rustc_trait_selection/traits/select/mod.rs
1//! Candidate selection. See the [rustc dev guide] for more information on how this works.
2//!
3//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
4
5use std::assert_matches::assert_matches;
6use std::cell::{Cell, RefCell};
7use std::fmt::{self, Display};
8use std::ops::ControlFlow;
9use std::{cmp, iter};
10
11use hir::def::DefKind;
12use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
13use rustc_data_structures::stack::ensure_sufficient_stack;
14use rustc_errors::{Diag, EmissionGuarantee};
15use rustc_hir as hir;
16use rustc_hir::LangItem;
17use rustc_hir::def_id::DefId;
18use rustc_infer::infer::BoundRegionConversionTime::{self, HigherRankedType};
19use rustc_infer::infer::DefineOpaqueTypes;
20use rustc_infer::infer::at::ToTrace;
21use rustc_infer::infer::relate::TypeRelation;
22use rustc_infer::traits::{PredicateObligations, TraitObligation};
23use rustc_macros::{TypeFoldable, TypeVisitable};
24use rustc_middle::bug;
25use rustc_middle::dep_graph::{DepNodeIndex, dep_kinds};
26pub use rustc_middle::traits::select::*;
27use rustc_middle::ty::abstract_const::NotConstEvaluatable;
28use rustc_middle::ty::error::TypeErrorToStringExt;
29use rustc_middle::ty::print::{PrintTraitRefExt as _, with_no_trimmed_paths};
30use rustc_middle::ty::{
31 self, DeepRejectCtxt, GenericArgsRef, PolyProjectionPredicate, SizedTraitKind, Ty, TyCtxt,
32 TypeFoldable, TypeVisitableExt, TypingMode, Upcast, elaborate, may_use_unstable_feature,
33};
34use rustc_span::{Symbol, sym};
35use tracing::{debug, instrument, trace};
36
37use self::EvaluationResult::*;
38use self::SelectionCandidate::*;
39use super::coherence::{self, Conflict};
40use super::project::ProjectionTermObligation;
41use super::util::closure_trait_ref_and_return_type;
42use super::{
43 ImplDerivedCause, Normalized, Obligation, ObligationCause, ObligationCauseCode,
44 PolyTraitObligation, PredicateObligation, Selection, SelectionError, SelectionResult,
45 TraitQueryMode, const_evaluatable, project, util, wf,
46};
47use crate::error_reporting::InferCtxtErrorExt;
48use crate::infer::{InferCtxt, InferOk, TypeFreshener};
49use crate::solve::InferCtxtSelectExt as _;
50use crate::traits::normalize::{normalize_with_depth, normalize_with_depth_to};
51use crate::traits::project::{ProjectAndUnifyResult, ProjectionCacheKeyExt};
52use crate::traits::{EvaluateConstErr, ProjectionCacheKey, effects, sizedness_fast_path};
53
54mod _match;
55mod candidate_assembly;
56mod confirmation;
57
58#[derive(Clone, Debug, Eq, PartialEq, Hash)]
59pub enum IntercrateAmbiguityCause<'tcx> {
60 DownstreamCrate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
61 UpstreamCrateUpdate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
62 ReservationImpl { message: Symbol },
63}
64
65impl<'tcx> IntercrateAmbiguityCause<'tcx> {
66 /// Emits notes when the overlap is caused by complex intercrate ambiguities.
67 /// See #23980 for details.
68 pub fn add_intercrate_ambiguity_hint<G: EmissionGuarantee>(&self, err: &mut Diag<'_, G>) {
69 err.note(self.intercrate_ambiguity_hint());
70 }
71
72 pub fn intercrate_ambiguity_hint(&self) -> String {
73 with_no_trimmed_paths!(match self {
74 IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty } => {
75 format!(
76 "downstream crates may implement trait `{trait_desc}`{self_desc}",
77 trait_desc = trait_ref.print_trait_sugared(),
78 self_desc = if let Some(self_ty) = self_ty {
79 format!(" for type `{self_ty}`")
80 } else {
81 String::new()
82 }
83 )
84 }
85 IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty } => {
86 format!(
87 "upstream crates may add a new impl of trait `{trait_desc}`{self_desc} \
88 in future versions",
89 trait_desc = trait_ref.print_trait_sugared(),
90 self_desc = if let Some(self_ty) = self_ty {
91 format!(" for type `{self_ty}`")
92 } else {
93 String::new()
94 }
95 )
96 }
97 IntercrateAmbiguityCause::ReservationImpl { message } => message.to_string(),
98 })
99 }
100}
101
102pub struct SelectionContext<'cx, 'tcx> {
103 pub infcx: &'cx InferCtxt<'tcx>,
104
105 /// Freshener used specifically for entries on the obligation
106 /// stack. This ensures that all entries on the stack at one time
107 /// will have the same set of placeholder entries, which is
108 /// important for checking for trait bounds that recursively
109 /// require themselves.
110 freshener: TypeFreshener<'cx, 'tcx>,
111
112 /// If `intercrate` is set, we remember predicates which were
113 /// considered ambiguous because of impls potentially added in other crates.
114 /// This is used in coherence to give improved diagnostics.
115 /// We don't do his until we detect a coherence error because it can
116 /// lead to false overflow results (#47139) and because always
117 /// computing it may negatively impact performance.
118 intercrate_ambiguity_causes: Option<FxIndexSet<IntercrateAmbiguityCause<'tcx>>>,
119
120 /// The mode that trait queries run in, which informs our error handling
121 /// policy. In essence, canonicalized queries need their errors propagated
122 /// rather than immediately reported because we do not have accurate spans.
123 query_mode: TraitQueryMode,
124}
125
126// A stack that walks back up the stack frame.
127struct TraitObligationStack<'prev, 'tcx> {
128 obligation: &'prev PolyTraitObligation<'tcx>,
129
130 /// The trait predicate from `obligation` but "freshened" with the
131 /// selection-context's freshener. Used to check for recursion.
132 fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
133
134 /// Starts out equal to `depth` -- if, during evaluation, we
135 /// encounter a cycle, then we will set this flag to the minimum
136 /// depth of that cycle for all participants in the cycle. These
137 /// participants will then forego caching their results. This is
138 /// not the most efficient solution, but it addresses #60010. The
139 /// problem we are trying to prevent:
140 ///
141 /// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
142 /// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
143 /// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
144 ///
145 /// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
146 /// is `EvaluatedToOk`; this is because they were only considered
147 /// ok on the premise that if `A: AutoTrait` held, but we indeed
148 /// encountered a problem (later on) with `A: AutoTrait`. So we
149 /// currently set a flag on the stack node for `B: AutoTrait` (as
150 /// well as the second instance of `A: AutoTrait`) to suppress
151 /// caching.
152 ///
153 /// This is a simple, targeted fix. A more-performant fix requires
154 /// deeper changes, but would permit more caching: we could
155 /// basically defer caching until we have fully evaluated the
156 /// tree, and then cache the entire tree at once. In any case, the
157 /// performance impact here shouldn't be so horrible: every time
158 /// this is hit, we do cache at least one trait, so we only
159 /// evaluate each member of a cycle up to N times, where N is the
160 /// length of the cycle. This means the performance impact is
161 /// bounded and we shouldn't have any terrible worst-cases.
162 reached_depth: Cell<usize>,
163
164 previous: TraitObligationStackList<'prev, 'tcx>,
165
166 /// The number of parent frames plus one (thus, the topmost frame has depth 1).
167 depth: usize,
168
169 /// The depth-first number of this node in the search graph -- a
170 /// pre-order index. Basically, a freshly incremented counter.
171 dfn: usize,
172}
173
174struct SelectionCandidateSet<'tcx> {
175 /// A list of candidates that definitely apply to the current
176 /// obligation (meaning: types unify).
177 vec: Vec<SelectionCandidate<'tcx>>,
178
179 /// If `true`, then there were candidates that might or might
180 /// not have applied, but we couldn't tell. This occurs when some
181 /// of the input types are type variables, in which case there are
182 /// various "builtin" rules that might or might not trigger.
183 ambiguous: bool,
184}
185
186#[derive(PartialEq, Eq, Debug, Clone)]
187struct EvaluatedCandidate<'tcx> {
188 candidate: SelectionCandidate<'tcx>,
189 evaluation: EvaluationResult,
190}
191
192impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
193 pub fn new(infcx: &'cx InferCtxt<'tcx>) -> SelectionContext<'cx, 'tcx> {
194 SelectionContext {
195 infcx,
196 freshener: infcx.freshener(),
197 intercrate_ambiguity_causes: None,
198 query_mode: TraitQueryMode::Standard,
199 }
200 }
201
202 pub fn with_query_mode(
203 infcx: &'cx InferCtxt<'tcx>,
204 query_mode: TraitQueryMode,
205 ) -> SelectionContext<'cx, 'tcx> {
206 debug!(?query_mode, "with_query_mode");
207 SelectionContext { query_mode, ..SelectionContext::new(infcx) }
208 }
209
210 /// Enables tracking of intercrate ambiguity causes. See
211 /// the documentation of [`Self::intercrate_ambiguity_causes`] for more.
212 pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
213 assert_matches!(self.infcx.typing_mode(), TypingMode::Coherence);
214 assert!(self.intercrate_ambiguity_causes.is_none());
215 self.intercrate_ambiguity_causes = Some(FxIndexSet::default());
216 debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
217 }
218
219 /// Gets the intercrate ambiguity causes collected since tracking
220 /// was enabled and disables tracking at the same time. If
221 /// tracking is not enabled, just returns an empty vector.
222 pub fn take_intercrate_ambiguity_causes(
223 &mut self,
224 ) -> FxIndexSet<IntercrateAmbiguityCause<'tcx>> {
225 assert_matches!(self.infcx.typing_mode(), TypingMode::Coherence);
226 self.intercrate_ambiguity_causes.take().unwrap_or_default()
227 }
228
229 pub fn tcx(&self) -> TyCtxt<'tcx> {
230 self.infcx.tcx
231 }
232
233 ///////////////////////////////////////////////////////////////////////////
234 // Selection
235 //
236 // The selection phase tries to identify *how* an obligation will
237 // be resolved. For example, it will identify which impl or
238 // parameter bound is to be used. The process can be inconclusive
239 // if the self type in the obligation is not fully inferred. Selection
240 // can result in an error in one of two ways:
241 //
242 // 1. If no applicable impl or parameter bound can be found.
243 // 2. If the output type parameters in the obligation do not match
244 // those specified by the impl/bound. For example, if the obligation
245 // is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
246 // `impl<T> Iterable<T> for Vec<T>`, than an error would result.
247
248 /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
249 /// type environment by performing unification.
250 #[instrument(level = "debug", skip(self), ret)]
251 pub fn poly_select(
252 &mut self,
253 obligation: &PolyTraitObligation<'tcx>,
254 ) -> SelectionResult<'tcx, Selection<'tcx>> {
255 assert!(!self.infcx.next_trait_solver());
256
257 let candidate = match self.select_from_obligation(obligation) {
258 Err(SelectionError::Overflow(OverflowError::Canonical)) => {
259 // In standard mode, overflow must have been caught and reported
260 // earlier.
261 assert!(self.query_mode == TraitQueryMode::Canonical);
262 return Err(SelectionError::Overflow(OverflowError::Canonical));
263 }
264 Err(e) => {
265 return Err(e);
266 }
267 Ok(None) => {
268 return Ok(None);
269 }
270 Ok(Some(candidate)) => candidate,
271 };
272
273 match self.confirm_candidate(obligation, candidate) {
274 Err(SelectionError::Overflow(OverflowError::Canonical)) => {
275 assert!(self.query_mode == TraitQueryMode::Canonical);
276 Err(SelectionError::Overflow(OverflowError::Canonical))
277 }
278 Err(e) => Err(e),
279 Ok(candidate) => Ok(Some(candidate)),
280 }
281 }
282
283 pub fn select(
284 &mut self,
285 obligation: &TraitObligation<'tcx>,
286 ) -> SelectionResult<'tcx, Selection<'tcx>> {
287 if self.infcx.next_trait_solver() {
288 return self.infcx.select_in_new_trait_solver(obligation);
289 }
290
291 self.poly_select(&Obligation {
292 cause: obligation.cause.clone(),
293 param_env: obligation.param_env,
294 predicate: ty::Binder::dummy(obligation.predicate),
295 recursion_depth: obligation.recursion_depth,
296 })
297 }
298
299 fn select_from_obligation(
300 &mut self,
301 obligation: &PolyTraitObligation<'tcx>,
302 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
303 debug_assert!(!obligation.predicate.has_escaping_bound_vars());
304
305 let pec = &ProvisionalEvaluationCache::default();
306 let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
307
308 self.candidate_from_obligation(&stack)
309 }
310
311 #[instrument(level = "debug", skip(self), ret)]
312 fn candidate_from_obligation<'o>(
313 &mut self,
314 stack: &TraitObligationStack<'o, 'tcx>,
315 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
316 debug_assert!(!self.infcx.next_trait_solver());
317 // Watch out for overflow. This intentionally bypasses (and does
318 // not update) the cache.
319 self.check_recursion_limit(stack.obligation, stack.obligation)?;
320
321 // Check the cache. Note that we freshen the trait-ref
322 // separately rather than using `stack.fresh_trait_ref` --
323 // this is because we want the unbound variables to be
324 // replaced with fresh types starting from index 0.
325 let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
326 debug!(?cache_fresh_trait_pred);
327 debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
328
329 if let Some(c) =
330 self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
331 {
332 debug!("CACHE HIT");
333 return c;
334 }
335
336 // If no match, compute result and insert into cache.
337 //
338 // FIXME(nikomatsakis) -- this cache is not taking into
339 // account cycles that may have occurred in forming the
340 // candidate. I don't know of any specific problems that
341 // result but it seems awfully suspicious.
342 let (candidate, dep_node) =
343 self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
344
345 debug!("CACHE MISS");
346 self.insert_candidate_cache(
347 stack.obligation.param_env,
348 cache_fresh_trait_pred,
349 dep_node,
350 candidate.clone(),
351 );
352 candidate
353 }
354
355 fn candidate_from_obligation_no_cache<'o>(
356 &mut self,
357 stack: &TraitObligationStack<'o, 'tcx>,
358 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
359 if let Err(conflict) = self.is_knowable(stack) {
360 debug!("coherence stage: not knowable");
361 if self.intercrate_ambiguity_causes.is_some() {
362 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
363 // Heuristics: show the diagnostics when there are no candidates in crate.
364 if let Ok(candidate_set) = self.assemble_candidates(stack) {
365 let mut no_candidates_apply = true;
366
367 for c in candidate_set.vec.iter() {
368 if self.evaluate_candidate(stack, c)?.may_apply() {
369 no_candidates_apply = false;
370 break;
371 }
372 }
373
374 if !candidate_set.ambiguous && no_candidates_apply {
375 let trait_ref = self.infcx.resolve_vars_if_possible(
376 stack.obligation.predicate.skip_binder().trait_ref,
377 );
378 if !trait_ref.references_error() {
379 let self_ty = trait_ref.self_ty();
380 let self_ty = self_ty.has_concrete_skeleton().then(|| self_ty);
381 let cause = if let Conflict::Upstream = conflict {
382 IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty }
383 } else {
384 IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty }
385 };
386 debug!(?cause, "evaluate_stack: pushing cause");
387 self.intercrate_ambiguity_causes.as_mut().unwrap().insert(cause);
388 }
389 }
390 }
391 }
392 return Ok(None);
393 }
394
395 let candidate_set = self.assemble_candidates(stack)?;
396
397 if candidate_set.ambiguous {
398 debug!("candidate set contains ambig");
399 return Ok(None);
400 }
401
402 let candidates = candidate_set.vec;
403
404 debug!(?stack, ?candidates, "assembled {} candidates", candidates.len());
405
406 // At this point, we know that each of the entries in the
407 // candidate set is *individually* applicable. Now we have to
408 // figure out if they contain mutual incompatibilities. This
409 // frequently arises if we have an unconstrained input type --
410 // for example, we are looking for `$0: Eq` where `$0` is some
411 // unconstrained type variable. In that case, we'll get a
412 // candidate which assumes $0 == int, one that assumes `$0 ==
413 // usize`, etc. This spells an ambiguity.
