Cranelift.
772                //
773                // NOTE: This adjustment is only necessary for the Rust ABI as
774                // for other ABI's the calling convention implementations in
775                // rustc_target already ensure any return value which doesn't
776                // fit in the available amount of return registers is passed in
777                // the right way for the current target.
778                //
779                // The adjustment is not necessary nor desired for types with a vector
780                // representation; those are handled below.
781                arg.make_indirect();
782                continue;
783            }
784
785            match arg.layout.backend_repr {
786                BackendRepr::Memory { .. } => {
787                    // Compute `Aggregate` ABI.
788
789                    let is_indirect_not_on_stack =
790                        matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
791                    assert!(is_indirect_not_on_stack);
792
793                    let size = arg.layout.size;
794                    if arg.layout.is_sized()
795                        && size <= Primitive::Pointer(AddressSpace::ZERO).size(cx)
796                    {
797                        // We want to pass small aggregates as immediates, but using
798                        // an LLVM aggregate type for this leads to bad optimizations,
799                        // so we pick an appropriately sized integer type instead.
800                        arg.cast_to(Reg { kind: RegKind::Integer, size });
801                    }
802                }
803
804                BackendRepr::SimdVector { .. } => {
805                    // This is a fun case! The gist of what this is doing is
806                    // that we want callers and callees to always agree on the
807                    // ABI of how they pass SIMD arguments. If we were to *not*
808                    // make these arguments indirect then they'd be immediates
809                    // in LLVM, which means that they'd used whatever the
810                    // appropriate ABI is for the callee and the caller. That
811                    // means, for example, if the caller doesn't have AVX
812                    // enabled but the callee does, then passing an AVX argument
813                    // across this boundary would cause corrupt data to show up.
814                    //
815                    // This problem is fixed by unconditionally passing SIMD
816                    // arguments through memory between callers and callees
817                    // which should get them all to agree on ABI regardless of
818                    // target feature sets. Some more information about this
819                    // issue can be found in #44367.
820                    //
821                    // We *could* do better in some cases, e.g. on x86_64 targets where SSE2 is
822                    // required. However, it turns out that that makes LLVM worse at optimizing this
823                    // code, so we pass things indirectly even there. See #139029 for more on that.
824                    if spec.simd_types_indirect {
825                        arg.make_indirect();
826                    }
827                }
828
829                _ => {}
830            }
831        }
832    }
833}
834
835// Some types are used a lot. Make sure they don't unintentionally get bigger.
836#[cfg(target_pointer_width = "64")]
837mod size_asserts {
838    use rustc_data_structures::static_assert_size;
839
840    use super::*;
841    // tidy-alphabetical-start
842    static_assert_size!(ArgAbi<'_, usize>, 56);
843    static_assert_size!(FnAbi<'_, usize>, 80);
844    // tidy-alphabetical-end
845}