414
415 let mut candidates = self.filter_impls(candidates, stack.obligation);
416
417 // If there is more than one candidate, first winnow them down
418 // by considering extra conditions (nested obligations and so
419 // forth). We don't winnow if there is exactly one
420 // candidate. This is a relatively minor distinction but it
421 // can lead to better inference and error-reporting. An
422 // example would be if there was an impl:
423 //
424 // impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
425 //
426 // and we were to see some code `foo.push_clone()` where `boo`
427 // is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
428 // we were to winnow, we'd wind up with zero candidates.
429 // Instead, we select the right impl now but report "`Bar` does
430 // not implement `Clone`".
431 if candidates.len() == 1 {
432 return self.filter_reservation_impls(candidates.pop().unwrap());
433 }
434
435 // Winnow, but record the exact outcome of evaluation, which
436 // is needed for specialization. Propagate overflow if it occurs.
437 let candidates = candidates
438 .into_iter()
439 .map(|c| match self.evaluate_candidate(stack, &c) {
440 Ok(eval) if eval.may_apply() => {
441 Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
442 }
443 Ok(_) => Ok(None),
444 Err(OverflowError::Canonical) => {
445 Err(SelectionError::Overflow(OverflowError::Canonical))
446 }
447 Err(OverflowError::Error(e)) => {
448 Err(SelectionError::Overflow(OverflowError::Error(e)))
449 }
450 })
451 .flat_map(Result::transpose)
452 .collect::<Result<Vec<_>, _>>()?;
453
454 debug!(?stack, ?candidates, "{} potentially applicable candidates", candidates.len());
455 // If there are *NO* candidates, then there are no impls --
456 // that we know of, anyway. Note that in the case where there
457 // are unbound type variables within the obligation, it might
458 // be the case that you could still satisfy the obligation
459 // from another crate by instantiating the type variables with
460 // a type from another crate that does have an impl. This case
461 // is checked for in `evaluate_stack` (and hence users
462 // who might care about this case, like coherence, should use
463 // that function).
464 if candidates.is_empty() {
465 // If there's an error type, 'downgrade' our result from
466 // `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
467 // emitting additional spurious errors, since we're guaranteed
468 // to have emitted at least one.
469 if stack.obligation.predicate.references_error() {
470 debug!(?stack.obligation.predicate, "found error type in predicate, treating as ambiguous");
471 Ok(None)
472 } else {
473 Err(SelectionError::Unimplemented)
474 }
475 } else {
476 let has_non_region_infer = stack.obligation.predicate.has_non_region_infer();
477 if let Some(candidate) = self.winnow_candidates(has_non_region_infer, candidates) {
478 self.filter_reservation_impls(candidate)
479 } else {
480 Ok(None)
481 }
482 }
483 }
484
485 ///////////////////////////////////////////////////////////////////////////
486 // EVALUATION
487 //
488 // Tests whether an obligation can be selected or whether an impl
489 // can be applied to particular types. It skips the "confirmation"
490 // step and hence completely ignores output type parameters.
491 //
492 // The result is "true" if the obligation *may* hold and "false" if
493 // we can be sure it does not.
494
495 /// Evaluates whether the obligation `obligation` can be satisfied
496 /// and returns an `EvaluationResult`. This is meant for the
497 /// *initial* call.
498 ///
499 /// Do not use this directly, use `infcx.evaluate_obligation` instead.
500 pub fn evaluate_root_obligation(
501 &mut self,
502 obligation: &PredicateObligation<'tcx>,
503 ) -> Result<EvaluationResult, OverflowError> {
504 debug_assert!(!self.infcx.next_trait_solver());
505 self.evaluation_probe(|this| {
506 let goal =
507 this.infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env));
508 let mut result = this.evaluate_predicate_recursively(
509 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
510 obligation.clone(),
511 )?;
512 // If the predicate has done any inference, then downgrade the
513 // result to ambiguous.
514 if this.infcx.resolve_vars_if_possible(goal) != goal {
515 result = result.max(EvaluatedToAmbig);
516 }
517 Ok(result)
518 })
519 }
520
521 /// Computes the evaluation result of `op`, discarding any constraints.
522 ///
523 /// This also runs for leak check to allow higher ranked region errors to impact
524 /// selection. By default it checks for leaks from all universes created inside of
525 /// `op`, but this can be overwritten if necessary.
526 fn evaluation_probe(
527 &mut self,
528 op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
529 ) -> Result<EvaluationResult, OverflowError> {
530 self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
531 let outer_universe = self.infcx.universe();
532 let result = op(self)?;
533
534 match self.infcx.leak_check(outer_universe, Some(snapshot)) {
535 Ok(()) => {}
536 Err(_) => return Ok(EvaluatedToErr),
537 }
538
539 if self.infcx.opaque_types_added_in_snapshot(snapshot) {
540 return Ok(result.max(EvaluatedToOkModuloOpaqueTypes));
541 }
542
543 if self.infcx.region_constraints_added_in_snapshot(snapshot) {
544 Ok(result.max(EvaluatedToOkModuloRegions))
545 } else {
546 Ok(result)
547 }
548 })
549 }
550
551 /// Evaluates the predicates in `predicates` recursively. This may
552 /// guide inference. If this is not desired, run it inside of a
553 /// is run within an inference probe.
554 /// `probe`.
555 #[instrument(skip(self, stack), level = "debug")]
556 fn evaluate_predicates_recursively<'o, I>(
557 &mut self,
558 stack: TraitObligationStackList<'o, 'tcx>,
559 predicates: I,
560 ) -> Result<EvaluationResult, OverflowError>
561 where
562 I: IntoIterator<Item = PredicateObligation<'tcx>> + std::fmt::Debug,
563 {
564 let mut result = EvaluatedToOk;
565 for mut obligation in predicates {
566 obligation.set_depth_from_parent(stack.depth());
567 let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
568 if let EvaluatedToErr = eval {
569 // fast-path - EvaluatedToErr is the top of the lattice,
570 // so we don't need to look on the other predicates.
571 return Ok(EvaluatedToErr);
572 } else {
573 result = cmp::max(result, eval);
574 }
575 }
576 Ok(result)
577 }
578
579 #[instrument(
580 level = "debug",
581 skip(self, previous_stack),
582 fields(previous_stack = ?previous_stack.head())
583 ret,
584 )]
585 fn evaluate_predicate_recursively<'o>(
586 &mut self,
587 previous_stack: TraitObligationStackList<'o, 'tcx>,
588 obligation: PredicateObligation<'tcx>,
589 ) -> Result<EvaluationResult, OverflowError> {
590 debug_assert!(!self.infcx.next_trait_solver());
591 // `previous_stack` stores a `PolyTraitObligation`, while `obligation` is
592 // a `PredicateObligation`. These are distinct types, so we can't
593 // use any `Option` combinator method that would force them to be
594 // the same.
595 match previous_stack.head() {
596 Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
597 None => self.check_recursion_limit(&obligation, &obligation)?,
598 }
599
600 if sizedness_fast_path(self.tcx(), obligation.predicate) {
601 return Ok(EvaluatedToOk);
602 }
603
604 ensure_sufficient_stack(|| {
605 let bound_predicate = obligation.predicate.kind();
606 match bound_predicate.skip_binder() {
607 ty::PredicateKind::Clause(ty::ClauseKind::Trait(t)) => {
608 let t = bound_predicate.rebind(t);
609 debug_assert!(!t.has_escaping_bound_vars());
610 let obligation = obligation.with(self.tcx(), t);
611 self.evaluate_trait_predicate_recursively(previous_stack, obligation)
612 }
613
614 ty::PredicateKind::Clause(ty::ClauseKind::HostEffect(data)) => {
615 self.infcx.enter_forall(bound_predicate.rebind(data), |data| {
616 match effects::evaluate_host_effect_obligation(
617 self,
618 &obligation.with(self.tcx(), data),
619 ) {
620 Ok(nested) => {
621 self.evaluate_predicates_recursively(previous_stack, nested)
622 }
623 Err(effects::EvaluationFailure::Ambiguous) => Ok(EvaluatedToAmbig),
624 Err(effects::EvaluationFailure::NoSolution) => Ok(EvaluatedToErr),
625 }
626 })
627 }
628
629 ty::PredicateKind::Subtype(p) => {
630 let p = bound_predicate.rebind(p);
631 // Does this code ever run?
632 match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
633 Ok(Ok(InferOk { obligations, .. })) => {
634 self.evaluate_predicates_recursively(previous_stack, obligations)
635 }
636 Ok(Err(_)) => Ok(EvaluatedToErr),
637 Err(..) => Ok(EvaluatedToAmbig),
638 }
639 }
640
641 ty::PredicateKind::Coerce(p) => {
642 let p = bound_predicate.rebind(p);
643 // Does this code ever run?
644 match self.infcx.coerce_predicate(&obligation.cause, obligation.param_env, p) {
645 Ok(Ok(InferOk { obligations, .. })) => {
646 self.evaluate_predicates_recursively(previous_stack, obligations)
647 }
648 Ok(Err(_)) => Ok(EvaluatedToErr),
649 Err(..) => Ok(EvaluatedToAmbig),
650 }
651 }
652
653 ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(term)) => {
654 if term.is_trivially_wf(self.tcx()) {
655 return Ok(EvaluatedToOk);
656 }
657
658 // So, there is a bit going on here. First, `WellFormed` predicates
659 // are coinductive, like trait predicates with auto traits.
660 // This means that we need to detect if we have recursively
661 // evaluated `WellFormed(X)`. Otherwise, we would run into
662 // a "natural" overflow error.
663 //
664 // Now, the next question is whether we need to do anything
665 // special with caching. Considering the following tree:
666 // - `WF(Foo<T>)`
667 // - `Bar<T>: Send`
668 // - `WF(Foo<T>)`
669 // - `Foo<T>: Trait`
670 // In this case, the innermost `WF(Foo<T>)` should return
671 // `EvaluatedToOk`, since it's coinductive. Then if
672 // `Bar<T>: Send` is resolved to `EvaluatedToOk`, it can be
673 // inserted into a cache (because without thinking about `WF`
674 // goals, it isn't in a cycle). If `Foo<T>: Trait` later doesn't
675 // hold, then `Bar<T>: Send` shouldn't hold. Therefore, we
676 // *do* need to keep track of coinductive cycles.
677
678 let cache = previous_stack.cache;
679 let dfn = cache.next_dfn();
680
681 for stack_term in previous_stack.cache.wf_args.borrow().iter().rev() {
682 if stack_term.0 != term {
683 continue;
684 }
685 debug!("WellFormed({:?}) on stack", term);
686 if let Some(stack) = previous_stack.head {
687 // Okay, let's imagine we have two different stacks:
688 // `T: NonAutoTrait -> WF(T) -> T: NonAutoTrait`
689 // `WF(T) -> T: NonAutoTrait -> WF(T)`
690 // Because of this, we need to check that all
691 // predicates between the WF goals are coinductive.
692 // Otherwise, we can say that `T: NonAutoTrait` is
693 // true.
694 // Let's imagine we have a predicate stack like
695 // `Foo: Bar -> WF(T) -> T: NonAutoTrait -> T: Auto`
696 // depth ^1 ^2 ^3
697 // and the current predicate is `WF(T)`. `wf_args`
698 // would contain `(T, 1)`. We want to check all
699 // trait predicates greater than `1`. The previous
700 // stack would be `T: Auto`.
701 let cycle = stack.iter().take_while(|s| s.depth > stack_term.1);
702 let tcx = self.tcx();
703 let cycle = cycle.map(|stack| stack.obligation.predicate.upcast(tcx));
704 if self.coinductive_match(cycle) {
705 stack.update_reached_depth(stack_term.1);
706 return Ok(EvaluatedToOk);
707 } else {
708 return Ok(EvaluatedToAmbigStackDependent);
709 }
710 }
711 return Ok(EvaluatedToOk);
712 }
713
714 match wf::obligations(
715 self.infcx,
716 obligation.param_env,
717 obligation.cause.body_id,
718 obligation.recursion_depth + 1,
719 term,
720 obligation.cause.span,
721 ) {
722 Some(obligations) => {
723 cache.wf_args.borrow_mut().push((term, previous_stack.depth()));
724 let result =
725 self.evaluate_predicates_recursively(previous_stack, obligations);
726 cache.wf_args.borrow_mut().pop();
727
728 let result = result?;
729
730 if !result.must_apply_modulo_regions() {
731 cache.on_failure(dfn);
732 }
733
734 cache.on_completion(dfn);
735
736 Ok(result)
737 }
738 None => Ok(EvaluatedToAmbig),
739 }
740 }
741
742 ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(pred)) => {
743 // A global type with no free lifetimes or generic parameters
744 // outlives anything.
745 if pred.0.has_free_regions()
746 || pred.0.has_bound_regions()
747 || pred.0.has_non_region_infer()
748 || pred.0.has_non_region_infer()
749 {
750 Ok(EvaluatedToOkModuloRegions)
751 } else {
752 Ok(EvaluatedToOk)
753 }
754 }
755
756 ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(..)) => {
757 // We do not consider region relationships when evaluating trait matches.
758 Ok(EvaluatedToOkModuloRegions)
759 }
760
761 ty::PredicateKind::DynCompatible(trait_def_id) => {
762 if self.tcx().is_dyn_compatible(trait_def_id) {
763 Ok(EvaluatedToOk)
764 } else {
765 Ok(EvaluatedToErr)
766 }
767 }
768
769 ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
770 let data = bound_predicate.rebind(data);
771 let project_obligation = obligation.with(self.tcx(), data);
772 match project::poly_project_and_unify_term(self, &project_obligation) {
773 ProjectAndUnifyResult::Holds(mut subobligations) => {
774 'compute_res: {
775 // If we've previously marked this projection as 'complete', then
776 // use the final cached result (either `EvaluatedToOk` or
777 // `EvaluatedToOkModuloRegions`), and skip re-evaluating the
778 // sub-obligations.
779 if let Some(key) =
780 ProjectionCacheKey::from_poly_projection_obligation(
781 self,
782 &project_obligation,
783 )
784 {
785 if let Some(cached_res) = self
786 .infcx
787 .inner
788 .borrow_mut()
789 .projection_cache()
790 .is_complete(key)
791 {
792 break 'compute_res Ok(cached_res);
793 }
794 }
795
796 // Need to explicitly set the depth of nested goals here as
797 // projection obligations can cycle by themselves and in
798 // `evaluate_predicates_recursively` we only add the depth
799 // for parent trait goals because only these get added to the
800 // `TraitObligationStackList`.
801 for subobligation in subobligations.iter_mut() {
802 subobligation.set_depth_from_parent(obligation.recursion_depth);
803 }
804 let res = self.evaluate_predicates_recursively(
805 previous_stack,
806 subobligations,
807 );
808 if let Ok(eval_rslt) = res
809 && (eval_rslt == EvaluatedToOk
810 || eval_rslt == EvaluatedToOkModuloRegions)
811 && let Some(key) =
812 ProjectionCacheKey::from_poly_projection_obligation(
813 self,
814 &project_obligation,
815 )
816 {
817 // If the result is something that we can cache, then mark this
818 // entry as 'complete'. This will allow us to skip evaluating the
819 // subobligations at all the next time we evaluate the projection
820 // predicate.
821 self.infcx
822 .inner
823 .borrow_mut()
824 .projection_cache()
825 .complete(key, eval_rslt);
826 }
827 res
828 }
829 }
830 ProjectAndUnifyResult::FailedNormalization => Ok(EvaluatedToAmbig),
831 ProjectAndUnifyResult::Recursive => Ok(EvaluatedToAmbigStackDependent),
832 ProjectAndUnifyResult::MismatchedProjectionTypes(_) => Ok(EvaluatedToErr),
833 }
834 }
835
836 ty::PredicateKind::Clause(ty::ClauseKind::UnstableFeature(symbol)) => {
837 if may_use_unstable_feature(self.infcx, obligation.param_env, symbol) {
838 Ok(EvaluatedToOk)
839 } else {
840 Ok(EvaluatedToAmbig)
841 }
842 }
843
844 ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(uv)) => {
845 match const_evaluatable::is_const_evaluatable(
846 self.infcx,
847 uv,
848 obligation.param_env,
849 obligation.cause.span,
850 ) {
851 Ok(()) => Ok(EvaluatedToOk),
852 Err(NotConstEvaluatable::MentionsInfer) => Ok(EvaluatedToAmbig),
853 Err(NotConstEvaluatable::MentionsParam) => Ok(EvaluatedToErr),
854 Err(_) => Ok(EvaluatedToErr),
855 }
856 }
857
858 ty::PredicateKind::ConstEquate(c1, c2) => {
859 let tcx = self.tcx();
860 assert!(
861 tcx.features().generic_const_exprs(),
862 "`ConstEquate` without a feature gate: {c1:?} {c2:?}",
863 );
864
865 {
866 let c1 = tcx.expand_abstract_consts(c1);
867 let c2 = tcx.expand_abstract_consts(c2);
868 debug!(
869 "evaluate_predicate_recursively: equating consts:\nc1= {:?}\nc2= {:?}",
870 c1, c2
871 );
872
873 use rustc_hir::def::DefKind;
874 match (c1.kind(), c2.kind()) {
875 (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b))
876 if a.def == b.def && tcx.def_kind(a.def) == DefKind::AssocConst =>
877 {
878 if let Ok(InferOk { obligations, value: () }) = self
879 .infcx
880 .at(&obligation.cause, obligation.param_env)
881 // Can define opaque types as this is only reachable with
882 // `generic_const_exprs`
883 .eq(
884 DefineOpaqueTypes::Yes,
885 ty::AliasTerm::from(a),
886 ty::AliasTerm::from(b),
887 )
888 {
889 return self.evaluate_predicates_recursively(
890 previous_stack,
891 obligations,
892 );
893 }
894 }
895 (_, ty::ConstKind::Unevaluated(_))
896 | (ty::ConstKind::Unevaluated(_), _) => (),
897 (_, _) => {
898 if let Ok(InferOk { obligations, value: () }) = self
899 .infcx
900 .at(&obligation.cause, obligation.param_env)
901 // Can define opaque types as this is only reachable with
902 // `generic_const_exprs`
903 .eq(DefineOpaqueTypes::Yes, c1, c2)
904 {
905 return self.evaluate_predicates_recursively(
906 previous_stack,
907 obligations,
908 );
909 }
910 }
911 }
912 }
913
914 let evaluate = |c: ty::Const<'tcx>| {
915 if let ty::ConstKind::Unevaluated(_) = c.kind() {
916 match crate::traits::try_evaluate_const(
917 self.infcx,
918 c,
919 obligation.param_env,
920 ) {
921 Ok(val) => Ok(val),
922 Err(e) => Err(e),
923 }
924 } else {
925 Ok(c)
926 }
927 };
928
929 match (evaluate(c1), evaluate(c2)) {
930 (Ok(c1), Ok(c2)) => {
931 match self.infcx.at(&obligation.cause, obligation.param_env).eq(
932 // Can define opaque types as this is only reachable with
933 // `generic_const_exprs`
934 DefineOpaqueTypes::Yes,
935 c1,
936 c2,
937 ) {
938 Ok(inf_ok) => self.evaluate_predicates_recursively(
939 previous_stack,
940 inf_ok.into_obligations(),
941 ),
942 Err(_) => Ok(EvaluatedToErr),
943 }
944 }
945 (Err(EvaluateConstErr::InvalidConstParamTy(..)), _)
946 | (_, Err(EvaluateConstErr::InvalidConstParamTy(..))) => Ok(EvaluatedToErr),
947 (Err(EvaluateConstErr::EvaluationFailure(..)), _)
948 | (_, Err(EvaluateConstErr::EvaluationFailure(..))) => Ok(EvaluatedToErr),
949 (Err(EvaluateConstErr::HasGenericsOrInfers), _)
950 | (_, Err(EvaluateConstErr::HasGenericsOrInfers)) => {
951 if c1.has_non_region_infer() || c2.has_non_region_infer() {
952 Ok(EvaluatedToAmbig)
953 } else {
954 // Two different constants using generic parameters ~> error.
955 Ok(EvaluatedToErr)
956 }
957 }
958 }
959 }
960 ty::PredicateKind::NormalizesTo(..) => {
961 bug!("NormalizesTo is only used by the new solver")
962 }
963 ty::PredicateKind::AliasRelate(..) => {
964 bug!("AliasRelate is only used by the new solver")
965 }
966 ty::PredicateKind::Ambiguous => Ok(EvaluatedToAmbig),
967 ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, ty)) => {
968 let ct = self.infcx.shallow_resolve_const(ct);
969 let ct_ty = match ct.kind() {
970 ty::ConstKind::Infer(_) => {
971 return Ok(EvaluatedToAmbig);
972 }
973 ty::ConstKind::Error(_) => return Ok(EvaluatedToOk),
974 ty::ConstKind::Value(cv) => cv.ty,
975 ty::ConstKind::Unevaluated(uv) => {
976 self.tcx().type_of(uv.def).instantiate(self.tcx(), uv.args)
977 }
978 // FIXME(generic_const_exprs): See comment in `fulfill.rs`
979 ty::ConstKind::Expr(_) => return Ok(EvaluatedToOk),
980 ty::ConstKind::Placeholder(_) => {
981 bug!("placeholder const {:?} in old solver", ct)
982 }
983 ty::ConstKind::Bound(_, _) => bug!("escaping bound vars in {:?}", ct),
984 ty::ConstKind::Param(param_ct) => {
985 param_ct.find_const_ty_from_env(obligation.param_env)
986 }
987 };
988
989 match self.infcx.at(&obligation.cause, obligation.param_env).eq(
990 // Only really exercised by generic_const_exprs
991 DefineOpaqueTypes::Yes,
992 ct_ty,
993 ty,
994 ) {
995 Ok(inf_ok) => self.evaluate_predicates_recursively(
996 previous_stack,
997 inf_ok.into_obligations(),
998 ),
999 Err(_) => Ok(EvaluatedToErr),
1000 }
1001 }
1002 }
1003 })
1004 }
1005
1006 #[instrument(skip(self, previous_stack), level = "debug", ret)]
1007 fn evaluate_trait_predicate_recursively<'o>(
1008 &mut self,
1009 previous_stack: TraitObligationStackList<'o, 'tcx>,
1010 mut obligation: PolyTraitObligation<'tcx>,
1011 ) -> Result<EvaluationResult, OverflowError> {
1012 if !matches!(self.infcx.typing_mode(), TypingMode::Coherence)
1013 && obligation.is_global()
1014 && obligation.param_env.caller_bounds().iter().all(|bound| bound.has_param())
1015 {
1016 // If a param env has no global bounds, global obligations do not
1017 // depend on its particular value in order to work, so we can clear
1018 // out the param env and get better caching.
1019 debug!("in global");
1020 obligation.param_env = ty::ParamEnv::empty();
1021 }
1022
1023 let stack = self.push_stack(previous_stack, &obligation);
1024 let fresh_trait_pred = stack.fresh_trait_pred;
1025 let param_env = obligation.param_env;
1026
1027 debug!(?fresh_trait_pred);
1028
1029 // If a trait predicate is in the (local or global) evaluation cache,
1030 // then we know it holds without cycles.
1031 if let Some(result) = self.check_evaluation_cache(param_env, fresh_trait_pred) {
1032 debug!("CACHE HIT");
1033 return Ok(result);
1034 }
1035
1036 if let Some(result) = stack.cache().get_provisional(fresh_trait_pred) {
1037 debug!("PROVISIONAL CACHE HIT");
1038 stack.update_reached_depth(result.reached_depth);
1039 return Ok(result.result);
1040 }
1041
1042 // Check if this is a match for something already on the
1043 // stack. If so, we don't want to insert the result into the
1044 // main cache (it is cycle dependent) nor the provisional
1045 // cache (which is meant for things that have completed but
1046 // for a "backedge" -- this result *is* the backedge).
1047 if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
1048 return Ok(cycle_result);
1049 }
1050
1051 let (result, dep_node) = self.in_task(|this| {
1052 let mut result = this.evaluate_stack(&stack)?;
1053
1054 // fix issue #103563, we don't normalize
1055 // nested obligations which produced by `TraitDef` candidate
1056 // (i.e. using bounds on assoc items as assumptions).
1057 // because we don't have enough information to
1058 // normalize these obligations before evaluating.
1059 // so we will try to normalize the obligation and evaluate again.
1060 // we will replace it with new solver in the future.
1061 if EvaluationResult::EvaluatedToErr == result
1062 && fresh_trait_pred.has_aliases()
1063 && fresh_trait_pred.is_global()
1064 {
1065 let mut nested_obligations = PredicateObligations::new();
1066 let predicate = normalize_with_depth_to(
1067 this,
1068 param_env,
1069 obligation.cause.clone(),
1070 obligation.recursion_depth + 1,
1071 obligation.predicate,
1072 &mut nested_obligations,
1073 );
1074 if predicate != obligation.predicate {
1075 let mut nested_result = EvaluationResult::EvaluatedToOk;
1076 for obligation in nested_obligations {
1077 nested_result = cmp::max(
1078 this.evaluate_predicate_recursively(previous_stack, obligation)?,
1079 nested_result,
1080 );
1081 }
1082
1083 if nested_result.must_apply_modulo_regions() {
1084 let obligation = obligation.with(this.tcx(), predicate);
1085 result = cmp::max(
1086 nested_result,
1087 this.evaluate_trait_predicate_recursively(previous_stack, obligation)?,
1088 );
1089 }
1090 }
1091 }
1092
1093 Ok::<_, OverflowError>(result)
1094 });
1095
1096 let result = result?;
1097
1098 if !result.must_apply_modulo_regions() {
1099 stack.cache().on_failure(stack.dfn);
1100 }
1101
1102 let reached_depth = stack.reached_depth.get();
1103 if reached_depth >= stack.depth {
1104 debug!("CACHE MISS");
1105 self.insert_evaluation_cache(param_env, fresh_trait_pred, dep_node, result);
1106 stack.cache().on_completion(stack.dfn);
1107 } else {
1108 debug!("PROVISIONAL");
1109 debug!(
1110 "caching provisionally because {:?} \
1111 is a cycle participant (at depth {}, reached depth {})",
1112 fresh_trait_pred, stack.depth, reached_depth,
1113 );
1114
1115 stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_pred, result);
1116 }
1117
1118 Ok(result)
1119 }
1120
1121 /// If there is any previous entry on the stack that precisely
1122 /// matches this obligation, then we can assume that the
1123 /// obligation is satisfied for now (still all other conditions
1124 /// must be met of course). One obvious case this comes up is
1125 /// marker traits like `Send`. Think of a linked list:
1126 ///
1127 /// struct List<T> { data: T, next: Option<Box<List<T>>> }
1128 ///
1129 /// `Box<List<T>>` will be `Send` if `T` is `Send` and
1130 /// `Option<Box<List<T>>>` is `Send`, and in turn
1131 /// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
1132 /// `Send`.
1133 ///
1134 /// Note that we do this comparison using the `fresh_trait_ref`
1135 /// fields. Because these have all been freshened using
1136 /// `self.freshener`, we can be sure that (a) this will not
1137 /// affect the inferencer state and (b) that if we see two
1138 /// fresh regions with the same index, they refer to the same
1139 /// unbound type variable.
1140 fn check_evaluation_cycle(
1141 &mut self,
1142 stack: &TraitObligationStack<'_, 'tcx>,
1143 ) -> Option<EvaluationResult> {
1144 if let Some(cycle_depth) = stack
1145 .iter()
1146 .skip(1) // Skip top-most frame.
1147 .find(|prev| {
1148 stack.obligation.param_env == prev.obligation.param_env
1149 && stack.fresh_trait_pred == prev.fresh_trait_pred
1150 })
1151 .map(|stack| stack.depth)
1152 {
1153 debug!("evaluate_stack --> recursive at depth {}", cycle_depth);
1154
1155 // If we have a stack like `A B C D E A`, where the top of
1156 // the stack is the final `A`, then this will iterate over
1157 // `A, E, D, C, B` -- i.e., all the participants apart
1158 // from the cycle head. We mark them as participating in a
1159 // cycle. This suppresses caching for those nodes. See
1160 // `in_cycle` field for more details.
1161 stack.update_reached_depth(cycle_depth);
1162
1163 // Subtle: when checking for a coinductive cycle, we do
1164 // not compare using the "freshened trait refs" (which
1165 // have erased regions) but rather the fully explicit
1166 // trait refs. This is important because it's only a cycle
1167 // if the regions match exactly.
1168 let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
1169 let tcx = self.tcx();
1170 let cycle = cycle.map(|stack| stack.obligation.predicate.upcast(tcx));
1171 if self.coinductive_match(cycle) {
1172 debug!("evaluate_stack --> recursive, coinductive");
1173 Some(EvaluatedToOk)
1174 } else {
1175 debug!("evaluate_stack --> recursive, inductive");
1176 Some(EvaluatedToAmbigStackDependent)
1177 }
1178 } else {
1179 None
1180 }
1181 }
1182
1183 fn evaluate_stack<'o>(
1184 &mut self,
1185 stack: &TraitObligationStack<'o, 'tcx>,
1186 ) -> Result<EvaluationResult, OverflowError> {
1187 debug_assert!(!self.infcx.next_trait_solver());
1188 // In intercrate mode, whenever any of the generics are unbound,
1189 // there can always be an impl. Even if there are no impls in
1190 // this crate, perhaps the type would be unified with
1191 // something from another crate that does provide an impl.
1192 //
1193 // In intra mode, we must still be conservative. The reason is
1194 // that we want to avoid cycles. Imagine an impl like:
1195 //
1196 // impl<T:Eq> Eq for Vec<T>
1197 //
1198 // and a trait reference like `$0 : Eq` where `$0` is an
1199 // unbound variable. When we evaluate this trait-reference, we
1200 // will unify `$0` with `Vec<$1>` (for some fresh variable
1201 // `$1`), on the condition that `$1 : Eq`. We will then wind
1202 // up with many candidates (since that are other `Eq` impls
1203 // that apply) and try to winnow things down. This results in
1204 // a recursive evaluation that `$1 : Eq` -- as you can
1205 // imagine, this is just where we started. To avoid that, we
1206 // check for unbound variables and return an ambiguous (hence possible)
1207 // match if we've seen this trait before.
1208 //
1209 // This suffices to allow chains like `FnMut` implemented in
1210 // terms of `Fn` etc, but we could probably make this more
1211 // precise still.
1212 let unbound_input_types =
1213 stack.fresh_trait_pred.skip_binder().trait_ref.args.types().any(|ty| ty.is_fresh());
1214
1215 if unbound_input_types
1216 && stack.iter().skip(1).any(|prev| {
1217 stack.obligation.param_env == prev.obligation.param_env
1218 && self.match_fresh_trait_refs(stack.fresh_trait_pred, prev.fresh_trait_pred)
1219 })
1220 {
1221 debug!("evaluate_stack --> unbound argument, recursive --> giving up",);
1222 return Ok(EvaluatedToAmbigStackDependent);
1223 }
1224
1225 match self.candidate_from_obligation(stack) {
1226 Ok(Some(c)) => self.evaluate_candidate(stack, &c),
1227 Ok(None) => Ok(EvaluatedToAmbig),
1228 Err(SelectionError::Overflow(OverflowError::Canonical)) => {
1229 Err(OverflowError::Canonical)
1230 }
1231 Err(..) => Ok(EvaluatedToErr),
1232 }
1233 }
1234
1235 /// For defaulted traits, we use a co-inductive strategy to solve, so
1236 /// that recursion is ok. This routine returns `true` if the top of the
1237 /// stack (`cycle[0]`):
1238 ///
1239 /// - is a coinductive trait: an auto-trait or `Sized`,
1240 /// - it also appears in the backtrace at some position `X`,
1241 /// - all the predicates at positions `X..` between `X` and the top are
1242 /// also coinductive traits.
1243 pub(crate) fn coinductive_match<I>(&mut self, mut cycle: I) -> bool
1244 where
1245 I: Iterator<Item = ty::Predicate<'tcx>>,
1246 {
1247 cycle.all(|p| match p.kind().skip_binder() {
1248 ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => {
1249 self.infcx.tcx.trait_is_coinductive(data.def_id())
1250 }
1251 ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(_)) => {
1252 // FIXME(generic_const_exprs): GCE needs well-formedness predicates to be
1253 // coinductive, but GCE is on the way out anyways, so this should eventually
1254 // be replaced with `false`.
1255 self.infcx.tcx.features().generic_const_exprs()
1256 }
1257 _ => false,
1258 })
1259 }
1260
1261 /// Further evaluates `candidate` to decide whether all type parameters match and whether nested
1262 /// obligations are met. Returns whether `candidate` remains viable after this further
1263 /// scrutiny.
1264 #[instrument(
1265 level = "debug",
1266 skip(self, stack),
1267 fields(depth = stack.obligation.recursion_depth),
1268 ret
1269 )]
1270 fn evaluate_candidate<'o>(
1271 &mut self,
1272 stack: &TraitObligationStack<'o, 'tcx>,
1273 candidate: &SelectionCandidate<'tcx>,
1274 ) -> Result<EvaluationResult, OverflowError> {
1275 let mut result = self.evaluation_probe(|this| {
1276 match this.confirm_candidate(stack.obligation, candidate.clone()) {
1277 Ok(selection) => {
1278 debug!(?selection);
1279 this.evaluate_predicates_recursively(
1280 stack.list(),
1281 selection.nested_obligations().into_iter(),
1282 )
1283 }
1284 Err(..) => Ok(EvaluatedToErr),
1285 }
1286 })?;
1287
1288 // If we erased any lifetimes, then we want to use
1289 // `EvaluatedToOkModuloRegions` instead of `EvaluatedToOk`
1290 // as your final result. The result will be cached using
1291 // the freshened trait predicate as a key, so we need
1292 // our result to be correct by *any* choice of original lifetimes,
1293 // not just the lifetime choice for this particular (non-erased)
1294 // predicate.
1295 // See issue #80691
1296 if stack.fresh_trait_pred.has_erased_regions() {
1297 result = result.max(EvaluatedToOkModuloRegions);
1298 }
1299
1300 Ok(result)
1301 }
1302
1303 fn check_evaluation_cache(
1304 &self,
1305 param_env: ty::ParamEnv<'tcx>,
1306 trait_pred: ty::PolyTraitPredicate<'tcx>,
1307 ) -> Option<EvaluationResult> {
1308 let infcx = self.infcx;
1309 let tcx = infcx.tcx;
1310 if self.can_use_global_caches(param_env, trait_pred) {
1311 let key = (infcx.typing_env(param_env), trait_pred);
1312 if let Some(res) = tcx.evaluation_cache.get(&key, tcx) {
1313 Some(res)
1314 } else {
1315 debug_assert_eq!(infcx.evaluation_cache.get(&(param_env, trait_pred), tcx), None);
1316 None
1317 }
1318 } else {
1319 self.infcx.evaluation_cache.get(&(param_env, trait_pred), tcx)
1320 }
1321 }
1322
1323 fn insert_evaluation_cache(
1324 &mut self,
1325 param_env: ty::ParamEnv<'tcx>,
1326 trait_pred: ty::PolyTraitPredicate<'tcx>,
1327 dep_node: DepNodeIndex,
1328 result: EvaluationResult,
1329 ) {
1330 // Avoid caching results that depend on more than just the trait-ref
1331 // - the stack can create recursion.
1332 if result.is_stack_dependent() {
1333 return;
1334 }
1335
1336 let infcx = self.infcx;
1337 let tcx = infcx.tcx;
1338 if self.can_use_global_caches(param_env, trait_pred) {
1339 debug!(?trait_pred, ?result, "insert_evaluation_cache global");
1340 // This may overwrite the cache with the same value
1341 tcx.evaluation_cache.insert(
1342 (infcx.typing_env(param_env), trait_pred),
1343 dep_node,
1344 result,
1345 );
1346 return;
1347 } else {
1348 debug!(?trait_pred, ?result, "insert_evaluation_cache local");
1349 self.infcx.evaluation_cache.insert((param_env, trait_pred), dep_node, result);
1350 }
1351 }
1352
1353 fn check_recursion_depth<T>(
1354 &self,
1355 depth: usize,
1356 error_obligation: &Obligation<'tcx, T>,
1357 ) -> Result<(), OverflowError>
1358 where
1359 T: Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>> + Clone,
1360 {
1361 if !self.infcx.tcx.recursion_limit().value_within_limit(depth) {
1362 match self.query_mode {
1363 TraitQueryMode::Standard => {
1364 if let Some(e) = self.infcx.tainted_by_errors() {
1365 return Err(OverflowError::Error(e));
1366 }
1367 self.infcx.err_ctxt().report_overflow_obligation(error_obligation, true);
1368 }
1369 TraitQueryMode::Canonical => {
1370 return Err(OverflowError::Canonical);
1371 }
1372 }
1373 }
1374 Ok(())
1375 }
1376
1377 /// Checks that the recursion limit has not been exceeded.
1378 ///
1379 /// The weird return type of this function allows it to be used with the `try` (`?`)
1380 /// operator within certain functions.
1381 #[inline(always)]
1382 fn check_recursion_limit<T: Display + TypeFoldable<TyCtxt<'tcx>>, V>(
1383 &self,
1384 obligation: &Obligation<'tcx, T>,
1385 error_obligation: &Obligation<'tcx, V>,
1386 ) -> Result<(), OverflowError>
1387 where
1388 V: Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>> + Clone,
1389 {
1390 self.check_recursion_depth(obligation.recursion_depth, error_obligation)
1391 }
1392
1393 fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1394 where
1395 OP: FnOnce(&mut Self) -> R,
1396 {
1397 self.tcx().dep_graph.with_anon_task(self.tcx(), dep_kinds::TraitSelect, || op(self))
1398 }
1399
1400 /// filter_impls filters candidates that have a positive impl for a negative
1401 /// goal and a negative impl for a positive goal
1402 #[instrument(level = "debug", skip(self, candidates))]
1403 fn filter_impls(
1404 &mut self,
1405 candidates: Vec<SelectionCandidate<'tcx>>,
1406 obligation: &PolyTraitObligation<'tcx>,
1407 ) -> Vec<SelectionCandidate<'tcx>> {
1408 trace!("{candidates:#?}");
1409 let tcx = self.tcx();
1410 let mut result = Vec::with_capacity(candidates.len());
1411
1412 for candidate in candidates {
1413 if let ImplCandidate(def_id) = candidate {
1414 match (tcx.impl_polarity(def_id), obligation.polarity()) {
1415 (ty::ImplPolarity::Reservation, _)
1416 | (ty::ImplPolarity::Positive, ty::PredicatePolarity::Positive)
1417 | (ty::ImplPolarity::Negative, ty::PredicatePolarity::Negative) => {
1418 result.push(candidate);
1419 }
1420 _ => {}
1421 }
1422 } else {
1423 result.push(candidate);
1424 }
1425 }
1426
1427 trace!("{result:#?}");
1428 result
1429 }
1430
1431 /// filter_reservation_impls filter reservation impl for any goal as ambiguous
1432 #[instrument(level = "debug", skip(self))]
1433 fn filter_reservation_impls(
1434 &mut self,
1435 candidate: SelectionCandidate<'tcx>,
1436 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1437 let tcx = self.tcx();
1438 // Treat reservation impls as ambiguity.
1439 if let ImplCandidate(def_id) = candidate {
1440 if let ty::ImplPolarity::Reservation = tcx.impl_polarity(def_id) {
1441 if let Some(intercrate_ambiguity_clauses) = &mut self.intercrate_ambiguity_causes {
1442 let message = tcx
1443 .get_attr(def_id, sym::rustc_reservation_impl)
1444 .and_then(|a| a.value_str());
1445 if let Some(message) = message {
1446 debug!(
1447 "filter_reservation_impls: \
1448 reservation impl ambiguity on {:?}",
1449 def_id
1450 );
1451 intercrate_ambiguity_clauses
1452 .insert(IntercrateAmbiguityCause::ReservationImpl { message });
1453 }
1454 }
1455 return Ok(None);
1456 }
1457 }
1458 Ok(Some(candidate))
1459 }
1460
1461 fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Result<(), Conflict> {
1462 let obligation = &stack.obligation;
1463 match self.infcx.typing_mode() {
1464 TypingMode::Coherence => {}
1465 TypingMode::Analysis { .. }
1466 | TypingMode::Borrowck { .. }
1467 | TypingMode::PostBorrowckAnalysis { .. }
1468 | TypingMode::PostAnalysis => return Ok(()),
1469 }
1470
1471 debug!("is_knowable()");
1472
1473 let predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
1474
1475 // Okay to skip binder because of the nature of the
1476 // trait-ref-is-knowable check, which does not care about
1477 // bound regions.
1478 let trait_ref = predicate.skip_binder().trait_ref;
1479
1480 coherence::trait_ref_is_knowable(self.infcx, trait_ref, |ty| Ok::<_, !>(ty)).into_ok()
1481 }
1482
1483 /// Returns `true` if the global caches can be used.
1484 fn can_use_global_caches(
1485 &self,
1486 param_env: ty::ParamEnv<'tcx>,
1487 pred: ty::PolyTraitPredicate<'tcx>,
1488 ) -> bool {
1489 // If there are any inference variables in the `ParamEnv`, then we
1490 // always use a cache local to this particular scope. Otherwise, we
1491 // switch to a global cache.
1492 if param_env.has_infer() || pred.has_infer() {
1493 return false;
1494 }
1495
1496 match self.infcx.typing_mode() {
1497 // Avoid using the global cache during coherence and just rely
1498 // on the local cache. It is really just a simplification to
1499 // avoid us having to fear that coherence results "pollute"
1500 // the master cache. Since coherence executes pretty quickly,
1501 // it's not worth going to more trouble to increase the
1502 // hit-rate, I don't think.
1503 TypingMode::Coherence => false,
1504 // Avoid using the global cache when we're defining opaque types
1505 // as their hidden type may impact the result of candidate selection.
1506 //
1507 // HACK: This is still theoretically unsound. Goals can indirectly rely
1508 // on opaques in the defining scope, and it's easier to do so with TAIT.
1509 // However, if we disqualify *all* goals from being cached, perf suffers.
1510 // This is likely fixed by better caching in general in the new solver.
1511 // See: <https://github.com/rust-lang/rust/issues/132064>.
1512 TypingMode::Analysis {
1513 defining_opaque_types_and_generators: defining_opaque_types,
1514 }
1515 | TypingMode::Borrowck { defining_opaque_types } => {
1516 defining_opaque_types.is_empty()
1517 || (!pred.has_opaque_types() && !pred.has_coroutines())
1518 }
1519 // The hidden types of `defined_opaque_types` is not local to the current
1520 // inference context, so we can freely move this to the global cache.
1521 TypingMode::PostBorrowckAnalysis { .. } => true,
1522 // The global cache is only used if there are no opaque types in
1523 // the defining scope or we're outside of analysis.
1524 //
1525 // FIXME(#132279): This is still incorrect as we treat opaque types
1526 // and default associated items differently between these two modes.
1527 TypingMode::PostAnalysis => true,
1528 }
1529 }
1530
1531 fn check_candidate_cache(
1532 &mut self,
1533 param_env: ty::ParamEnv<'tcx>,
1534 cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1535 ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
1536 let infcx = self.infcx;
1537 let tcx = infcx.tcx;
1538 let pred = cache_fresh_trait_pred.skip_binder();
1539
1540 if self.can_use_global_caches(param_env, cache_fresh_trait_pred) {
1541 if let Some(res) = tcx.selection_cache.get(&(infcx.typing_env(param_env), pred), tcx) {
1542 return Some(res);
1543 } else if cfg!(debug_assertions) {
1544 match infcx.selection_cache.get(&(param_env, pred), tcx) {
1545 None | Some(Err(SelectionError::Overflow(OverflowError::Canonical))) => {}
1546 res => bug!("unexpected local cache result: {res:?}"),
1547 }
1548 }
1549 }
1550
1551 // Subtle: we need to check the local cache even if we're able to use the
1552 // global cache as we don't cache overflow in the global cache but need to
1553 // cache it as otherwise rustdoc hangs when compiling diesel.
1554 infcx.selection_cache.get(&(param_env, pred), tcx)
1555 }
1556
1557 /// Determines whether can we safely cache the result
1558 /// of selecting an obligation. This is almost always `true`,
1559 /// except when dealing with certain `ParamCandidate`s.
1560 ///
1561 /// Ordinarily, a `ParamCandidate` will contain no inference variables,
1562 /// since it was usually produced directly from a `DefId`. However,
1563 /// certain cases (currently only librustdoc's blanket impl finder),
1564 /// a `ParamEnv` may be explicitly constructed with inference types.
1565 /// When this is the case, we do *not* want to cache the resulting selection
1566 /// candidate. This is due to the fact that it might not always be possible
1567 /// to equate the obligation's trait ref and the candidate's trait ref,
1568 /// if more constraints end up getting added to an inference variable.
1569 ///
1570 /// Because of this, we always want to re-run the full selection
1571 /// process for our obligation the next time we see it, since
1572 /// we might end up picking a different `SelectionCandidate` (or none at all).
1573 fn can_cache_candidate(
1574 &self,
1575 result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1576 ) -> bool {
1577 match result {
1578 Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => !trait_ref.has_infer(),
1579 _ => true,
1580 }
1581 }
1582
1583 #[instrument(skip(self, param_env, cache_fresh_trait_pred, dep_node), level = "debug")]
1584 fn insert_candidate_cache(
1585 &mut self,
1586 param_env: ty::ParamEnv<'tcx>,
1587 cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1588 dep_node: DepNodeIndex,
1589 candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1590 ) {
1591 let infcx = self.infcx;
1592 let tcx = infcx.tcx;
1593 let pred = cache_fresh_trait_pred.skip_binder();
1594
1595 if !self.can_cache_candidate(&candidate) {
1596 debug!(?pred, ?candidate, "insert_candidate_cache - candidate is not cacheable");
1597 return;
1598 }
1599
1600 if self.can_use_global_caches(param_env, cache_fresh_trait_pred) {
1601 if let Err(SelectionError::Overflow(OverflowError::Canonical)) = candidate {
1602 // Don't cache overflow globally; we only produce this in certain modes.
1603 } else {
1604 debug!(?pred, ?candidate, "insert_candidate_cache global");
1605 debug_assert!(!candidate.has_infer());
1606
1607 // This may overwrite the cache with the same value.
1608 tcx.selection_cache.insert(
1609 (infcx.typing_env(param_env), pred),
1610 dep_node,
1611 candidate,
1612 );
1613 return;
1614 }
1615 }
1616
1617 debug!(?pred, ?candidate, "insert_candidate_cache local");
1618 self.infcx.selection_cache.insert((param_env, pred), dep_node, candidate);
1619 }
1620
1621 /// Looks at the item bounds of the projection or opaque type.
1622 /// If this is a nested rigid projection, such as
1623 /// `<<T as Tr1>::Assoc as Tr2>::Assoc`, consider the item bounds
1624 /// on both `Tr1::Assoc` and `Tr2::Assoc`, since we may encounter
1625 /// relative bounds on both via the `associated_type_bounds` feature.
1626 pub(super) fn for_each_item_bound<T>(
1627 &mut self,
1628 mut self_ty: Ty<'tcx>,
1629 mut for_each: impl FnMut(&mut Self, ty::Clause<'tcx>, usize) -> ControlFlow<T, ()>,
1630 on_ambiguity: impl FnOnce(),
1631 ) -> ControlFlow<T, ()> {
1632 let mut idx = 0;
1633 let mut in_parent_alias_type = false;
1634
1635 loop {
1636 let (kind, alias_ty) = match *self_ty.kind() {
1637 ty::Alias(kind @ (ty::Projection | ty::Opaque), alias_ty) => (kind, alias_ty),
1638 ty::Infer(ty::TyVar(_)) => {
1639 on_ambiguity();
1640 return ControlFlow::Continue(());
1641 }
1642 _ => return ControlFlow::Continue(()),
1643 };
1644
1645 // HACK: On subsequent recursions, we only care about bounds that don't
1646 // share the same type as `self_ty`. This is because for truly rigid
1647 // projections, we will never be able to equate, e.g. `<T as Tr>::A`
1648 // with `<<T as Tr>::A as Tr>::A`.
1649 let relevant_bounds = if in_parent_alias_type {
1650 self.tcx().item_non_self_bounds(alias_ty.def_id)
1651 } else {
1652 self.tcx().item_self_bounds(alias_ty.def_id)
1653 };
1654
1655 for bound in relevant_bounds.instantiate(self.tcx(), alias_ty.args) {
1656 for_each(self, bound, idx)?;
1657 idx += 1;
1658 }
1659
1660 if kind == ty::Projection {
1661 self_ty = alias_ty.self_ty();
1662 } else {
1663 return ControlFlow::Continue(());
1664 }
1665
1666 in_parent_alias_type = true;
1667 }
1668 }
1669
1670 /// Equates the trait in `obligation` with trait bound. If the two traits
1671 /// can be equated and the normalized trait bound doesn't contain inference
1672 /// variables or placeholders, the normalized bound is returned.
1673 fn match_normalize_trait_ref(
1674 &mut self,
1675 obligation: &PolyTraitObligation<'tcx>,
1676 placeholder_trait_ref: ty::TraitRef<'tcx>,
1677 trait_bound: ty::PolyTraitRef<'tcx>,
1678 ) -> Result<Option<ty::TraitRef<'tcx>>, ()> {
1679 debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
1680 if placeholder_trait_ref.def_id != trait_bound.def_id() {
1681 // Avoid unnecessary normalization
1682 return Err(());
1683 }
1684
1685 let drcx = DeepRejectCtxt::relate_rigid_rigid(self.infcx.tcx);
1686 let obligation_args = obligation.predicate.skip_binder().trait_ref.args;
1687 if !drcx.args_may_unify(obligation_args, trait_bound.skip_binder().args) {
1688 return Err(());
1689 }
1690
1691 let trait_bound = self.infcx.instantiate_binder_with_fresh_vars(
1692 obligation.cause.span,
1693 HigherRankedType,
1694 trait_bound,
1695 );
1696 let Normalized { value: trait_bound, obligations: _ } = ensure_sufficient_stack(|| {
1697 normalize_with_depth(
1698 self,
1699 obligation.param_env,
1700 obligation.cause.clone(),
1701 obligation.recursion_depth + 1,
1702 trait_bound,
1703 )
1704 });
1705 self.infcx
1706 .at(&obligation.cause, obligation.param_env)
1707 .eq(DefineOpaqueTypes::No, placeholder_trait_ref, trait_bound)
1708 .map(|InferOk { obligations: _, value: () }| {
1709 // This method is called within a probe, so we can't have
1710 // inference variables and placeholders escape.
1711 if !trait_bound.has_infer() && !trait_bound.has_placeholders() {
1712 Some(trait_bound)
1713 } else {
1714 None
1715 }
1716 })
1717 .map_err(|_| ())
1718 }
1719
1720 fn where_clause_may_apply<'o>(
1721 &mut self,
1722 stack: &TraitObligationStack<'o, 'tcx>,
1723 where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1724 ) -> Result<EvaluationResult, OverflowError> {
1725 self.evaluation_probe(|this| {
1726 match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1727 Ok(obligations) => this.evaluate_predicates_recursively(stack.list(), obligations),
1728 Err(()) => Ok(EvaluatedToErr),
1729 }
1730 })
1731 }
1732
1733 /// Return `Yes` if the obligation's predicate type applies to the env_predicate, and
1734 /// `No` if it does not. Return `Ambiguous` in the case that the projection type is a GAT,
1735 /// and applying this env_predicate constrains any of the obligation's GAT parameters.
1736 ///
1737 /// This behavior is a somewhat of a hack to prevent over-constraining inference variables
1738 /// in cases like #91762.
1739 pub(super) fn match_projection_projections(
1740 &mut self,
1741 obligation: &ProjectionTermObligation<'tcx>,
1742 env_predicate: PolyProjectionPredicate<'tcx>,
1743 potentially_unnormalized_candidates: bool,
1744 ) -> ProjectionMatchesProjection {
1745 debug_assert_eq!(obligation.predicate.def_id, env_predicate.item_def_id());
1746
1747 let mut nested_obligations = PredicateObligations::new();
1748 let infer_predicate = self.infcx.instantiate_binder_with_fresh_vars(
1749 obligation.cause.span,
1750 BoundRegionConversionTime::HigherRankedType,
1751 env_predicate,
1752 );
1753 let infer_projection = if potentially_unnormalized_candidates {
1754 ensure_sufficient_stack(|| {
1755 normalize_with_depth_to(
1756 self,
1757 obligation.param_env,
1758 obligation.cause.clone(),
1759 obligation.recursion_depth + 1,
1760 infer_predicate.projection_term,
1761 &mut nested_obligations,
1762 )
1763 })
1764 } else {
1765 infer_predicate.projection_term
1766 };
1767
1768 let is_match = self
1769 .infcx
1770 .at(&obligation.cause, obligation.param_env)
1771 .eq(DefineOpaqueTypes::No, obligation.predicate, infer_projection)
1772 .is_ok_and(|InferOk { obligations, value: () }| {
1773 self.evaluate_predicates_recursively(
1774 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
1775 nested_obligations.into_iter().chain(obligations),
1776 )
1777 .is_ok_and(|res| res.may_apply())
1778 });
1779
1780 if is_match {
1781 let generics = self.tcx().generics_of(obligation.predicate.def_id);
1782 // FIXME(generic_associated_types): Addresses aggressive inference in #92917.
1783 // If this type is a GAT, and of the GAT args resolve to something new,
1784 // that means that we must have newly inferred something about the GAT.
1785 // We should give up in that case.
1786 //
1787 // This only detects one layer of inference, which is probably not what we actually
1788 // want, but fixing it causes some ambiguity:
1789 // <https://github.com/rust-lang/rust/issues/125196>.
1790 if !generics.is_own_empty()
1791 && obligation.predicate.args[generics.parent_count..].iter().any(|&p| {
1792 p.has_non_region_infer()
1793 && match p.kind() {
1794 ty::GenericArgKind::Const(ct) => {
1795 self.infcx.shallow_resolve_const(ct) != ct
1796 }
1797 ty::GenericArgKind::Type(ty) => self.infcx.shallow_resolve(ty) != ty,
1798 ty::GenericArgKind::Lifetime(_) => false,
1799 }
1800 })
1801 {
1802 ProjectionMatchesProjection::Ambiguous
1803 } else {
1804 ProjectionMatchesProjection::Yes
1805 }
1806 } else {
1807 ProjectionMatchesProjection::No
1808 }
1809 }
1810}
1811
1812/// ## Winnowing
1813///
1814/// Winnowing is the process of attempting to resolve ambiguity by
1815/// probing further. During the winnowing process, we unify all
1816/// type variables and then we also attempt to evaluate recursive
1817/// bounds to see if they are satisfied.
1818impl<'tcx> SelectionContext<'_, 'tcx> {
1819 /// If there are multiple ways to prove a trait goal, we make some
1820 /// *fairly arbitrary* choices about which candidate is actually used.
1821 ///
1822 /// For more details, look at the implementation of this method :)
1823 #[instrument(level = "debug", skip(self), ret)]
1824 fn winnow_candidates(
1825 &mut self,
1826 has_non_region_infer: bool,
1827 mut candidates: Vec<EvaluatedCandidate<'tcx>>,
1828 ) -> Option<SelectionCandidate<'tcx>> {
1829 if candidates.len() == 1 {
1830 return Some(candidates.pop().unwrap().candidate);
1831 }
1832
1833 // We prefer `Sized` candidates over everything.
1834 let mut sized_candidates =
1835 candidates.iter().filter(|c| matches!(c.candidate, SizedCandidate));
1836 if let Some(sized_candidate) = sized_candidates.next() {
1837 // There should only ever be a single sized candidate
1838 // as they would otherwise overlap.
1839 debug_assert_eq!(sized_candidates.next(), None);
1840 // Only prefer the built-in `Sized` candidate if its nested goals are certain.
1841 // Otherwise, we may encounter failure later on if inference causes this candidate
1842 // to not hold, but a where clause would've applied instead.
1843 if sized_candidate.evaluation.must_apply_modulo_regions() {
1844 return Some(sized_candidate.candidate.clone());
1845 } else {
1846 return None;
1847 }
1848 }
1849
1850 // Before we consider where-bounds, we have to deduplicate them here and also
1851 // drop where-bounds in case the same where-bound exists without bound vars.
1852 // This is necessary as elaborating super-trait bounds may result in duplicates.
1853 'search_victim: loop {
1854 for (i, this) in candidates.iter().enumerate() {
1855 let ParamCandidate(this) = this.candidate else { continue };
1856 for (j, other) in candidates.iter().enumerate() {
1857 if i == j {
1858 continue;
1859 }
1860
1861 let ParamCandidate(other) = other.candidate else { continue };
1862 if this == other {
1863 candidates.remove(j);
1864 continue 'search_victim;
1865 }
1866
1867 if this.skip_binder().trait_ref == other.skip_binder().trait_ref
1868 && this.skip_binder().polarity == other.skip_binder().polarity
1869 && !this.skip_binder().trait_ref.has_escaping_bound_vars()
1870 {
1871 candidates.remove(j);
1872 continue 'search_victim;
1873 }
1874 }
1875 }
1876
1877 break;
1878 }
1879
1880 // The next highest priority is for non-global where-bounds. However, while we don't
1881 // prefer global where-clauses here, we do bail with ambiguity when encountering both
1882 // a global and a non-global where-clause.
1883 //
1884 // Our handling of where-bounds is generally fairly messy but necessary for backwards
1885 // compatibility, see #50825 for why we need to handle global where-bounds like this.
1886 let is_global = |c: ty::PolyTraitPredicate<'tcx>| c.is_global() && !c.has_bound_vars();
1887 let param_candidates = candidates
1888 .iter()
1889 .filter_map(|c| if let ParamCandidate(p) = c.candidate { Some(p) } else { None });
1890 let mut has_global_bounds = false;
1891 let mut param_candidate = None;
1892 for c in param_candidates {
1893 if is_global(c) {
1894 has_global_bounds = true;
1895 } else if param_candidate.replace(c).is_some() {
1896 // Ambiguity, two potentially different where-clauses
1897 return None;
1898 }
1899 }
1900 if let Some(predicate) = param_candidate {
1901 // Ambiguity, a global and a non-global where-bound.
1902 if has_global_bounds {
1903 return None;
1904 } else {
1905 return Some(ParamCandidate(predicate));
1906 }
1907 }
1908
1909 // Prefer alias-bounds over blanket impls for rigid associated types. This is
1910 // fairly arbitrary but once again necessary for backwards compatibility.
1911 // If there are multiple applicable candidates which don't affect type inference,
1912 // choose the one with the lowest index.
1913 let alias_bound = candidates
1914 .iter()
1915 .filter_map(|c| if let ProjectionCandidate(i) = c.candidate { Some(i) } else { None })
1916 .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1917 match alias_bound {
1918 Some(Some(index)) => return Some(ProjectionCandidate(index)),
1919 Some(None) => {}
1920 None => return None,
1921 }
1922
1923 // Need to prioritize builtin trait object impls as `<dyn Any as Any>::type_id`
1924 // should use the vtable method and not the method provided by the user-defined
1925 // impl `impl<T: ?Sized> Any for T { .. }`. This really shouldn't exist but is
1926 // necessary due to #57893. We again arbitrarily prefer the applicable candidate
1927 // with the lowest index.
1928 //
1929 // We do not want to use these impls to guide inference in case a user-written impl
1930 // may also apply.
1931 let object_bound = candidates
1932 .iter()
1933 .filter_map(|c| if let ObjectCandidate(i) = c.candidate { Some(i) } else { None })
1934 .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1935 match object_bound {
1936 Some(Some(index)) => {
1937 return if has_non_region_infer
1938 && candidates.iter().any(|c| matches!(c.candidate, ImplCandidate(_)))
1939 {
1940 None
1941 } else {
1942 Some(ObjectCandidate(index))
1943 };
1944 }
1945 Some(None) => {}
1946 None => return None,
1947 }
1948 // Same for upcasting.
1949 let upcast_bound = candidates
1950 .iter()
1951 .filter_map(|c| {
1952 if let TraitUpcastingUnsizeCandidate(i) = c.candidate { Some(i) } else { None }
1953 })
1954 .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1955 match upcast_bound {
1956 Some(Some(index)) => return Some(TraitUpcastingUnsizeCandidate(index)),
1957 Some(None) => {}
1958 None => return None,
1959 }
1960
1961 // Finally, handle overlapping user-written impls.
1962 let impls = candidates.iter().filter_map(|c| {
1963 if let ImplCandidate(def_id) = c.candidate {
1964 Some((def_id, c.evaluation))
1965 } else {
1966 None
1967 }
1968 });
1969 let mut impl_candidate = None;
1970 for c in impls {
1971 if let Some(prev) = impl_candidate.replace(c) {
1972 if self.prefer_lhs_over_victim(has_non_region_infer, c, prev.0) {
1973 // Ok, prefer `c` over the previous entry
1974 } else if self.prefer_lhs_over_victim(has_non_region_infer, prev, c.0) {
1975 // Ok, keep `prev` instead of the new entry
1976 impl_candidate = Some(prev);
1977 } else {
1978 // Ambiguity, two potentially different where-clauses
1979 return None;
1980 }
1981 }
1982 }
1983 if let Some((def_id, _evaluation)) = impl_candidate {
1984 // Don't use impl candidates which overlap with other candidates.
1985 // This should pretty much only ever happen with malformed impls.
1986 if candidates.iter().all(|c| match c.candidate {
1987 SizedCandidate
1988 | BuiltinCandidate
1989 | TransmutabilityCandidate
1990 | AutoImplCandidate
1991 | ClosureCandidate { .. }
1992 | AsyncClosureCandidate
1993 | AsyncFnKindHelperCandidate
1994 | CoroutineCandidate
1995 | FutureCandidate
1996 | IteratorCandidate
1997 | AsyncIteratorCandidate
1998 | FnPointerCandidate
1999 | TraitAliasCandidate
2000 | TraitUpcastingUnsizeCandidate(_)
2001 | BuiltinObjectCandidate
2002 | BuiltinUnsizeCandidate
2003 | BikeshedGuaranteedNoDropCandidate => false,
2004 // Non-global param candidates have already been handled, global
2005 // where-bounds get ignored.
2006 ParamCandidate(_) | ImplCandidate(_) => true,
2007 ProjectionCandidate(_) | ObjectCandidate(_) => unreachable!(),
2008 }) {
2009 return Some(ImplCandidate(def_id));
2010 } else {
2011 return None;
2012 }
2013 }
2014
2015 if candidates.len() == 1 {
2016 Some(candidates.pop().unwrap().candidate)
2017 } else {
2018 // Also try ignoring all global where-bounds and check whether we end
2019 // with a unique candidate in this case.
2020 let mut not_a_global_where_bound = candidates
2021 .into_iter()
2022 .filter(|c| !matches!(c.candidate, ParamCandidate(p) if is_global(p)));
2023 not_a_global_where_bound
2024 .next()
2025 .map(|c| c.candidate)
2026 .filter(|_| not_a_global_where_bound.next().is_none())
2027 }
2028 }
2029
2030 fn prefer_lhs_over_victim(
2031 &self,
2032 has_non_region_infer: bool,
2033 (lhs, lhs_evaluation): (DefId, EvaluationResult),
2034 victim: DefId,
2035 ) -> bool {
2036 let tcx = self.tcx();
2037 // See if we can toss out `victim` based on specialization.
2038 //
2039 // While this requires us to know *for sure* that the `lhs` impl applies
2040 // we still use modulo regions here. This is fine as specialization currently
2041 // assumes that specializing impls have to be always applicable, meaning that
2042 // the only allowed region constraints may be constraints also present on the default impl.
2043 if lhs_evaluation.must_apply_modulo_regions() {
2044 if tcx.specializes((lhs, victim)) {
2045 return true;
2046 }
2047 }
2048
2049 match tcx.impls_are_allowed_to_overlap(lhs, victim) {
2050 // For candidates which already reference errors it doesn't really
2051 // matter what we do 🤷
2052 Some(ty::ImplOverlapKind::Permitted { marker: false }) => {
2053 lhs_evaluation.must_apply_considering_regions()
2054 }
2055 Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
2056 // Subtle: If the predicate we are evaluating has inference
2057 // variables, do *not* allow discarding candidates due to
2058 // marker trait impls.
2059 //
2060 // Without this restriction, we could end up accidentally
2061 // constraining inference variables based on an arbitrarily
2062 // chosen trait impl.
2063 //
2064 // Imagine we have the following code:
2065 //
2066 // ```rust
2067 // #[marker] trait MyTrait {}
2068 // impl MyTrait for u8 {}
2069 // impl MyTrait for bool {}
2070 // ```
2071 //
2072 // And we are evaluating the predicate `<_#0t as MyTrait>`.
2073 //
2074 // During selection, we will end up with one candidate for each
2075 // impl of `MyTrait`. If we were to discard one impl in favor
2076 // of the other, we would be left with one candidate, causing
2077 // us to "successfully" select the predicate, unifying
2078 // _#0t with (for example) `u8`.
2079 //
2080 // However, we have no reason to believe that this unification
2081 // is correct - we've essentially just picked an arbitrary
2082 // *possibility* for _#0t, and required that this be the *only*
2083 // possibility.
2084 //
2085 // Eventually, we will either:
2086 // 1) Unify all inference variables in the predicate through
2087 // some other means (e.g. type-checking of a function). We will
2088 // then be in a position to drop marker trait candidates
2089 // without constraining inference variables (since there are
2090 // none left to constrain)
2091 // 2) Be left with some unconstrained inference variables. We
2092 // will then correctly report an inference error, since the
2093 // existence of multiple marker trait impls tells us nothing
2094 // about which one should actually apply.
2095 !has_non_region_infer && lhs_evaluation.must_apply_considering_regions()
2096 }
2097 None => false,
2098 }
2099 }
2100}
2101
2102impl<'tcx> SelectionContext<'_, 'tcx> {
2103 fn sizedness_conditions(
2104 &mut self,
2105 self_ty: Ty<'tcx>,
2106 sizedness: SizedTraitKind,
2107 ) -> ty::Binder<'tcx, Vec<Ty<'tcx>>> {
2108 match self_ty.kind() {
2109 ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2110 | ty::Uint(_)
2111 | ty::Int(_)
2112 | ty::Bool
2113 | ty::Float(_)
2114 | ty::FnDef(..)
2115 | ty::FnPtr(..)
2116 | ty::RawPtr(..)
2117 | ty::Char
2118 | ty::Ref(..)
2119 | ty::Coroutine(..)
2120 | ty::CoroutineWitness(..)
2121 | ty::Array(..)
2122 | ty::Closure(..)
2123 | ty::CoroutineClosure(..)
2124 | ty::Never
2125 | ty::Error(_) => ty::Binder::dummy(vec![]),
2126
2127 ty::Str | ty::Slice(_) | ty::Dynamic(..) => match sizedness {
2128 SizedTraitKind::Sized => unreachable!("tried to assemble `Sized` for unsized type"),
2129 SizedTraitKind::MetaSized => ty::Binder::dummy(vec![]),
2130 },
2131
2132 ty::Foreign(..) => unreachable!("tried to assemble `Sized` for unsized type"),
2133
2134 ty::Tuple(tys) => {
2135 ty::Binder::dummy(tys.last().map_or_else(Vec::new, |&last| vec![last]))
2136 }
2137
2138 ty::Pat(ty, _) => ty::Binder::dummy(vec![*ty]),
2139
2140 ty::Adt(def, args) => {
2141 if let Some(crit) = def.sizedness_constraint(self.tcx(), sizedness) {
2142 ty::Binder::dummy(vec![crit.instantiate(self.tcx(), args)])
2143 } else {
2144 ty::Binder::dummy(vec![])
2145 }
2146 }
2147
2148 ty::UnsafeBinder(binder_ty) => binder_ty.map_bound(|ty| vec![ty]),
2149
2150 ty::Alias(..)
2151 | ty::Param(_)
2152 | ty::Placeholder(..)
2153 | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_))
2154 | ty::Bound(..) => {
2155 bug!("asked to assemble `Sized` of unexpected type: {:?}", self_ty);
2156 }
2157 }
2158 }
2159
2160 fn copy_clone_conditions(&mut self, self_ty: Ty<'tcx>) -> ty::Binder<'tcx, Vec<Ty<'tcx>>> {
2161 match *self_ty.kind() {
2162 ty::FnDef(..) | ty::FnPtr(..) | ty::Error(_) => ty::Binder::dummy(vec![]),
2163
2164 ty::Uint(_)
2165 | ty::Int(_)
2166 | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2167 | ty::Bool
2168 | ty::Float(_)
2169 | ty::Char
2170 | ty::RawPtr(..)
2171 | ty::Never
2172 | ty::Ref(_, _, hir::Mutability::Not)
2173 | ty::Array(..) => {
2174 unreachable!("tried to assemble `Sized` for type with libcore-provided impl")
2175 }
2176
2177 // FIXME(unsafe_binder): Should we conditionally
2178 // (i.e. universally) implement copy/clone?
2179 ty::UnsafeBinder(_) => unreachable!("tried to assemble `Sized` for unsafe binder"),
2180
2181 ty::Tuple(tys) => {
2182 // (*) binder moved here
2183 ty::Binder::dummy(tys.iter().collect())
2184 }
2185
2186 ty::Pat(ty, _) => {
2187 // (*) binder moved here
2188 ty::Binder::dummy(vec![ty])
2189 }
2190
2191 ty::Coroutine(coroutine_def_id, args) => {
2192 match self.tcx().coroutine_movability(coroutine_def_id) {
2193 hir::Movability::Static => {
2194 unreachable!("tried to assemble `Sized` for static coroutine")
2195 }
2196 hir::Movability::Movable => {
2197 if self.tcx().features().coroutine_clone() {
2198 ty::Binder::dummy(
2199 args.as_coroutine()
2200 .upvar_tys()
2201 .iter()
2202 .chain([args.as_coroutine().witness()])
2203 .collect::<Vec<_>>(),
2204 )
2205 } else {
2206 unreachable!(
2207 "tried to assemble `Sized` for coroutine without enabled feature"
2208 )
2209 }
2210 }
2211 }
2212 }
2213
2214 ty::CoroutineWitness(def_id, args) => self
2215 .infcx
2216 .tcx
2217 .coroutine_hidden_types(def_id)
2218 .instantiate(self.infcx.tcx, args)
2219 .map_bound(|witness| witness.types.to_vec()),
2220
2221 ty::Closure(_, args) => ty::Binder::dummy(args.as_closure().upvar_tys().to_vec()),
2222
2223 ty::CoroutineClosure(_, args) => {
2224 ty::Binder::dummy(args.as_coroutine_closure().upvar_tys().to_vec())
2225 }
2226
2227 ty::Foreign(..)
2228 | ty::Str
2229 | ty::Slice(_)
2230 | ty::Dynamic(..)
2231 | ty::Adt(..)
2232 | ty::Alias(..)
2233 | ty::Param(..)
2234 | ty::Placeholder(..)
2235 | ty::Bound(..)
2236 | ty::Ref(_, _, ty::Mutability::Mut)
2237 | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2238 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
2239 }
2240 }
2241 }
2242
2243 fn coroutine_is_gen(&mut self, self_ty: Ty<'tcx>) -> bool {
2244 matches!(*self_ty.kind(), ty::Coroutine(did, ..)
2245 if self.tcx().coroutine_is_gen(did))
2246 }
2247
2248 /// For default impls, we need to break apart a type into its
2249 /// "constituent types" -- meaning, the types that it contains.
2250 ///
2251 /// Here are some (simple) examples:
2252 ///
2253 /// ```ignore (illustrative)
2254 /// (i32, u32) -> [i32, u32]
2255 /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
2256 /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
2257 /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
2258 /// ```
2259 #[instrument(level = "debug", skip(self), ret)]
2260 fn constituent_types_for_auto_trait(
2261 &self,
2262 t: Ty<'tcx>,
2263 ) -> Result<ty::Binder<'tcx, AutoImplConstituents<'tcx>>, SelectionError<'tcx>> {
2264 Ok(match *t.kind() {
2265 ty::Uint(_)
2266 | ty::Int(_)
2267 | ty::Bool
2268 | ty::Float(_)
2269 | ty::FnDef(..)
2270 | ty::FnPtr(..)
2271 | ty::Error(_)
2272 | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2273 | ty::Never
2274 | ty::Char => {
2275 ty::Binder::dummy(AutoImplConstituents { types: vec![], assumptions: vec![] })
2276 }
2277
2278 // This branch is only for `experimental_default_bounds`.
2279 // Other foreign types were rejected earlier in
2280 // `assemble_candidates_from_auto_impls`.
2281 ty::Foreign(..) => {
2282 ty::Binder::dummy(AutoImplConstituents { types: vec![], assumptions: vec![] })
2283 }
2284
2285 ty::UnsafeBinder(ty) => {
2286 ty.map_bound(|ty| AutoImplConstituents { types: vec![ty], assumptions: vec![] })
2287 }
2288
2289 // Treat this like `struct str([u8]);`
2290 ty::Str => ty::Binder::dummy(AutoImplConstituents {
2291 types: vec![Ty::new_slice(self.tcx(), self.tcx().types.u8)],
2292 assumptions: vec![],
2293 }),
2294
2295 ty::Placeholder(..)
2296 | ty::Dynamic(..)
2297 | ty::Param(..)
2298 | ty::Alias(ty::Projection | ty::Inherent | ty::Free, ..)
2299 | ty::Bound(..)
2300 | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2301 bug!("asked to assemble constituent types of unexpected type: {:?}", t);
2302 }
2303
2304 ty::RawPtr(element_ty, _) | ty::Ref(_, element_ty, _) => {
2305 ty::Binder::dummy(AutoImplConstituents {
2306 types: vec![element_ty],
2307 assumptions: vec![],
2308 })
2309 }
2310
2311 ty::Pat(ty, _) | ty::Array(ty, _) | ty::Slice(ty) => {
2312 ty::Binder::dummy(AutoImplConstituents { types: vec![ty], assumptions: vec![] })
2313 }
2314
2315 ty::Tuple(tys) => {
2316 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
2317 ty::Binder::dummy(AutoImplConstituents {
2318 types: tys.iter().collect(),
2319 assumptions: vec![],
2320 })
2321 }
2322
2323 ty::Closure(_, args) => {
2324 let ty = self.infcx.shallow_resolve(args.as_closure().tupled_upvars_ty());
2325 ty::Binder::dummy(AutoImplConstituents { types: vec![ty], assumptions: vec![] })
2326 }
2327
2328 ty::CoroutineClosure(_, args) => {
2329 let ty = self.infcx.shallow_resolve(args.as_coroutine_closure().tupled_upvars_ty());
2330 ty::Binder::dummy(AutoImplConstituents { types: vec![ty], assumptions: vec![] })
2331 }
2332
2333 ty::Coroutine(_, args) => {
2334 let ty = self.infcx.shallow_resolve(args.as_coroutine().tupled_upvars_ty());
2335 let witness = args.as_coroutine().witness();
2336 ty::Binder::dummy(AutoImplConstituents {
2337 types: [ty].into_iter().chain(iter::once(witness)).collect(),
2338 assumptions: vec![],
2339 })
2340 }
2341
2342 ty::CoroutineWitness(def_id, args) => self
2343 .infcx
2344 .tcx
2345 .coroutine_hidden_types(def_id)
2346 .instantiate(self.infcx.tcx, args)
2347 .map_bound(|witness| AutoImplConstituents {
2348 types: witness.types.to_vec(),
2349 assumptions: witness.assumptions.to_vec(),
2350 }),
2351
2352 // For `PhantomData<T>`, we pass `T`.
2353 ty::Adt(def, args) if def.is_phantom_data() => {
2354 ty::Binder::dummy(AutoImplConstituents {
2355 types: args.types().collect(),
2356 assumptions: vec![],
2357 })
2358 }
2359
2360 ty::Adt(def, args) => ty::Binder::dummy(AutoImplConstituents {
2361 types: def.all_fields().map(|f| f.ty(self.tcx(), args)).collect(),
2362 assumptions: vec![],
2363 }),
2364
2365 ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
2366 if self.infcx.can_define_opaque_ty(def_id) {
2367 unreachable!()
2368 } else {
2369 // We can resolve the `impl Trait` to its concrete type,
2370 // which enforces a DAG between the functions requiring
2371 // the auto trait bounds in question.
2372 match self.tcx().type_of_opaque(def_id) {
2373 Ok(ty) => ty::Binder::dummy(AutoImplConstituents {
2374 types: vec![ty.instantiate(self.tcx(), args)],
2375 assumptions: vec![],
2376 }),
2377 Err(_) => {
2378 return Err(SelectionError::OpaqueTypeAutoTraitLeakageUnknown(def_id));
2379 }
2380 }
2381 }
2382 }
2383 })
2384 }
2385
2386 fn collect_predicates_for_types(
2387 &mut self,
2388 param_env: ty::ParamEnv<'tcx>,
2389 cause: ObligationCause<'tcx>,
2390 recursion_depth: usize,
2391 trait_def_id: DefId,
2392 types: Vec<Ty<'tcx>>,
2393 ) -> PredicateObligations<'tcx> {
2394 // Because the types were potentially derived from
2395 // higher-ranked obligations they may reference late-bound
2396 // regions. For example, `for<'a> Foo<&'a i32> : Copy` would
2397 // yield a type like `for<'a> &'a i32`. In general, we
2398 // maintain the invariant that we never manipulate bound
2399 // regions, so we have to process these bound regions somehow.
2400 //
2401 // The strategy is to:
2402 //
2403 // 1. Instantiate those regions to placeholder regions (e.g.,
2404 // `for<'a> &'a i32` becomes `&0 i32`.
2405 // 2. Produce something like `&'0 i32 : Copy`
2406 // 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`
2407
2408 types
2409 .into_iter()
2410 .flat_map(|placeholder_ty| {
2411 let Normalized { value: normalized_ty, mut obligations } =
2412 ensure_sufficient_stack(|| {
2413 normalize_with_depth(
2414 self,
2415 param_env,
2416 cause.clone(),
2417 recursion_depth,
2418 placeholder_ty,
2419 )
2420 });
2421
2422 let tcx = self.tcx();
2423 let trait_ref = if tcx.generics_of(trait_def_id).own_params.len() == 1 {
2424 ty::TraitRef::new(tcx, trait_def_id, [normalized_ty])
2425 } else {
2426 // If this is an ill-formed auto/built-in trait, then synthesize
2427 // new error args for the missing generics.
2428 let err_args = ty::GenericArgs::extend_with_error(
2429 tcx,
2430 trait_def_id,
2431 &[normalized_ty.into()],
2432 );
2433 ty::TraitRef::new_from_args(tcx, trait_def_id, err_args)
2434 };
2435
2436 let obligation = Obligation::new(self.tcx(), cause.clone(), param_env, trait_ref);
2437 obligations.push(obligation);
2438 obligations
2439 })
2440 .collect()
2441 }
2442
2443 ///////////////////////////////////////////////////////////////////////////
2444 // Matching
2445 //
2446 // Matching is a common path used for both evaluation and
2447 // confirmation. It basically unifies types that appear in impls
2448 // and traits. This does affect the surrounding environment;
2449 // therefore, when used during evaluation, match routines must be
2450 // run inside of a `probe()` so that their side-effects are
2451 // contained.
2452
2453 fn rematch_impl(
2454 &mut self,
2455 impl_def_id: DefId,
2456 obligation: &PolyTraitObligation<'tcx>,
2457 ) -> Normalized<'tcx, GenericArgsRef<'tcx>> {
2458 let impl_trait_header = self.tcx().impl_trait_header(impl_def_id).unwrap();
2459 match self.match_impl(impl_def_id, impl_trait_header, obligation) {
2460 Ok(args) => args,
2461 Err(()) => {
2462 let predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
2463 bug!("impl {impl_def_id:?} was matchable against {predicate:?} but now is not")
2464 }
2465 }
2466 }
2467
2468 #[instrument(level = "debug", skip(self), ret)]
2469 fn match_impl(
2470 &mut self,
2471 impl_def_id: DefId,
2472 impl_trait_header: ty::ImplTraitHeader<'tcx>,
2473 obligation: &PolyTraitObligation<'tcx>,
2474 ) -> Result<Normalized<'tcx, GenericArgsRef<'tcx>>, ()> {
2475 let placeholder_obligation =
2476 self.infcx.enter_forall_and_leak_universe(obligation.predicate);
2477 let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;
2478
2479 let impl_args = self.infcx.fresh_args_for_item(obligation.cause.span, impl_def_id);
2480
2481 let trait_ref = impl_trait_header.trait_ref.instantiate(self.tcx(), impl_args);
2482 debug!(?impl_trait_header);
2483
2484 let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
2485 ensure_sufficient_stack(|| {
2486 normalize_with_depth(
2487 self,
2488 obligation.param_env,
2489 obligation.cause.clone(),
2490 obligation.recursion_depth + 1,
2491 trait_ref,
2492 )
2493 });
2494
2495 debug!(?impl_trait_ref, ?placeholder_obligation_trait_ref);
2496
2497 let cause = ObligationCause::new(
2498 obligation.cause.span,
2499 obligation.cause.body_id,
2500 ObligationCauseCode::MatchImpl(obligation.cause.clone(), impl_def_id),
2501 );
2502
2503 let InferOk { obligations, .. } = self
2504 .infcx
2505 .at(&cause, obligation.param_env)
2506 .eq(DefineOpaqueTypes::No, placeholder_obligation_trait_ref, impl_trait_ref)
2507 .map_err(|e| {
2508 debug!("match_impl: failed eq_trait_refs due to `{}`", e.to_string(self.tcx()))
2509 })?;
2510 nested_obligations.extend(obligations);
2511
2512 if impl_trait_header.polarity == ty::ImplPolarity::Reservation
2513 && !matches!(self.infcx.typing_mode(), TypingMode::Coherence)
2514 {
2515 debug!("reservation impls only apply in intercrate mode");
2516 return Err(());
2517 }
2518
2519 Ok(Normalized { value: impl_args, obligations: nested_obligations })
2520 }
2521
2522 fn match_upcast_principal(
2523 &mut self,
2524 obligation: &PolyTraitObligation<'tcx>,
2525 unnormalized_upcast_principal: ty::PolyTraitRef<'tcx>,
2526 a_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
2527 b_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
2528 a_region: ty::Region<'tcx>,
2529 b_region: ty::Region<'tcx>,
2530 ) -> SelectionResult<'tcx, PredicateObligations<'tcx>> {
2531 let tcx = self.tcx();
2532 let mut nested = PredicateObligations::new();
2533
2534 // We may upcast to auto traits that are either explicitly listed in
2535 // the object type's bounds, or implied by the principal trait ref's
2536 // supertraits.
2537 let a_auto_traits: FxIndexSet<DefId> = a_data
2538 .auto_traits()
2539 .chain(a_data.principal_def_id().into_iter().flat_map(|principal_def_id| {
2540 elaborate::supertrait_def_ids(tcx, principal_def_id)
2541 .filter(|def_id| tcx.trait_is_auto(*def_id))
2542 }))
2543 .collect();
2544
2545 let upcast_principal = normalize_with_depth_to(
2546 self,
2547 obligation.param_env,
2548 obligation.cause.clone(),
2549 obligation.recursion_depth + 1,
2550 unnormalized_upcast_principal,
2551 &mut nested,
2552 );
2553
2554 for bound in b_data {
2555 match bound.skip_binder() {
2556 // Check that a_ty's supertrait (upcast_principal) is compatible
2557 // with the target (b_ty).
2558 ty::ExistentialPredicate::Trait(target_principal) => {
2559 let hr_source_principal = upcast_principal.map_bound(|trait_ref| {
2560 ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
2561 });
2562 let hr_target_principal = bound.rebind(target_principal);
2563
2564 nested.extend(
2565 self.infcx
2566 .enter_forall(hr_target_principal, |target_principal| {
2567 let source_principal =
2568 self.infcx.instantiate_binder_with_fresh_vars(
2569 obligation.cause.span,
2570 HigherRankedType,
2571 hr_source_principal,
2572 );
2573 self.infcx.at(&obligation.cause, obligation.param_env).eq_trace(
2574 DefineOpaqueTypes::Yes,
2575 ToTrace::to_trace(
2576 &obligation.cause,
2577 hr_target_principal,
2578 hr_source_principal,
2579 ),
2580 target_principal,
2581 source_principal,
2582 )
2583 })
2584 .map_err(|_| SelectionError::Unimplemented)?
2585 .into_obligations(),
2586 );
2587 }
2588 // Check that b_ty's projection is satisfied by exactly one of
2589 // a_ty's projections. First, we look through the list to see if
2590 // any match. If not, error. Then, if *more* than one matches, we
2591 // return ambiguity. Otherwise, if exactly one matches, equate
2592 // it with b_ty's projection.
2593 ty::ExistentialPredicate::Projection(target_projection) => {
2594 let hr_target_projection = bound.rebind(target_projection);
2595
2596 let mut matching_projections =
2597 a_data.projection_bounds().filter(|&hr_source_projection| {
2598 // Eager normalization means that we can just use can_eq
2599 // here instead of equating and processing obligations.
2600 hr_source_projection.item_def_id() == hr_target_projection.item_def_id()
2601 && self.infcx.probe(|_| {
2602 self.infcx
2603 .enter_forall(hr_target_projection, |target_projection| {
2604 let source_projection =
2605 self.infcx.instantiate_binder_with_fresh_vars(
2606 obligation.cause.span,
2607 HigherRankedType,
2608 hr_source_projection,
2609 );
2610 self.infcx
2611 .at(&obligation.cause, obligation.param_env)
2612 .eq_trace(
2613 DefineOpaqueTypes::Yes,
2614 ToTrace::to_trace(
2615 &obligation.cause,
2616 hr_target_projection,
2617 hr_source_projection,
2618 ),
2619 target_projection,
2620 source_projection,
2621 )
2622 })
2623 .is_ok()
2624 })
2625 });
2626
2627 let Some(hr_source_projection) = matching_projections.next() else {
2628 return Err(SelectionError::Unimplemented);
2629 };
2630 if matching_projections.next().is_some() {
2631 return Ok(None);
2632 }
2633 nested.extend(
2634 self.infcx
2635 .enter_forall(hr_target_projection, |target_projection| {
2636 let source_projection =
2637 self.infcx.instantiate_binder_with_fresh_vars(
2638 obligation.cause.span,
2639 HigherRankedType,
2640 hr_source_projection,
2641 );
2642 self.infcx.at(&obligation.cause, obligation.param_env).eq_trace(
2643 DefineOpaqueTypes::Yes,
2644 ToTrace::to_trace(
2645 &obligation.cause,
2646 hr_target_projection,
2647 hr_source_projection,
2648 ),
2649 target_projection,
2650 source_projection,
2651 )
2652 })
2653 .map_err(|_| SelectionError::Unimplemented)?
2654 .into_obligations(),
2655 );
2656 }
2657 // Check that b_ty's auto traits are present in a_ty's bounds.
2658 ty::ExistentialPredicate::AutoTrait(def_id) => {
2659 if !a_auto_traits.contains(&def_id) {
2660 return Err(SelectionError::Unimplemented);
2661 }
2662 }
2663 }
2664 }
2665
2666 nested.push(Obligation::with_depth(
2667 tcx,
2668 obligation.cause.clone(),
2669 obligation.recursion_depth + 1,
2670 obligation.param_env,
2671 ty::Binder::dummy(ty::OutlivesPredicate(a_region, b_region)),
2672 ));
2673
2674 Ok(Some(nested))
2675 }
2676
2677 /// Normalize `where_clause_trait_ref` and try to match it against
2678 /// `obligation`. If successful, return any predicates that
2679 /// result from the normalization.
2680 fn match_where_clause_trait_ref(
2681 &mut self,
2682 obligation: &PolyTraitObligation<'tcx>,
2683 where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
2684 ) -> Result<PredicateObligations<'tcx>, ()> {
2685 self.match_poly_trait_ref(obligation, where_clause_trait_ref)
2686 }
2687
2688 /// Returns `Ok` if `poly_trait_ref` being true implies that the
2689 /// obligation is satisfied.
2690 #[instrument(skip(self), level = "debug")]
2691 fn match_poly_trait_ref(
2692 &mut self,
2693 obligation: &PolyTraitObligation<'tcx>,
2694 poly_trait_ref: ty::PolyTraitRef<'tcx>,
2695 ) -> Result<PredicateObligations<'tcx>, ()> {
2696 let predicate = self.infcx.enter_forall_and_leak_universe(obligation.predicate);
2697 let trait_ref = self.infcx.instantiate_binder_with_fresh_vars(
2698 obligation.cause.span,
2699 HigherRankedType,
2700 poly_trait_ref,
2701 );
2702 self.infcx
2703 .at(&obligation.cause, obligation.param_env)
2704 .eq(DefineOpaqueTypes::No, predicate.trait_ref, trait_ref)
2705 .map(|InferOk { obligations, .. }| obligations)
2706 .map_err(|_| ())
2707 }
2708
2709 ///////////////////////////////////////////////////////////////////////////
2710 // Miscellany
2711
2712 fn match_fresh_trait_refs(
2713 &self,
2714 previous: ty::PolyTraitPredicate<'tcx>,
2715 current: ty::PolyTraitPredicate<'tcx>,
2716 ) -> bool {
2717 let mut matcher = _match::MatchAgainstFreshVars::new(self.tcx());
2718 matcher.relate(previous, current).is_ok()
2719 }
2720
2721 fn push_stack<'o>(
2722 &mut self,
2723 previous_stack: TraitObligationStackList<'o, 'tcx>,
2724 obligation: &'o PolyTraitObligation<'tcx>,
2725 ) -> TraitObligationStack<'o, 'tcx> {
2726 let fresh_trait_pred = obligation.predicate.fold_with(&mut self.freshener);
2727
2728 let dfn = previous_stack.cache.next_dfn();
2729 let depth = previous_stack.depth() + 1;
2730 TraitObligationStack {
2731 obligation,
2732 fresh_trait_pred,
2733 reached_depth: Cell::new(depth),
2734 previous: previous_stack,
2735 dfn,
2736 depth,
2737 }
2738 }
2739
2740 #[instrument(skip(self), level = "debug")]
2741 fn closure_trait_ref_unnormalized(
2742 &mut self,
2743 self_ty: Ty<'tcx>,
2744 fn_trait_def_id: DefId,
2745 ) -> ty::PolyTraitRef<'tcx> {
2746 let ty::Closure(_, args) = *self_ty.kind() else {
2747 bug!("expected closure, found {self_ty}");
2748 };
2749 let closure_sig = args.as_closure().sig();
2750
2751 closure_trait_ref_and_return_type(
2752 self.tcx(),
2753 fn_trait_def_id,
2754 self_ty,
2755 closure_sig,
2756 util::TupleArgumentsFlag::No,
2757 )
2758 .map_bound(|(trait_ref, _)| trait_ref)
2759 }
2760
2761 /// Returns the obligations that are implied by instantiating an
2762 /// impl or trait. The obligations are instantiated and fully
2763 /// normalized. This is used when confirming an impl or default
2764 /// impl.
2765 #[instrument(level = "debug", skip(self, cause, param_env))]
2766 fn impl_or_trait_obligations(
2767 &mut self,
2768 cause: &ObligationCause<'tcx>,
2769 recursion_depth: usize,
2770 param_env: ty::ParamEnv<'tcx>,
2771 def_id: DefId, // of impl or trait
2772 args: GenericArgsRef<'tcx>, // for impl or trait
2773 parent_trait_pred: ty::Binder<'tcx, ty::TraitPredicate<'tcx>>,
2774 ) -> PredicateObligations<'tcx> {
2775 let tcx = self.tcx();
2776
2777 // To allow for one-pass evaluation of the nested obligation,
2778 // each predicate must be preceded by the obligations required
2779 // to normalize it.
2780 // for example, if we have:
2781 // impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
2782 // the impl will have the following predicates:
2783 // <V as Iterator>::Item = U,
2784 // U: Iterator, U: Sized,
2785 // V: Iterator, V: Sized,
2786 // <U as Iterator>::Item: Copy
2787 // When we instantiate, say, `V => IntoIter<u32>, U => $0`, the last
2788 // obligation will normalize to `<$0 as Iterator>::Item = $1` and
2789 // `$1: Copy`, so we must ensure the obligations are emitted in
2790 // that order.
2791 let predicates = tcx.predicates_of(def_id);
2792 assert_eq!(predicates.parent, None);
2793 let predicates = predicates.instantiate_own(tcx, args);
2794 let mut obligations = PredicateObligations::with_capacity(predicates.len());
2795 for (index, (predicate, span)) in predicates.into_iter().enumerate() {
2796 let cause = if tcx.is_lang_item(parent_trait_pred.def_id(), LangItem::CoerceUnsized) {
2797 cause.clone()
2798 } else {
2799 cause.clone().derived_cause(parent_trait_pred, |derived| {
2800 ObligationCauseCode::ImplDerived(Box::new(ImplDerivedCause {
2801 derived,
2802 impl_or_alias_def_id: def_id,
2803 impl_def_predicate_index: Some(index),
2804 span,
2805 }))
2806 })
2807 };
2808 let clause = normalize_with_depth_to(
2809 self,
2810 param_env,
2811 cause.clone(),
2812 recursion_depth,
2813 predicate,
2814 &mut obligations,
2815 );
2816 obligations.push(Obligation {
2817 cause,
2818 recursion_depth,
2819 param_env,
2820 predicate: clause.as_predicate(),
2821 });
2822 }
2823
2824 // Register any outlives obligations from the trait here, cc #124336.
2825 if matches!(tcx.def_kind(def_id), DefKind::Impl { of_trait: true }) {
2826 for clause in tcx.impl_super_outlives(def_id).iter_instantiated(tcx, args) {
2827 let clause = normalize_with_depth_to(
2828 self,
2829 param_env,
2830 cause.clone(),
2831 recursion_depth,
2832 clause,
2833 &mut obligations,
2834 );
2835 obligations.push(Obligation {
2836 cause: cause.clone(),
2837 recursion_depth,
2838 param_env,
2839 predicate: clause.as_predicate(),
2840 });
2841 }
2842 }
2843
2844 obligations
2845 }
2846
2847 fn should_stall_coroutine_witness(&self, def_id: DefId) -> bool {
2848 match self.infcx.typing_mode() {
2849 TypingMode::Analysis { defining_opaque_types_and_generators: stalled_generators } => {
2850 def_id.as_local().is_some_and(|def_id| stalled_generators.contains(&def_id))
2851 }
2852 TypingMode::Coherence
2853 | TypingMode::PostAnalysis
2854 | TypingMode::Borrowck { defining_opaque_types: _ }
2855 | TypingMode::PostBorrowckAnalysis { defined_opaque_types: _ } => false,
2856 }
2857 }
2858}
2859
2860impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
2861 fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2862 TraitObligationStackList::with(self)
2863 }
2864
2865 fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
2866 self.previous.cache
2867 }
2868
2869 fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2870 self.list()
2871 }
2872
2873 /// Indicates that attempting to evaluate this stack entry
2874 /// required accessing something from the stack at depth `reached_depth`.
2875 fn update_reached_depth(&self, reached_depth: usize) {
2876 assert!(
2877 self.depth >= reached_depth,
2878 "invoked `update_reached_depth` with something under this stack: \
2879 self.depth={} reached_depth={}",
2880 self.depth,
2881 reached_depth,
2882 );
2883 debug!(reached_depth, "update_reached_depth");
2884 let mut p = self;
2885 while reached_depth < p.depth {
2886 debug!(?p.fresh_trait_pred, "update_reached_depth: marking as cycle participant");
2887 p.reached_depth.set(p.reached_depth.get().min(reached_depth));
2888 p = p.previous.head.unwrap();
2889 }
2890 }
2891}
2892
2893/// The "provisional evaluation cache" is used to store intermediate cache results
2894/// when solving auto traits. Auto traits are unusual in that they can support
2895/// cycles. So, for example, a "proof tree" like this would be ok:
2896///
2897/// - `Foo<T>: Send` :-
2898/// - `Bar<T>: Send` :-
2899/// - `Foo<T>: Send` -- cycle, but ok
2900/// - `Baz<T>: Send`
2901///
2902/// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
2903/// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
2904/// For non-auto traits, this cycle would be an error, but for auto traits (because
2905/// they are coinductive) it is considered ok.
2906///
2907/// However, there is a complication: at the point where we have
2908/// "proven" `Bar<T>: Send`, we have in fact only proven it
2909/// *provisionally*. In particular, we proved that `Bar<T>: Send`
2910/// *under the assumption* that `Foo<T>: Send`. But what if we later
2911/// find out this assumption is wrong? Specifically, we could
2912/// encounter some kind of error proving `Baz<T>: Send`. In that case,
2913/// `Bar<T>: Send` didn't turn out to be true.
2914///
2915/// In Issue #60010, we found a bug in rustc where it would cache
2916/// these intermediate results. This was fixed in #60444 by disabling
2917/// *all* caching for things involved in a cycle -- in our example,
2918/// that would mean we don't cache that `Bar<T>: Send`. But this led
2919/// to large slowdowns.
2920///
2921/// Specifically, imagine this scenario, where proving `Baz<T>: Send`
2922/// first requires proving `Bar<T>: Send` (which is true:
2923///
2924/// - `Foo<T>: Send` :-
2925/// - `Bar<T>: Send` :-
2926/// - `Foo<T>: Send` -- cycle, but ok
2927/// - `Baz<T>: Send`
2928/// - `Bar<T>: Send` -- would be nice for this to be a cache hit!
2929/// - `*const T: Send` -- but what if we later encounter an error?
2930///
2931/// The *provisional evaluation cache* resolves this issue. It stores
2932/// cache results that we've proven but which were involved in a cycle
2933/// in some way. We track the minimal stack depth (i.e., the
2934/// farthest from the top of the stack) that we are dependent on.
2935/// The idea is that the cache results within are all valid -- so long as
2936/// none of the nodes in between the current node and the node at that minimum
2937/// depth result in an error (in which case the cached results are just thrown away).
2938///
2939/// During evaluation, we consult this provisional cache and rely on
2940/// it. Accessing a cached value is considered equivalent to accessing
2941/// a result at `reached_depth`, so it marks the *current* solution as
2942/// provisional as well. If an error is encountered, we toss out any
2943/// provisional results added from the subtree that encountered the
2944/// error. When we pop the node at `reached_depth` from the stack, we
2945/// can commit all the things that remain in the provisional cache.
2946struct ProvisionalEvaluationCache<'tcx> {
2947 /// next "depth first number" to issue -- just a counter
2948 dfn: Cell<usize>,
2949
2950 /// Map from cache key to the provisionally evaluated thing.
2951 /// The cache entries contain the result but also the DFN in which they
2952 /// were added. The DFN is used to clear out values on failure.
2953 ///
2954 /// Imagine we have a stack like:
2955 ///
2956 /// - `A B C` and we add a cache for the result of C (DFN 2)
2957 /// - Then we have a stack `A B D` where `D` has DFN 3
2958 /// - We try to solve D by evaluating E: `A B D E` (DFN 4)
2959 /// - `E` generates various cache entries which have cyclic dependencies on `B`
2960 /// - `A B D E F` and so forth
2961 /// - the DFN of `F` for example would be 5
2962 /// - then we determine that `E` is in error -- we will then clear
2963 /// all cache values whose DFN is >= 4 -- in this case, that
2964 /// means the cached value for `F`.
2965 map: RefCell<FxIndexMap<ty::PolyTraitPredicate<'tcx>, ProvisionalEvaluation>>,
2966
2967 /// The stack of terms that we assume to be well-formed because a `WF(term)` predicate
2968 /// is on the stack above (and because of wellformedness is coinductive).
2969 /// In an "ideal" world, this would share a stack with trait predicates in
2970 /// `TraitObligationStack`. However, trait predicates are *much* hotter than
2971 /// `WellFormed` predicates, and it's very likely that the additional matches
2972 /// will have a perf effect. The value here is the well-formed `GenericArg`
2973 /// and the depth of the trait predicate *above* that well-formed predicate.
2974 wf_args: RefCell<Vec<(ty::Term<'tcx>, usize)>>,
2975}
2976
2977/// A cache value for the provisional cache: contains the depth-first
2978/// number (DFN) and result.
2979#[derive(Copy, Clone, Debug)]
2980struct ProvisionalEvaluation {
2981 from_dfn: usize,
2982 reached_depth: usize,
2983 result: EvaluationResult,
2984}
2985
2986impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
2987 fn default() -> Self {
2988 Self { dfn: Cell::new(0), map: Default::default(), wf_args: Default::default() }
2989 }
2990}
2991
2992impl<'tcx> ProvisionalEvaluationCache<'tcx> {
2993 /// Get the next DFN in sequence (basically a counter).
2994 fn next_dfn(&self) -> usize {
2995 let result = self.dfn.get();
2996 self.dfn.set(result + 1);
2997 result
2998 }
2999
3000 /// Check the provisional cache for any result for
3001 /// `fresh_trait_ref`. If there is a hit, then you must consider
3002 /// it an access to the stack slots at depth
3003 /// `reached_depth` (from the returned value).
3004 fn get_provisional(
3005 &self,
3006 fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
3007 ) -> Option<ProvisionalEvaluation> {
3008 debug!(
3009 ?fresh_trait_pred,
3010 "get_provisional = {:#?}",
3011 self.map.borrow().get(&fresh_trait_pred),
3012 );
3013 Some(*self.map.borrow().get(&fresh_trait_pred)?)
3014 }
3015
3016 /// Insert a provisional result into the cache. The result came
3017 /// from the node with the given DFN. It accessed a minimum depth
3018 /// of `reached_depth` to compute. It evaluated `fresh_trait_pred`
3019 /// and resulted in `result`.
3020 fn insert_provisional(
3021 &self,
3022 from_dfn: usize,
3023 reached_depth: usize,
3024 fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
3025 result: EvaluationResult,
3026 ) {
3027 debug!(?from_dfn, ?fresh_trait_pred, ?result, "insert_provisional");
3028
3029 let mut map = self.map.borrow_mut();
3030
3031 // Subtle: when we complete working on the DFN `from_dfn`, anything
3032 // that remains in the provisional cache must be dependent on some older
3033 // stack entry than `from_dfn`. We have to update their depth with our transitive
3034 // depth in that case or else it would be referring to some popped note.
3035 //
3036 // Example:
3037 // A (reached depth 0)
3038 // ...
3039 // B // depth 1 -- reached depth = 0
3040 // C // depth 2 -- reached depth = 1 (should be 0)
3041 // B
3042 // A // depth 0
3043 // D (reached depth 1)
3044 // C (cache -- reached depth = 2)
3045 for (_k, v) in &mut *map {
3046 if v.from_dfn >= from_dfn {
3047 v.reached_depth = reached_depth.min(v.reached_depth);
3048 }
3049 }
3050
3051 map.insert(fresh_trait_pred, ProvisionalEvaluation { from_dfn, reached_depth, result });
3052 }
3053
3054 /// Invoked when the node with dfn `dfn` does not get a successful
3055 /// result. This will clear out any provisional cache entries
3056 /// that were added since `dfn` was created. This is because the
3057 /// provisional entries are things which must assume that the
3058 /// things on the stack at the time of their creation succeeded --
3059 /// since the failing node is presently at the top of the stack,
3060 /// these provisional entries must either depend on it or some
3061 /// ancestor of it.
3062 fn on_failure(&self, dfn: usize) {
3063 debug!(?dfn, "on_failure");
3064 self.map.borrow_mut().retain(|key, eval| {
3065 if !eval.from_dfn >= dfn {
3066 debug!("on_failure: removing {:?}", key);
3067 false
3068 } else {
3069 true
3070 }
3071 });
3072 }
3073
3074 /// Invoked when the node at depth `depth` completed without
3075 /// depending on anything higher in the stack (if that completion
3076 /// was a failure, then `on_failure` should have been invoked
3077 /// already).
3078 ///
3079 /// Note that we may still have provisional cache items remaining
3080 /// in the cache when this is done. For example, if there is a
3081 /// cycle:
3082 ///
3083 /// * A depends on...
3084 /// * B depends on A
3085 /// * C depends on...
3086 /// * D depends on C
3087 /// * ...
3088 ///
3089 /// Then as we complete the C node we will have a provisional cache
3090 /// with results for A, B, C, and D. This method would clear out
3091 /// the C and D results, but leave A and B provisional.
3092 ///
3093 /// This is determined based on the DFN: we remove any provisional
3094 /// results created since `dfn` started (e.g., in our example, dfn
3095 /// would be 2, representing the C node, and hence we would
3096 /// remove the result for D, which has DFN 3, but not the results for
3097 /// A and B, which have DFNs 0 and 1 respectively).
3098 ///
3099 /// Note that we *do not* attempt to cache these cycle participants
3100 /// in the evaluation cache. Doing so would require carefully computing
3101 /// the correct `DepNode` to store in the cache entry:
3102 /// cycle participants may implicitly depend on query results
3103 /// related to other participants in the cycle, due to our logic
3104 /// which examines the evaluation stack.
3105 ///
3106 /// We used to try to perform this caching,
3107 /// but it lead to multiple incremental compilation ICEs
3108 /// (see #92987 and #96319), and was very hard to understand.
3109 /// Fortunately, removing the caching didn't seem to
3110 /// have a performance impact in practice.
3111 fn on_completion(&self, dfn: usize) {
3112 debug!(?dfn, "on_completion");
3113 self.map.borrow_mut().retain(|fresh_trait_pred, eval| {
3114 if eval.from_dfn >= dfn {
3115 debug!(?fresh_trait_pred, ?eval, "on_completion");
3116 return false;
3117 }
3118 true
3119 });
3120 }
3121}
3122
3123#[derive(Copy, Clone)]
3124struct TraitObligationStackList<'o, 'tcx> {
3125 cache: &'o ProvisionalEvaluationCache<'tcx>,
3126 head: Option<&'o TraitObligationStack<'o, 'tcx>>,
3127}
3128
3129impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
3130 fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
3131 TraitObligationStackList { cache, head: None }
3132 }
3133
3134 fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
3135 TraitObligationStackList { cache: r.cache(), head: Some(r) }
3136 }
3137
3138 fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
3139 self.head
3140 }
3141
3142 fn depth(&self) -> usize {
3143 if let Some(head) = self.head { head.depth } else { 0 }
3144 }
3145}
3146
3147impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
3148 type Item = &'o TraitObligationStack<'o, 'tcx>;
3149
3150 fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
3151 let o = self.head?;
3152 *self = o.previous;
3153 Some(o)
3154 }
3155}
3156
3157impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
3158 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3159 write!(f, "TraitObligationStack({:?})", self.obligation)
3160 }
3161}
3162
3163pub(crate) enum ProjectionMatchesProjection {
3164 Yes,
3165 Ambiguous,
3166 No,
3167}
3168
3169#[derive(Clone, Debug, TypeFoldable, TypeVisitable)]
3170pub(crate) struct AutoImplConstituents<'tcx> {
3171 pub types: Vec<Ty<'tcx>>,
3172 pub assumptions: Vec<ty::ArgOutlivesPredicate<'tcx>>,
3173}